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Abstract. The problem of variational data assimilation (DA)
for a nonlinear evolution model is formulated as an optimal
control problem to find the initial condition, boundary con-
ditions and/or model parameters. The input data contain ob-
servation and background errors, hence there is an error in
the optimal solution. For mildly nonlinear dynamics, the
covariance matrix of the optimal solution error can be ap-
proximated by the inverse Hessian of the cost function. For
problems with strongly nonlinear dynamics, a new statistical
method based on the computation of a sample of inverse Hes-
sians is suggested. This method relies on the efficient com-
putation of the inverse Hessian by means of iterative meth-
ods (Lanczos and quasi-Newton BFGS) with precondition-
ing. Numerical examples are presented for the model gov-
erned by the Burgers equation with a nonlinear viscous term.

1 Introduction

State and/or parameter estimation for dynamical geophysi-
cal flow models is an important problem in meteorology and
oceanography. Among the few methods feasible for solv-
ing these non-stationary large-scale problems, the variational
data assimilation (DA) method, called “4D-Var”, is the pre-
ferred method implemented at some major operational cen-
ters (e.g.Courtier et al., 1994; Fisher et al., 2009). From
the mathematical point of view, these problems can be for-
mulated as optimal control problems (e.g.Lions, 1986; Le
Dimet and Talagrand, 1986) to find unknown control vari-
ables in such a way that a cost function related to the obser-
vation and a priori data takes its minimum value. A necessary
optimality condition leads to the so-called optimality system,
which contains all the available information and involves the
original and adjoint models. Due to the input errors (back-
ground and observation errors), there is an error in the op-

timal solution. Its statistical properties are very important
for quantifying the accuracy of the optimal solution (which
is necessary to evaluate the quality of the forecast), for se-
quential variational state estimation and optimal design of
observation schemes. Assuming that the probability density
function (p.d.f.) of the optimal solution error can be rea-
sonably approximated by the normal (Gaussian) distribution,
the optimal solution error covariance matrix (referred to be-
low simply as “covariance”) is its most important statistic to
be estimated. If the errors of the input data are random and
normally distributed, then for a linearized finite-dimensional
error evolution model, the covariance is given by the inverse
Hessian of the cost function (e.g.Thacker, 1989; Rabier and
Courtier, 1992). This is an extension of a well-known re-
sult from nonlinear regression (Draper and Smith, 1981) to
the case of nonlinear dynamical systems. A similar result in
the continuous case was presented byGejadze et al.(2008).
In terms of continuous representation, it is said that the co-
variance operator can be approximated by the inverse Hes-
sian of the auxiliary control problem based on the tangent
linear model (TLM) constraints, if the so-called tangent lin-
ear hypothesis (TLH) is valid. The TLH implies that the
error dynamics can be satisfactorily described by the TLM.
It was demonstrated byGejadze et al.(2010, 2011) that ap-
proximation of the covariance by the inverse Hessian could
be sometimes sufficiently accurate even though the TLH is
not valid. However, in the case of highly nonlinear dynam-
ics such an approximation may not be valid at all (see, for
example,Pires et al., 1996). In the present paper, for the
case under consideration, we do the following: (a) present an
argument that even in this case the p.d.f. of the optimal so-
lution error may still be represented by a normal distribution
defined by the covariance matrix; (b) outline a new method
for estimation of the covariance; (c) discuss implementation
potentially feasible for large-scale dynamical models. One
of the objectives of this paper is to highlight the concept of
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the Effective Inverse Hessian (EIH), first introduced byGe-
jadze et al.(2011), to the geophysical research community.
The closest concept to this is probably the Expected Fisher
Information Matrix used in Bayesian estimation theory.

2 Statement of the problem

Consider the mathematical model of a physical process that
is described by the evolution problem{

∂ϕ
∂t

= F(ϕ), t ∈ (0,T )
ϕ
∣∣
t=0 = u,

(1)

whereϕ = ϕ(t) is the unknown function belonging for any
t to a Hilbert spaceX, u ∈ X, F is a nonlinear opera-
tor mappingX into X. Let Y = L2(0,T ;X) be a space
of abstract functionsϕ(t) with values inX, with the norm

‖ϕ‖ = (
T∫
0

‖ϕ‖
2
Xdt)

1/2. Suppose that for a givenu∈X there

exists a unique solutionϕ ∈Y to Eq. (1).
Let ū be the “exact” initial state and̄ϕ – the solution to

the problem Eq. (1) with u= ū, i.e. the “exact” state evolu-
tion. We define the input data as follows: the background
function ub ∈X, ub = ū+ ξb and the observationsy ∈ Yo,
y = Cϕ̄+ ξo, whereC : Y → Yo is a linear bounded oper-
ator (observation operator) andYo is a Hilbert space (ob-
servation space),ξb ∈X, ξo ∈ Yo. In particular,Yo may be
finite-dimensional (both in space and in time). The random
variablesξb andξo may be regarded as the background and
the observation error, respectively. Assuming that these er-
rors are normally distributed, unbiased and mutually uncorre-
lated, we define the covariance operatorsVb· =E[(·,ξb)X ξb]

andVo· =E[(·,ξo)Yo ξo], where “·” denotes an argument of
the respective operator, andE is the expectation. We suppose
thatVb andVo are positive definite, hence invertible.

Let us introduce a cost functionJ (u)

J (u)=
1

2
(V −1

b (u−ub),u−ub)X+

+
1

2
(V −1

o (Cϕ−y),Cϕ−y)Yo , (2)

and formulate the following DA problem (optimal control
problem) with the aim to identify the initial condition: find
u ∈ X and ϕ ∈ Y such that they satisfy Eq. (1) and the
cost functionJ (u) takes its minimum value. Further we
assume that the optimal solution errorδu= u− ū is unbi-
ased, i.e.E[δu] = 0, with the covariance operatorVδu· =

E[(·,δu)X δu].
Let us introduce the operatorR :X→Yo as follows

Rv=Cψ, v ∈X, (3)

whereψ ∈Y is the solution of the tangent linear problem{
∂ψ
∂t

−F ′(ϕ)ψ = 0, t ∈ (0,T ),
ψ |t=0 = v.

