Nonlin. Processes Geophys., 19, 1784 2012 4 "K Nonli P
www.nonlin-processes-geophys.net/19/177/2012/ GG onlinear Frocesses

doi:10.5194/npg-19-177-2012 in Geophysics
© Author(s) 2012. CC Attribution 3.0 License. -

Optimal solution error covariance in highly nonlinear problems of
variational data assimilation

V. Shutyae\, |. Gejadze?, G. J. M. Copeland?, and F.-X. Le Dimet®

Linstitute of Numerical Mathematics, Russian Academy of Sciences, 119333 Gubkina 8, Moscow, Russia
2Department of Civil Engineering, University of Strathclyde, 107 Rottenrow, Glasgow, G4 ONG, UK
3MOISE project (CNRS, INRIA, UJF, INPG), LIK, Universitle Grenoble, BP 53, 38041 Grenoble, France

Correspondence tdv. Shutyaev (shutyaev@inm.ras.ru)

Received: 6 July 2011 — Revised: 16 February 2012 — Accepted: 20 February 2012 — Published: 16 March 2012

Abstract. The problem of variational data assimilation (DA) timal solution. Its statistical properties are very important
for a nonlinear evolution model is formulated as an optimal for quantifying the accuracy of the optimal solution (which
control problem to find the initial condition, boundary con- is necessary to evaluate the quality of the forecast), for se-
ditions and/or model parameters. The input data contain obguential variational state estimation and optimal design of
servation and background errors, hence there is an error inbservation schemes. Assuming that the probability density
the optimal solution. For mildly nonlinear dynamics, the function (p.d.f.) of the optimal solution error can be rea-
covariance matrix of the optimal solution error can be ap-sonably approximated by the normal (Gaussian) distribution,
proximated by the inverse Hessian of the cost function. Forthe optimal solution error covariance matrix (referred to be-
problems with strongly nonlinear dynamics, a new statisticallow simply as “covariance”) is its most important statistic to
method based on the computation of a sample of inverse Hede estimated. If the errors of the input data are random and
sians is suggested. This method relies on the efficient comnormally distributed, then for a linearized finite-dimensional
putation of the inverse Hessian by means of iterative meth-error evolution model, the covariance is given by the inverse
ods (Lanczos and quasi-Newton BFGS) with precondition-Hessian of the cost function (e.ghacker 1989 Rabier and
ing. Numerical examples are presented for the model gov-Courtier, 1992. This is an extension of a well-known re-
erned by the Burgers equation with a nonlinear viscous termsult from nonlinear regressiomd(aper and Smith1981) to
the case of nonlinear dynamical systems. A similar result in
the continuous case was presenteddgjadze et al2008.
In terms of continuous representation, it is said that the co-
1 Introduction variance operator can be approximated by the inverse Hes-
sian of the auxiliary control problem based on the tangent
State and/or parameter estimation for dynamical geophysitinear model (TLM) constraints, if the so-called tangent lin-
cal flow models is an important problem in meteorology andear hypothesis (TLH) is valid. The TLH implies that the
oceanography. Among the few methods feasible for solv-error dynamics can be satisfactorily described by the TLM.
ing these non-stationary large-scale problems, the variationdt was demonstrated b§ejadze et a201Q 2011) that ap-
data assimilation (DA) method, called “4D-Var”, is the pre- proximation of the covariance by the inverse Hessian could
ferred method implemented at some major operational cenbe sometimes sufficiently accurate even though the TLH is
ters (e.g.Courtier et al. 1994 Fisher et al. 2009. From not valid. However, in the case of highly nonlinear dynam-
the mathematical point of view, these problems can be forics such an approximation may not be valid at all (see, for
mulated as optimal control problems (elgons, 1986 Le example,Pires et al. 1996. In the present paper, for the
Dimet and Talagrandl986 to find unknown control vari- case under consideration, we do the following: (a) present an
ables in such a way that a cost function related to the obserargument that even in this case the p.d.f. of the optimal so-
vation and a priori data takes its minimum value. A necessanyution error may still be represented by a normal distribution
optimality condition leads to the so-called optimality system, defined by the covariance matrix; (b) outline a new method
which contains all the available information and involves the for estimation of the covariance; (c) discuss implementation
original and adjoint models. Due to the input errors (back-potentially feasible for large-scale dynamical models. One
ground and observation errors), there is an error in the opeof the objectives of this paper is to highlight the concept of
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178 V. Shutyaev et al.: Optimal solution error covariance