(4)

For a givenv we solve the problem Eq. (4), and then findRv
by Eq. (3). The definition ofR involvesϕ = ϕ̄+ δϕ depen-
dent onu= ū+δu via Eq. (1), thus we can write as follows:
R =R(ū,δu). It has been shown in (Gejadze et al., 2008)
that the optimal solution errorδu= u− ū and data errorsξb
andξo are related via the following exact operator equation

(V −1
b +R∗(ū,δu)V −1

o R(ū,τδu))δu=

=V −1
b ξb+R∗(ū,δu)V −1

o ξo, (5)

whereR∗ is the adjoint toR and τ ∈ [0,1] is a parameter
chosen to make the truncated Taylor series exact.

LetH(ū)=V −1
b +R∗(ū,0)V −1

o R(ū,0) be the Hessian of
the linearized (auxiliary) control problem (Gejadze et al.,
2008). Under the hypothesis thatF is twice continuously
Fréchet differentiable, the error Eq. (5) is approximated by:

H(ū)δu=V −1
b ξb+R∗(ū,0)V −1

o ξo. (6)

From Eq. (6) it is easy to see that

Vδu= [H(ū)]−1. (7)

This is a well-established result (Courtier et al., 1994; Ra-
bier and Courtier, 1992; Thacker, 1989), which is usually de-
duced (without considering Eq.5) by straightforwardly lin-
earizing the original nonlinear DA problem Eqs. (1)–(2) un-
der the assumption that

F(ϕ)−F(ϕ̄)≈F ′(ϕ̄)δϕ, (8)

which is called the “tangent linear hypothesis”. It is said that
Vδu can be approximated by[H(ū)]−1 if the TLH Eq. (8)
is valid. That usually happens if the nonlinearity is mild
and/or the errorδu and, subsequently,δϕ are small. We de-
rive Eq. (7) via Eq. (5). From this derivation one can see that
the accuracy of Eq. (7) depends on the accuracy of the ap-
proximationsR(ū,τδu)≈R(ū,0) andR∗(ū,δu)≈R∗(ū,0)
in Eq. (5). Clearly, the transition from Eq. (5) to Eq. (6) could
still be valid even though Eq. (8) is not satisfied.

As already mentioned, we can use formula Eq. (7) if the
TLH is valid and, in some cases beyond the range of its va-
lidity. In the general case, however, onemay not expect
H−1(ū) always to be a satisfactory approximation toVδu.
In Fig. 1 we present a specially designed example for the
evolution model governed by the 1-D Burgers equation (for
details see Sect.4). The difference between the reference
value of the variance (circles) and the inverse Hessian based
value (bold solid line) can be clearly seen within the ellipse.
The reference variance is obtained by a direct Monte Carlo
simulation.

SinceR∗(ū,0) andH(ū) in Eq. (6) are linear operators and
we assume that errorsξb andξo are unbiased and normally
distributed, thenδu∼N (0,Vδu). Clearly, this result is valid
as far as the TLH and consequently Eq. (6) itself are satisfied.
However, for highly nonlinear dynamical models the TLH
often breaks down (e.g.Pires et al., 1996); thus, we have to
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Fig. 1. Reference variance, variance by the inverse Hessian and
background variance.

SinceR∗(ū,0) andH(ū) in (6) are linear operators and160

we assume that errorsξb andξo are unbiased and normally
distributed, thenδu∼N (0,Vδu). Clearly, this result is valid
as far as the TLH and consequently (6) itself are satisfied.
However, for highly nonlinear dynamical models the TLH
often breaks down (e.g., Pires et al., 1996); thus, we have to165

answer the following question: can the p.d.f. ofδu still be
approximated by the normal distribution? If the answer is
positive, one should look for a better approximation of the
covariance than that given by (7).

Let us consider the cost function (2), but without the170

background term. The corresponding error equation (5) is
then as follows:

R∗(ū,δu)V −1
o R(ū,τδu)δu=R∗(ū,δu)V −1

o ξo. (9)

For a univariate case, the classical result (see (Jennrich,
1969)) is thatδu is asymptotically normal ifξo is an175

independent identically distributed (i.i.d.) random variable
with E[ξo] = 0 andE[ξ2o ] = σ2<∞ (’asymptotically’ means
that T →∞ given the finite observation time stepdt, or
dt→ 0 given the finite observation window[0,T ]). Let
us stress that for the asymptotic normality ofδu the error180

ξo is not required to be normal. This original result has
been generalized to the multivariate case and to the case
of dependent, yet identically distributed observations (White
and Domowitz, 1984), whereas an even more general case
is considered in (Yuan and Jennrich, 1998). Here we185

consider the complete cost function (2) and, correspondingly,
the error equation (5), which contains terms related to the
background term. To analyze a possible impact of these
terms let us follow the reasoning in (Amemiya, 1983),
pp. 337-345, where the error equation equivalent to (9) is190

derived in a slightly different form. It is concluded that
the errorδu is asymptotically normal when: a) the right-
hand side of the error equation is normal; b) the left-hand
side matrix converges in probability to a non-random value.

These conditions are met under certain general regularity195

requirements to the operatorR, which are incomparably
weaker than the TLH and do not depend on the magnitude
of the input errors. Clearly, as applied to (5), the first
condition holds ifξb is normally distributed. SinceV −1

b is
a constant matrix, the second condition always holds as long200

as it holds forR∗(ū,δu)V −1
o R(ū,τδu). Therefore, one may

conclude thatδu from (5) is bound to remain asymptotically
normal. In practice the observation window[0,T ] and time
step dt are always finite implying the finite number of
i.i.d. observations. Moreover, it is not easy to assess how205

large the number of observations must be for the desired
asymptotic properties to be reasonably approximated. Some
nonlinear least-square problems in which the normality of
the estimation error holds for ’practically relevant’ sample
sizes are said to exhibit a ’close-to-linear’ statistical behavior210

(Ratkowsky, 1983). The method suggested in (Ratkowsky,
1983) to verify this behavior is, essentially, a normality test
applied to a generated sample of optimal solutions, which is
hardly feasible for large-scale applications. Nevertheless, for
certain highly nonlinear evolution models it is reasonableto215

expect that the distribution ofδu might be reasonably close
to normal if the number of i.i.d. observations is significant
in time and the observation network is sufficiently dense
in space. This may happen in assimilation of long time
series of satellite observations of ocean surface elevation and220

temperature, for example.

3 Effective Inverse Hessian (EIH) method

3.1 General consideration

Here we present a new method for estimating the covariance
Vδu to be used in the case of highly nonlinear dynamics,225

when[H(ū)]−1 is not expected to be a good approximation
of Vδu. Let us consider the discretized nonlinear error
equation (5) and denote byH the left-hand side operator in
(5). Then we can write down the expression forδu:

δu=H−1(V −1

b ξb +R∗(ū,δu)V −1
o ξo),230

whereas for the covarianceVδu we obtain as follows:

Vδu :=E
[

δuδuT
]

=E
[

H−1V −1

b ξbξ
T
b V

−1

b H−1∗
]

+

+E
[

H−1R∗(ū,δu)V −1
o ξoξ

T
o V

−1
o R(ū,δu)H−1∗

]

. (10)

As a result of a series of simplifications described in (Gejadze
et al., 2011) the above equation can be reduced to the form235

Vδu ≈V =E
[

[H(ū+δu)]−1
]

, (11)

whereH(ū+ δu) = V −1

b +R∗(ū,δu)V −1
o R(ū,δu) is the

Hessian of the linearized (auxiliary) control problem. The
right-hand side of (11) may be called the effective inverse
Hessian (EIH), hence the name of the suggested method.240

Fig. 1. Reference variance, variance by the inverse Hessian and
background variance.

answer the following question: can the p.d.f. ofδu still be
approximated by the normal distribution? If the answer is
positive, one should look for a better approximation of the
covariance than that given by Eq. (7).

Let us consider the cost function Eq. (2), but without the
background term. The corresponding error equation Eq. (5)
is then as follows:

R∗(ū,δu)V −1
o R(ū,τδu)δu=R∗(ū,δu)V −1

o ξo. (9)

For a univariate case, the classical result (seeJennrich, 1969)
is that δu is asymptotically normal ifξo is an independent
identically distributed (i.i.d.) random variable withE[ξo] = 0
andE[ξ2

o ] = σ 2<∞ (“asymptotically” means thatT → ∞

given the finite observation time stepdt , or dt→ 0 given the
finite observation window[0,T ]). Let us stress that for the
asymptotic normality ofδu, the errorξo is not required to be
normal. This original result has been generalized to the mul-
tivariate case and to the case of dependent, yet identically dis-
tributed observations (White and Domowitz, 1984), whereas
an even more general case is considered in (Yuan and Jen-
nrich, 1998). Here we consider the complete cost function
Eq. (2) and, correspondingly, the error Eq. (5), which con-
tains terms related to the background term. To analyze a
possible impact of these terms let us follow the reasoning
in (Amemiya, 1983), pp. 337–345, where the error equation
equivalent to Eq. (9) is derived in a slightly different form.
It is concluded that the errorδu is asymptotically normal
when: (a) the right-hand side of the error equation is nor-
mal; (b) the left-hand side matrix converges in probability to
a non-random value. These conditions are met under certain
general regularity requirements to the operatorR, which are
incomparably weaker than the TLH and do not depend on the
magnitude of the input errors. Clearly, as applied to Eq. (5),
the first condition holds ifξb is normally distributed. Since
V −1

b is a constant matrix, the second condition always holds
as long as it holds forR∗(ū,δu)V −1

o R(ū,τδu). Therefore,

one may conclude thatδu from Eq. (5) is bound to remain
asymptotically normal. In practice the observation window
[0,T ] and time stepdt are always finite implying the finite
number of i.i.d. observations. Moreover, it is not easy to
assess how large the number of observations must be for
the desired asymptotic properties to be reasonably approx-
imated. Some nonlinear least-square problems, in which the
normality of the estimation error holds for “practically rele-
vant” sample sizes, are said to exhibit a “close-to-linear” sta-
tistical behavior (Ratkowsky, 1983). The method suggested
in (Ratkowsky, 1983) to verify this behavior is, essentially, a
normality test applied to a generated sample of optimal so-
lutions, which is hardly feasible for large-scale applications.
Nevertheless, for certain highly nonlinear evolution models,
it is reasonable to expect that the distribution ofδu might
be reasonably close to normal if the number of i.i.d. obser-
vations is significant in time and the observation network is
sufficiently dense in space. This may happen in assimilation
of long time series of satellite observations of ocean surface
elevation and temperature, for example.

3 Effective Inverse Hessian (EIH) method

3.1 General consideration

Here we present a new method for estimating the covari-
anceVδu to be used in the case of highly nonlinear dynamics,
when[H(ū)]−1 is not expected to be a good approximation
of Vδu. Let us consider the discretized nonlinear error equa-
tion Eq. (5) and denote byH the left-hand side operator in
Eq. (5). Then we can write down the expression forδu

δu=H−1(V −1
b ξb+R∗(ū,δu)V −1

o ξo),

whereas for the covarianceVδu we obtain as follows:

Vδu :=E
[
δuδuT

]
=E

[
H−1V −1

b ξbξ
T
b V

−1
b H−1∗

]
+

+E
[
H−1R∗(ū,δu)V −1

o ξoξ
T
o V

−1
o R(ū,δu)H−1∗

]
. (10)

As a result of a series of simplifications described in (Gejadze
et al., 2011) the above equation can be reduced to the form

Vδu≈V =E
[
[H(ū+δu)]−1

]
, (11)

whereH(ū+δu)=V −1
b +R∗(ū,δu)V −1

o R(ū,δu) is the Hes-
sian of the linearized (auxiliary) control problem. The right-
hand side of Eq. (11) may be called the effective inverse Hes-
sian (EIH), hence the name of the suggested method. In order
to computeV directly using this equation, the expectation is
substituted by the sample mean:

V =
1

L

L∑
l=1

[H(ū+δu
l
)]−1. (12)
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The main difficulty with the implementation is a need to
compute a sample of optimal solutionsul = ū+ δu

l
. How-

ever, formula Eq. (11) does not necessarily requireul to be
an optimal solution. If we denote byqδu the p.d.f. ofδu, then
equation Eq. (11) can be rewritten in the form:

V =

∫
+∞

−∞

[H(ū+v)]−1qδu(v) dv. (13)

If we assume that in our nonlinear case the covariance matrix
V describes meaningfully the p.d.f. of the optimal solution
error, then, with the same level of validity, we should also
accept the pdfqδu to be approximately normal with zero ex-
pectation and the covarianceV , in which case we obtain

V = c

∫
+∞

−∞

[H(ū+v)]−1exp

(
−

1

2
vT V −1v

)
dv, (14)

wherec−1
= (2π)M/2|V |

1/2. Formula Eq. (12) givesV ex-
plicitly, but requires a sample of optimal solutionsul, l =
1,...,L to be computed. In contrast, the latest expression is a
nonlinear matrix integral equation with respect toV , while v
is a dummy variable. This equation is actually solved using
the iterative process Eq. (19), as explained in the following
section. It is also interesting to notice that Eq. (14) is a deter-
ministic equation.

3.2 Implementation remarks

Remark 1. Preconditioning is used in variational DA to ac-
celerate the convergence of the conjugate gradient algorithm
at the stage of inner iterations of the Gauss-Newton (GN)
method, but it also can be used to accelerate formation of
the inverse Hessian by the Lanczos algorithm (Fisher et al.,
2009) or by the BFGS (Gejadze et al., 2010). SinceH is self-
adjoint, we must consider a projected Hessian in a symmetric
form

H̃ = (B−1)∗HB−1,

with some operatorB :X→X, defined in such a way that
the eigenspectrum of the projected HessianH̃ is clustered
around 1, i.e. the majority of the eigenvalues ofH̃ are equal
or close to 1. Since the condition number ofH̃ is supposed
to be much smaller than the condition number ofH , a sen-
sible approximation ofH̃−1 can usually be obtained (either
by Lanczos or BFGS) with a relatively small number of iter-
ations. After that, havingH̃−1, one can easily recoverH−1

using the formula:

H−1
=B−1H̃−1(B−1)∗. (15)

Assuming thatB−1 does not depend onδul , we substitute
Eq. (15) into Eq. (12) and obtain the version of Eq. (12) with
preconditioning:

V =B−1

(
1

L

L∑
l=1

[H̃ (ū+δu
l
)]−1

)
(B−1)∗. (16)

Similarly, assuming thatB−1 does not depend on the variable
of integration, we substitute Eq. (15) into Eq. (14) and obtain
the version of Eq. (14) with preconditioning:

V =B−1Ṽ (B−1)∗,

Ṽ = c

∫
+∞

−∞

[H̃ (ū+v)]−1exp

(
−

1

2
vT V −1v

)
dv. (17)

Formulas Eq. (16) and Eq. (17) instead ofH−1 involve
H̃−1 which is much less expensive to compute and store in
memory. Let us mention here that the EIH method would
hardly be feasible for large-scale problems without appropri-
ate preconditioning.

Remark 2. The nonlinear Eq. (17) can be solved, for ex-
ample, by the fixed point iterative process as follows

V p+1
=B−1Ṽ (B−1)∗,

Ṽ = cp
∫

+∞

−∞

[H̃ (ū+v)]−1exp

(
−

1

2
vT (V p)−1v

)
dv, (18)

for p= 0,1,..., starting withV 0
= [H(ū)]−1. The iterative

processes of this type are expected to converge ifV 0 is a
good initial approximation ofV , which is the case in the
considered examples. The convergence of Eq. (18) and other
methods for solving equation Eq. (17) are subjects for future
research.

Remark 3. Different methods can be used for evaluation
of the multidimensional integral in Eq. (18) such as quasi-
Monte Carlo (Neiderreiter, 1992). Here, for simplicity, we
use the standard Monte Carlo method. This actually implies
a return to the formula Eq. (16). Taking into account Eq. (15),
the iterative process takes the form

V p+1
=B−1

(
1

L

L∑
l=1

[H̃ (ū+δup
l
)]−1

)
(B−1)∗, (19)

whereδup
l

∼N (0,V p). For eachl, we computeδup
l

as fol-
lows

δup
l

= (V p)1/2ξl,

whereξ ∼N (0,I ) is an independent random series,I is the
identity matrix and(V p)1/2 is the square root ofV p. One can
see that for eachp the last formula looks similar to Eq. (16)
with one key difference:δupl in Eq. (19) is not an optimal
solution, but a vector having the statistical properties of the
optimal solution.

Remark 4. Let us notice that a few tens of outer iterations
by the GN method may be required to obtain one optimal so-
lution, while an approximate evaluation ofH̃−1 is equivalent
(in terms of computational costs) to just one outer iteration
of the GN method. One has to repeat these computationsp

times, however, only a few iterations on indexp are required
in practice. Therefore, one should expect an order of the
magnitude reduction of computational costs by the method
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Eq. (19) as compared to Eq. (16) for the same sample size.
Clearly, for realistic large-scale models, the sample sizeL is
going to be limited. Probably, the minimum ensemble size
for this method to work is 2L∗

+1, whereL∗ is the accepted
number of leading eigenvectors ofV p in Eq. (19).

Remark 5. In order to implement the process Eq. (19) a
sample of vectorsϕl(x,0)= δu

p
l must be propagated from

t = 0 to t = T using the nonlinear model Eq. (1). Therefore,
for eachp one gets a sample of final statesϕl(x,T ) consistent
with the current approximation ofV p, which can be used to
evaluate the forecast and forecast covariance. SinceV p is
a better approximation of the analysis error covariance than
simply [H(ū)]−1, one should expect a better quality of the
forecast and covariance (as being consistent withV p, rather
than with[H(ū)]−1).