the Effective Inverse Hessian (EIH), first introduced®g- For a giverv we solve the problem Eg4), and then findRv
jadze et al(2011), to the geophysical research community. by Eq. @). The definition ofR involvesg = ¢ + 8¢ depen-
The closest concept to this is probably the Expected Fishedent onu = u + du via Eq. @), thus we can write as follows:
Information Matrix used in Bayesian estimation theory. R = R(it,8u). It has been shown inGQejadze et a].2008
that the optimal solution errdu = u — i and data error§,

andé, are related via the following exact operator equation
2 Statement of the problem

(Vo 1+ R (i, 8u) Vg LR (i, T8u))Su =
Consider the mathematical model of a physical process that

is described by the evolution problem = belngr R*(g,au)vo—lgo, (5)
%—‘f = F(p), te(0,T) Q) where R* is the adjoint toR and r € [0,1] is a parameter
0|, _o=u. chosen to make the truncated Taylor series exact.

Let H (i) = V,;, * + R*(@,0) V5 LR (i1, 0) be the Hessian of
the linearized (auxiliary) control problenGgjadze et a).
2008. Under the hypothesis thdt is twice continuously
Fréchet differentiable, the error Ed)(is approximated by:

whereg = ¢(t) is the unknown function belonging for any
t to a Hilbert spaceX, u € X, F is a nonlinear opera-
tor mappingX into X. Let Y =L»(0,7;X) be a space
of abstract functiong(¢) with values inX, with the norm

T - _yv-1 %= -1
lell = ([ llgll2dt)Y/2. Suppose that for a givene X there H@du= Vo “5p+ R*(#,0)Vo “6o. ©)
5 .
exists a unique solutiop € Y to Eqg. (). From Eq. 6) itis easy to see that
Let #z be the “exact” initial state an@ — the solution to vy, =[H (#)]" L. (7

the problem Eq.1) with u =i, i.e. the “exact” state evolu- o . )

tion. We define the input data as follows: the backgroundThis is a well-established resulCourtier et al. 1994 Ra-

function up € X, up =i + & and the observations e Yo, bier and (_Zourtler199_2 Thacker1989, Whlch is usually (_je-
y=C@+&, whereC:Y — Y, is a linear bounded oper- duc_eq (wnhou’F gon3|der|_ng E&) by straightforwardly lin-
ator (observation operator) ari, is a Hilbert space (ob- €&rizing the original nonlinear DA problem Eq&)}{(2) un-

servation spacekp € X, & € Y,. In particular,¥, may be  der the assumption that
fini@e-dimensional (both in space and in time). The randomF((p) —F(@)~ F' ()80, ®)
variablest, and&, may be regarded as the background and

the observation error, respectively. Assuming that these erwhich is called the “tangent linear hypothesis”. It is said that
rors are normally distributed, unbiased and mutually uncorre-Vs, can be approximated by ()] ! if the TLH Eq. @©)

lated, we define the covariance operafdgs= E[(-,&b) x &bl
and V- = E[(-, &)y, &, where “” denotes an argument of

the respective operator, afids the expectation. We suppose

thatVy andV, are positive definite, hence invertible.
Let us introduce a cost functiah(x)

1.1
J(u)= E(Vb (u—up),u—up)x+

()

and formulate the following DA problem (optimal control
problem) with the aim to identify the initial condition: find
ue X and ¢ € Y such that they satisfy Eql) and the
cost functionJ (1) takes its minimum value. Further we
assume that the optimal solution er&r=u — iz is unbi-
ased, i.e.E[su] =0, with the covariance operatdfs,- =
E[(-,8u)x Sul.
Let us introduce the operat®: X — Y, as follows

Rv=Cy¢, ve X,

1
+5s YCp—y).Co—y)y,,

©)

wherey € Y is the solution of the tangent linear problem

W F(p) =0.1e(0.7).
Yli=0 = v.