4 Numerical implementation

4.1 Numerical model

As a model we use the 1D Burgers equation with a nonlinear
viscous term:

∂ϕ

∂t
+

1

2

∂(ϕ2)

∂x
=
∂

∂x

(
µ(ϕ)

∂ϕ

∂x

)
, (20)

ϕ=ϕ(x,t), t ∈ (0,T ), x ∈ (0,1),

with the Neumann boundary conditions

∂ϕ

∂x

∣∣∣∣∣
x=0

=
∂ϕ

∂x

∣∣∣∣∣
x=1

= 0 (21)

and the viscosity coefficient

µ(ϕ)=µ0+µ1

(
∂ϕ

∂x

)2

, µ0,µ1 = const >0. (22)

The nonlinear diffusion term withµ(ϕ) dependent on∂ϕ/∂x
is introduced to mimic the eddy viscosity (turbulence), which
depends on the field gradients (pressure, temperature), rather
than on the field value itself. This type ofµ(ϕ) also allows
us to formally qualify the problem Eqs. (20)–(22) as strongly
nonlinear (Fučik and Kufner, 1980). Let us mention that the
Burgers equations are sometimes considered in DA context
as a simple model describing the atmospheric flow motion.

We use the implicit time discretization as follows

ϕi−ϕi−1

ht
+
∂

∂x

(
1

2
w(ϕi)ϕi−µ(ϕi)

∂ϕi

∂x

)
= 0, (23)

wherei= 1,...,N is the time integration index,ht = T/N is
the time step. The spatial operator is discretized on a uniform
grid (hx is the spatial discretization step,j = 1,...,M is the
node number,M is the total number of grid nodes), using
the “power law” first-order scheme as described in (Patankar,
1980), which yields quite a stable discretization scheme (this
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Remark 4. Let us notice that a few tens of outer
iterations by the GN method may be required to obtain one325

optimal solution, while an approximate evaluation ofH̃−1

is equivalent (in terms of computational costs) to just one
outer iteration of the GN method. One has to repeat these
computationsp times, however only a few iterations on index
p are required in practice. Therefore, one should expect an330

order of the magnitude reduction of computational costs by
the method (19) as compared to (16) for the same sample
size. Clearly, for realistic large-scale models the samplesize
L is going to be limited. Probably, the minimum ensemble
size for this method to work is2L∗ +1 , whereL∗ is the335

accepted number of leading eigenvectors ofV p in (19).
Remark 5. In order to implement the process (19) a

sample of vectorsϕl(x,0) = δup
l must be propagated from

t= 0 to t= T using the nonlinear model (1). Therefore, for
eachp one gets a sample of final statesϕl(x,T ) consistent340

with the current approximation ofV p, which can be used to
evaluate the forecast and forecast covariance. SinceV p is
a better approximation of the analysis error covariance than
simply [H(ū)]−1, one should expect a better quality of the
forecast and covariance (as being consistent withV p, rather345

than with[H(ū)]−1).

4 Numerical implementation

4.1 Numerical model

As a model we use the 1D Burgers equation with a nonlinear
viscous term:350

∂ϕ

∂t
+

1

2

∂(ϕ2)

∂x
=

∂

∂x

(

µ(ϕ)
∂ϕ

∂x

)

, (20)

ϕ=ϕ(x,t), t∈ (0,T ), x∈ (0,1),

with the Neumann boundary conditions

∂ϕ

∂x

∣

∣

∣

∣

∣

x=0

=
∂ϕ

∂x

∣

∣

∣

∣

∣

x=1

= 0 (21)

and the viscosity coefficient355

µ(ϕ)=µ0 +µ1

(

∂ϕ

∂x

)2

, µ0,µ1 = const> 0. (22)

The nonlinear diffusion term withµ(ϕ) dependent on∂ϕ/∂x
is introduced to mimic the eddy viscosity (turbulence), which
depends on the field gradients (pressure, temperature), rather
than on the field value itself. This type ofµ(ϕ) also allows360

us to formally qualify the problem (20)-(22) as strongly
nonlinear (Fučik and Kufner, 1980). Let us mention that the
Burgers equations are sometimes considered in DA context
as a simple model describing the atmospheric flow motion.

We use the implicit time discretization as follows:365

ϕi−ϕi−1

ht
+
∂

∂x

(

1

2
w(ϕi)ϕi−µ(ϕi)

∂ϕi

∂x

)

= 0, (23)

ϕ

Fig. 2. Field evolution.

wherei= 1,...,N is the time integration index,ht =T/N is
the time step. The spatial operator is discretized on a uniform
grid (hx is the spatial discretization step,j = 1,...,M is the
node number,M is the total number of grid nodes) using370

the ’power law’ first-order scheme as described in (Patankar,
1980), which yields quite a stable discretization scheme
(this scheme allowsµ(ϕ) to be as small as0.5× 10−4 for
M = 200 without noticeable oscillations). For each time step
we perform nonlinear iterations on the coefficientsw(ϕ)=ϕ375

andµ(ϕ) in the form

ϕi
n−ϕi−1

n

ht
+
∂

∂x

(

1

2
w(ϕi

n−1)ϕ
i
n−µ(ϕi

n−1)
∂ϕi

n

∂x

)

= 0,

for n= 1,2,..., assuming initially thatµ(ϕi
0) = µ(ϕi−1) and

w(ϕi
0) =ϕi−1, and keep iterating until (23) is satisfied (i.e.

the norm of the left-hand side in (23) becomes smaller than380

the thresholdǫ1 = 10−12
√
M ). In all the computations

presented in this paper we use the following parameters:
the observation periodT = 0.312, the discretization steps
ht = 0.004,hx = 0.005, the state vector dimensionM = 200,
and the parameters in (22)µ0 = 10−4, µ1 = 10−6.385

A general property of the Burgers solutions is that a
smooth initial state evolves into a state characterized by the
areas of severe gradients (or even shocks in the inviscid case).
These are precisely the areas of a strong nonlinearity where
one might expect violations of the TLH and, subsequently,390

the invalidity of (7). For numerical experiments we choose
a certain initial condition which stimulates the highly
nonlinear behavior of the system; this is given by the formula

ū(x)=ϕ(x,0)=







0.5−0.5cos(8πx), 0≤ x≤ 0.4,
0, 0.4<x≤ 0.6
0.5cos(4πx)−0.5, 0.6<x≤ 1.

Fig. 2. Field evolution.

scheme allowsµ(ϕ) to be as small as 0.5×10−4 for M =

200 without noticeable oscillations). For each time step we
perform nonlinear iterations on the coefficientsw(ϕ)=ϕ and
µ(ϕ) in the form

ϕin−ϕi−1
n

ht
+
∂

∂x

(
1

2
w(ϕin−1)ϕ

i
n−µ(ϕin−1)

∂ϕin

∂x

)
= 0,

for n= 1,2,..., assuming initially thatµ(ϕi0)=µ(ϕ
i−1) and

w(ϕi0)= ϕi−1, and keep iterating until Eq. (23) is satisfied
(i.e. the norm of the left-hand side in Eq. (23) becomes
smaller than the thresholdε1 = 10−12

√
M). In all the com-

putations presented in this paper we use the following pa-
rameters: the observation periodT = 0.312, the discretiza-
tion stepsht = 0.004, hx = 0.005, the state vector dimen-
sionM = 200, and the parameters in Eq. (22) µ0 = 10−4,
µ1 = 10−6.

A general property of the Burgers solutions is that a
smooth initial state evolves into a state characterized by the
areas of severe gradients (or even shocks in the inviscid case).
These are precisely the areas of a strong nonlinearity where
one might expect violations of the TLH and, subsequently,
the invalidity of Eq. (7). For numerical experiments we
choose a certain initial condition that stimulates the highly
nonlinear behavior of the system; this is given by the for-
mula:

ū(x)=ϕ(x,0)=

0.5−0.5cos(8πx), 0≤ x ≤ 0.4,
0, 0.4<x ≤ 0.6
0.5cos(4πx)−0.5, 0.6<x ≤ 1.

The resulting field evolutionϕ(x,t) is presented in Fig.2.

4.2 BFGS for computing the inverse Hessian and
other details

The projected inverse HessiañH(ū+ δu) is computed as
a collateral result of the BFGS iterations while solving the

www.nonlin-processes-geophys.net/19/177/2012/ Nonlin. Processes Geophys., 19, 177–184, 2012



182 V. Shutyaev et al.: Optimal solution error covariance6 V. Shutyaev et al.: Optimal solution error covariance

The resulting field evolutionϕ(x,t) is presented in Fig.2.395

4.2 BFGS for computing the inverse Hessian and other
details

The projected inverse HessiañH(ū+ δu) is computed as
a collateral result of the BFGS iterations while solving the
following auxiliary DA problem:400











∂δϕ
∂t

−F ′(ϕ)δϕ = 0, t∈ (0,T )

δϕ
∣

∣

t=0
= B−1δu

J1(δu) = inf
v
J1(v),

(24)

where

J1(δu)=
1

2
(V −1

b B−1(δu−ξb),B−1(δu−ξb))X+

+
1

2
(V −1

o (Cδϕ−ξo),Cδϕ−ξo)Yo
. (25)

The preconditioner used in our method is405

B−1 =V
1/2

b [H̃(ū)]−1/2. (26)

In order to compute[H̃(ū)]−1/2 we apply the Cholesky
factorization of the explicitly formed matrixH̃−1.
However, it is important to note that the square-root-
vector productH̃−1/2w can be computed using a recursive410

procedure based on the accumulated secant pairs (BFGS)
or eigenvalues/eigenvectors (Lanczos) as described in
(Tshimanga et al., 2008), without the need to form̃H−1 and
to factorize it. Consistent tangent linear and adjoint models
have been generated from the original forward model by415

the Automatic Differentiation tool TAPENADE (Hascoët
and Pascual, 2004) and checked using the standard gradient
test. The background error covarianceVb is computed
assuming that the background error belongs to the Sobolev
spaceW 2

2 [0,1] (see Gejadze et al., 2010, for details). The420

correlation function used in the numerical examples is
as presented in Fig.3, the background error variance is
σ2

b = 0.2, the observation error variance isσ2
o = 10−3. The

observation scheme consists of 4 sensors located at the
points x̂k = 0.4, 0.45, 0.55, 0.6, and the observations are425

available at each time instant.

5 Numerical results

First we compute a large sample (L = 2500) of optimal
solutionsul by solvingL times the data assimilation problem
(1)-(2) with perturbed dataub = ū+ ξb and y = Cϕ̄+ ξo,430

whereξb ∼N (0,Vb) andξo ∼N
(

0,σ2
oI
)

. This large sample
is used to evaluate the sample covariance matrix, which is
further processed to filter the sampling error (as described
in Gejadze et al., 2011); the outcome is considered as
a reference valuêV ◦. Then, the original large sample435

is partitioned intoone hundredsubsets includingL = 25
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Fig. 3. Correlation function.

members and intotwenty fivesubsets includingL = 100
members. Let us denote bŷVL the sample covariance matrix
obtained for a subset includingL members. Then, the
relative error in the sample variance (which is the relative440

sampling error) can be defined as the vectorε̂L with the
components

(ε̂L)i = (V̂L)i,i/V̂
◦

i,i−1, i= 1,...,M.

The relative error in a certain approximation ofV is defined
as a vectorε with the components445

εi =Vi,i/V̂
◦

i,i−1, i= 1,...,M. (27)

We compute this error withV in (27) being estimated by one
of the following methods:
1) by the inverse Hessian method, i.e. simply usingVδu =
[H(ū)]−1;450

2a) by the EIH method implemented in the form (16), which
requires a sample of optimal solutionsδul to be computed;
2b) by the EIH method implemented as the iterative process
(19), which requires a sample ofδul, but does not require
thatδul are optimal solutions.455

For the computation ofV by the methods 2a or 2b a sample
of δul is required, hence the result depends on the sample
sizeL. The results (obtained by the methods 2a and 2b)
presented in this paper are computed withL= 100. In the
method 2b we currently allow enough iterations on the index460

p for the iterative process (19) to converge in terms of the
distance between the successive iterates. In practice, this
requires just a few iterations, typically2−3.