(4)
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is valid. That usually happens if the nonlinearity is mild
and/or the errofu and, subsequentlyyp are small. We de-
rive Eq. (7) via Eq. 6). From this derivation one can see that
the accuracy of Eq.7) depends on the accuracy of the ap-
proximationsR (it, tdu) ~ R(u,0) and R* (i, 8u) ~ R*(it,0)

in Eq. ). Clearly, the transition from Eqg5) to Eq. 6) could
still be valid even though Eqg8J is not satisfied.

As already mentioned, we can use formula EAf).i{ the
TLH is valid and, in some cases beyond the range of its va-
lidity. In the general case, however, oney not expect
H~1(i1) always to be a satisfactory approximation ¥g,.

In Fig. 1 we present a specially designed example for the
evolution model governed by the 1-D Burgers equation (for
details see Sectl). The difference between the reference
value of the variance (circles) and the inverse Hessian based
value (bold solid line) can be clearly seen within the ellipse.
The reference variance is obtained by a direct Monte Carlo
simulation.

SinceR*(iz,0) andH (u) in Eq. 6) are linear operators and
we assume that errogp andé, are unbiased and normally
distributed, therdu ~ N (0, Vs,). Clearly, this result is valid
as far as the TLH and consequently Eg).ifself are satisfied.
However, for highly nonlinear dynamical models the TLH
often breaks down (e.¢rires et al.1996); thus, we have to
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one may conclude that: from Eq. 6) is bound to remain
‘ ‘ ‘ T asymptotically normal. In practice the observation window
e—e reference ens. . L . .
— H-variance . [0,T] and time stepir are always finite implying the finite
background i number of i.i.d. observations. Moreover, it is not easy to
i assess how large the number of observations must be for
i the desired asymptotic properties to be reasonably approx-
H imated. Some nonlinear least-square problems, in which the
! normality of the estimation error holds for “practically rele-
| vant” sample sizes, are said to exhibit a “close-to-linear” sta-

1z

0.2

0.15

variance
o
-

tistical behavior Ratkowsky 1983. The method suggested

in (Ratkowsky 1983 to verify this behavior is, essentially, a

] normality test applied to a generated sample of optimal so-

‘ | : ‘ ‘ | ‘ lutions, which is hardly feasible for large-scale applications.

0 0.2 0.4 X 0.6 0.8 1 Nevertheless, for certain highly nonlinear evolution models,

it is reasonable to expect that the distributionsaf might

Fig. 1. Reference variance, variance by the inverse Hessian ann?e _reaspna_bly_ (_:Iose _to pormal if the number _Of i.i.d. obse_r-

background variance. vations is significant in time and the observation network is
sufficiently dense in space. This may happen in assimilation
of long time series of satellite observations of ocean surface

answer the following question: can the p.d.f. saf still be elevation and temperature, for example.

approximated by the normal distribution? If the answer is

positive, one should look for a better approximation of the

covariance than that given by Eq)( 3 Effective Inverse Hessian (EIH) method

Let us consider the cost function EQ)(but without the
background term. The corresponding error equation Bq. ( 3-1 General consideration
is then as follows:

eSS e —y

0.05

=

Here we present a new method for estimating the covari-
R*(it,8u) Vo 'R (it T8u)u = R* (i1, $u) Vg “&o. (9)  anceVy, to be used in the case of highly nonlinear dynamics,
when[H ()]~ is not expected to be a good approximation
of Vs,. Let us consider the discretized nonlinear error equa-
tion Eq. 6) and denote by the left-hand side operator in
Eqg. 6). Then we can write down the expression dar