In the upper panel in Fig.4 a set ofone hundredvectors
ε̂25 is presented in dark lines, and a set oftwenty fivevectors465

ε̂100 - in the overlaying white lines. These plots reveal
the envelopes for the relative error in the sample variance
obtained withL= 25 andL= 100, respectively. The graphs
of ε are presented in the lower panel: line 1 corresponds to
the method 1 (the inverse Hessian method, see also Fig.1),470

lines 2 and 3 - to the methods 2a and 2b (variants of the EIH
method).

Fig. 3. Correlation function.

following auxiliary DA problem:
∂δϕ
∂t

−F ′(ϕ)δϕ = 0, t ∈ (0,T )
δϕ
∣∣
t=0 = B−1δu

J1(δu) = inf
v
J1(v),

(24)

where

J1(δu)=
1

2
(V −1

b B−1(δu−ξb),B
−1(δu−ξb))X+

+
1

2
(V −1

o (Cδϕ−ξo),Cδϕ−ξo)Yo . (25)

The preconditioner used in our method is

B−1
=V

1/2
b [H̃ (ū)]−1/2. (26)

In order to compute[H̃ (ū)]−1/2 we apply the Cholesky
factorization of the explicitly formed matrixH̃−1. How-
ever, it is important to note that the square-root-vector prod-
uct H̃−1/2w can be computed using a recursive procedure
based on the accumulated secant pairs (BFGS) or eigenval-
ues/eigenvectors (Lanczos) as described in (Tshimanga et al.,
2008), without the need to form̃H−1 and to factorize it. Con-
sistent tangent linear and adjoint models have been generated
from the original forward model by the Automatic Differ-
entiation tool TAPENADE (Hascöet and Pascual, 2004) and
checked using the standard gradient test. The background er-
ror covarianceVb is computed assuming that the background
error belongs to the Sobolev spaceW2

2 [0,1] (seeGejadze et
al., 2010, for details). The correlation function used in the
numerical examples is as presented in Fig.3, the background
error variance isσ 2

b = 0.2, the observation error variance is
σ 2
o = 10−3. The observation scheme consists of 4 sensors

located at the pointŝxk = 0.4, 0.45, 0.55, 0.6, and the obser-
vations are available at each time instant.

5 Numerical results

First we computed a large sample (L= 2500) of optimal so-
lutionsul by solvingL times the data assimilation problem
Eqs. (1)–(2) with perturbed dataub = ū+ξb andy=Cϕ̄+ξo,
whereξb ∼N (0,Vb) andξo ∼N

(
0,σ 2

o I
)
. This large sample

was used to evaluate the sample covariance matrix, which
was further processed to filter the sampling error (as de-
scribed inGejadze et al., 2011); the outcome was considered
as a reference valuêV ◦. Then, the original large sample was
partitioned intoone hundredsubsets includingL= 25 mem-
bers and intotwenty fivesubsets includingL= 100 members.
Let us denote bŷVL the sample covariance matrix obtained
for a subset includingL members. Then, the relative error
in the sample variance (which is the relative sampling error)
can be defined as the vectorε̂L with the components:

(ε̂L)i = (V̂L)i,i/V̂
◦

i,i−1, i= 1,...,M.

The relative error in a certain approximation ofV is defined
as a vectorε with the components:

εi =Vi,i/V̂
◦

i,i−1, i= 1,...,M. (27)

We compute this error withV in Eq. (27) being estimated by
one of the following methods:

1. by the inverse Hessian method, i.e. simply using
Vδu= [H(ū)]−1;

2a. by the EIH method implemented in the form Eq. (16),
which requires a sample of optimal solutionsδul to be
computed;

2b. by the EIH method implemented as the iterative process
Eq. (19), which requires a sample ofδul , but does not
require thatδul are optimal solutions.

For the computation ofV by the methods 2a or 2b a sample
of δul is required, hence, the result depends on the sample
sizeL. The results (obtained by the methods 2a and 2b)
presented in this paper are computed withL= 100. In the
method 2b we currently allow enough iterations on the index
p for the iterative process Eq. (19) to converge in terms of
the distance between the successive iterates. In practice, this
requires just a few iterations, typically 2−3.

In the upper panel in Fig.4, a set ofone hundredvectors
ε̂25 is presented in dark lines, and a set oftwenty fivevec-
tors ε̂100 - in the overlaying white lines. These plots reveal
the envelopes for the relative error in the sample variance ob-
tained withL= 25 andL= 100, respectively. The graphs
of ε are presented in the lower panel: line 1 corresponds to
the method 1 (the inverse Hessian method, see also Fig.1),
lines 2 and 3 – to the methods 2a and 2b (variants of the EIH
method).
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Fig. 4. Up: the sample relative error̂ε. Set of ε̂ for L = 25 -
dark envelope and set of̂ε for L = 100 - white envelope. Down:
the relative errorε by the inverse Hessian - line 1, and by the EIH
methods withL =100: method 2a - line 2; method 2b - line 3.

Looking at Fig.4 we observe that the relative error in the
sample variancêε25 (dark envelope) exceeds50% almost
everywhere, which is certainly beyond reasonable margins,475

and ε̂100 (white envelope) is around25% (that is still fairly
large). In order to reduce the white envelope two times,
one would need to use the sample sizeL= 400, etc. One
should also keep in mind that the relative error in the diagonal
elements of the sample covariance matrix is the smallest480

as compared to its sub-diagonals, i.e. the envelopes for
any sub-diagonal would be wider than those presented in
Fig.4(up). Thus, the development of methods for estimating
the covariance (alternative to the direct sampling method)is
an important task.485

Whereas the method 1 (the inverse Hessian method) gives
an estimate ofVδu with a small relative error (as compared to
the sample covariance) in the areas of mild nonlinearity, this
error can be much larger in the areas of high nonlinearity.
For example, if we imagine that the lower panel in Fig.4 is490

superposed over its upper panel, then one could observe line
1 jumping outside the dark envelope in the area surrounding
x = 0.5, i.e. the relative error by the inverse Hessian is
significantly larger here than the sampling error forL =

25. At the same time, the relative error obtained by the495

methods 2a and 2b is much smaller as compared to the
error in line 1 and it would largely remain within the white
envelope. The difference between the estimates by the
methods 2a and 2b does not look significant. The best
improvement can be achieved for the diagonal elements of500

Vδu (the variance). Thus, the covariance estimate by the
EIH method is noticeably better than the sample covariance
obtained with the equivalent sample size. The suggested
algorithm is computationally efficient (in terms of the CPU
time) if the cost of computing the inverse Hessian is much505

less than the cost of computing one optimal solution. In the
example presented in this paper one limited-memory inverse
Hessian is about 20-30 times less expensive than one optimal
solution. Thus, on average, the algorithm 2b works about
10 times faster than the algorithm 2a, whereas the results by510

both the algorithms are similar in terms of accuracy.

6 Conclusions

Error propagation is a key point in modeling the large-scale
geophysical flows, with the main difficulty being linked to
the nonlinearity of the governing equations. In this paper515

we consider the hind-cast (initialization) DA problem. From
the mathematical point of view, this is the initial-value
control problem for a nonlinear evolution model governed
by partial differential equations. Assuming the so-called
tangent linear hypothesis (TLH) holds, the covariance is520

often approximated by the inverse Hessian of the objective
function. In practice, the same approximation could be valid
even though the TLH is clearly violated. However, here
we deal with such a highly nonlinear dynamics that the
inverse Hessian approach is no longer valid. In this case525

a new method for computing the covariance matrix named
the ’effective inverse Hessian’ method can be used. This
method yields a significant improvement in the covariance
estimate as compared to the inverse Hessian. The method
is potentially feasible for large-scale applications because it530

can be used in a multiprocessor environment and operates in
terms of the Hessian-vector products. The software blocks
needed for its implementation are the standard blocks of
any existing 4D Var system. All the results of this paper
are consistent with the assumption of a ’close-to-normal’535

nature of the optimal solution error. This should be expected
taking into account the consistency and asymptotic normality
of the estimator and the fact that the observation window
in variational DA is usually quite large. In this case the
covariance matrix is a meaningful representative of the540

p.d.f. The method suggested may become a valuable option
for uncertainty analysis in the framework of the classical
4D-VAR approach when applied to highly nonlinear DA
problems.
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Fig. 4. Up: the sample relative errorε̂. Set ofε̂ for L= 25 - dark
envelope and set ofε̂ for L= 100 - white envelope. Down: the rela-
tive errorε by the inverse Hessian - line 1, and by the EIH methods
with L= 100: method 2a - line 2; method 2b - line 3.

Looking at Fig.4, we observe that the relative error in
the sample variancêε25 (dark envelope) exceeds 50% almost
everywhere, which is certainly beyond reasonable margins,
and ε̂100 (white envelope) is around 25% (that is still fairly
large). In order to reduce the white envelope two times, one
would need to use the sample sizeL= 400, etc. One should
also keep in mind that the relative error in the diagonal el-
ements of the sample covariance matrix is the smallest as
compared to its sub-diagonals, i.e. the envelopes for any sub-
diagonal would be wider than those presented in Fig.4(up).
Thus, the development of methods for estimating the covari-
ance (alternative to the direct sampling method) is an impor-
tant task.

Whereas the method 1 (the inverse Hessian method) gives
an estimate ofVδu with a small relative error (as compared to
the sample covariance) in the areas of mild nonlinearity, this
error can be much larger in the areas of high nonlinearity.
For example, if we imagine that the lower panel in Fig.4 is
superposed over its upper panel, then one could observe line
1 jumping outside the dark envelope in the area surround-
ing x = 0.5, i.e. the relative error by the inverse Hessian is
significantly larger here than the sampling error forL= 25.

At the same time, the relative error obtained by the meth-
ods 2a and 2b is much smaller as compared to the error in
line 1 and it would largely remain within the white enve-
lope. The difference between the estimates by the methods
2a and 2b does not look significant. The best improvement
can be achieved for the diagonal elements ofVδu (the vari-
ance). Thus, the covariance estimate by the EIH method is
noticeably better than the sample covariance obtained with
the equivalent sample size. The suggested algorithm is com-
putationally efficient (in terms of the CPU time) if the cost of
computing the inverse Hessian is much less than the cost of
computing one optimal solution. In the example presented in
this paper one limited-memory inverse Hessian is about 20–
30 times less expensive than one optimal solution. Thus, on
average, the algorithm 2b works about 10 times faster than
the algorithm 2a, whereas the results by both the algorithms
are similar in terms of accuracy.

6 Conclusions

Error propagation is a key point in modeling the large-scale
geophysical flows, with the main difficulty being linked to
the nonlinearity of the governing equations. In this paper
we consider the hind-cast (initialization) DA problem. From
the mathematical point of view, this is the initial-value con-
trol problem for a nonlinear evolution model governed by
partial differential equations. Assuming the so-called tan-
gent linear hypothesis (TLH) holds, the covariance is often
approximated by the inverse Hessian of the objective func-
tion. In practice, the same approximation could be valid even
though the TLH is clearly violated. However, here we deal
with such a highly nonlinear dynamics that the inverse Hes-
sian approach is no longer valid. In this case, a new method
for computing the covariance matrix, named the “effective
inverse Hessian” method, can be used. This method yields a
significant improvement in the covariance estimate as com-
pared to the inverse Hessian. The method is potentially fea-
sible for large-scale applications because it can be used in
a multiprocessor environment and operates in terms of the
Hessian-vector products. The software blocks needed for its
implementation are the standard blocks of any existing 4-D
Var system. All the results of this paper are consistent with
the assumption of a “close-to-normal” nature of the optimal
solution error. This should be expected, taking into account
the consistency and asymptotic normality of the estimator
and the fact that the observation window in variational DA
is usually quite large. In this case the covariance matrix is
a meaningful representative of the p.d.f. The method sug-
gested may become a valuable option for uncertainty analy-
sis in the framework of the classical 4D-VAR approach when
applied to highly nonlinear DA problems.
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