For a univariate case, the classical result (serich 1969
is thatdu is asymptotically normal i&, is an independent
identically distributed (i.i.d.) random variable wii{&,] = 0
and E[£2] = 02 < oo (“asymptotically” means thal — oo
given the finite observation time stép, or dr — 0 given the a=1,4,-1 - -1
finite observation windowO, 7']). Let us stress that for the du="H"(Vy 5o+ R, 1) Vo “5o),
asymptotic normality obu, the error, is not required to be  whereas for the covariand,, we obtain as follows:
normal. This original result has been generalized to the mul-
tivariate case and to the case of dependent, yetidentically disyy, := E [3M5MT] —E [H—lvbfl ,gbng belﬁ—l*] +
tributed observationd/hite and Domowitz1984), whereas
an even more general case is consideredviral§ and Jen-
nrich, 1998. Here we consider the complete cost function +E
Eq. @) and, correspondingly, the error Ed),(which con-
tains terms related to the background term. To ana'yze ﬁsaresult of a series of Simplifications describecﬁﬂiadze
possible impact of these terms let us follow the reasoninget al. 2011) the above equation can be reduced to the form
in (Amemiya 1983, pp. 337—345, where the error equation
equivalent to Eq.9) is derived in a slightly different form. Vsu®V =E [[H(ﬁ +5M)]_1], (11)
It is concluded that the errafu is asymptotically normal
when: (a) the right-hand side of the error equation is nor-whereH (it +8u) = Vb’l—i—R*(ﬁ,cSu)VO*lR(zZ,Su) is the Hes-
mal; (b) the left-hand side matrix converges in probability to sian of the linearized (auxiliary) control problem. The right-
a non-random value. These conditions are met under certaihand side of Eq.J1) may be called the effective inverse Hes-
general regularity requirements to the operatowhich are  sian (EIH), hence the name of the suggested method. In order
incomparably weaker than the TLH and do not depend on théo computeV directly using this equation, the expectation is
magnitude of the input errors. Clearly, as applied to B)j. (  substituted by the sample mean:
the first condition holds i, is normally distributed. Since
V.~1is a constant matrix, the second condition always holds 1& - 1

b V:ZZ[H(LML(SM,)] . (12)

=1

[H‘lR*(ﬁ,Bu)Vo_lgoéoT Vo_lR(ﬁ,Su)H_l*]. (10)

as long as it holds foR*(ﬁ,Su)vo‘lR(ﬁ,nSu). Therefore,

www.nonlin-processes-geophys.net/19/177/2012/ Nonlin. Processes Geophys., 1918472012
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The main difficulty with the implementation is a need to Similarly, assuming thaB ! does not depend on the variable

compute a sample of optimal solutions= i + u,. How-
ever, formula Eq.11) does not necessarily requisg to be
an optimal solution. If we denote lgy,, the p.d.f. ofSu, then
equation Eq.11) can be rewritten in the form:

+o0
V= / LH (i +v)] g5 (v) dv. (13)

o]

of integration, we substitute EdL%) into Eq. (L4) and obtain
the version of Eq.14) with preconditioning:

Vv =B"1V(B 1,

+00
V:c/ [ﬁ(ﬁ—}—v)]_lexp(—%vTV_lv) dv.

—00

(17)

If we assume that in our nonlinear case the covariance matrix Formulas Eq. 16) and Eq. {7) instead of ! involve

V describes meaningfully the p.d.f. of the optimal solution -1 which is much less expensive to compute and store in
error, then, with the same level of validity, we should also memory. Let us mention here that the EIH method would
accept the pdfs, to be approximately normal with zero ex- hardly be feasible for large-scale problems without appropri-

pectation and the covarian&g in which case we obtain

~+00 1
V= c/ [H (u +v)]‘1exp(—§vT V_lv> dv,

—0o0

(14)

wherec™t = (27)M/?|v|¥/2, Formula Eq. 12) givesV ex-
plicitly, but requires a sample of optimal solutiong [ =
1,...,L to be computed. In contrast, the latest expression is
nonlinear matrix integral equation with respecttpwhile v

ate preconditioning.
Remark 2. The nonlinear Eq.17) can be solved, for ex-
ample, by the fixed point iterative process as follows

Vp+l — B*l‘N/(Bfl)*’

~+00
¥= cpf [H (it +v)]_1exp(—%vT(V”)_1v) dv, (18)

—00

is a dummy variable. This equation is actually solved usingfor p =0, 1, ..., starting withvV? = [H (2)]~1. The iterative

the iterative process Eql9), as explained in the following
section. It is also interesting to notice that Etd)(is a deter-
ministic equation.

3.2 Implementation remarks

Remark 1. Preconditioning is used in variational DA to ac-

celerate the convergence of the conjugate gradient algorith
at the stage of inner iterations of the Gauss-Newton (GN)
method, but it also can be used to accelerate formation o

the inverse Hessian by the Lanczos algoritiisiGer et al.
2009 or by the BFGSGejadze et al2010. SinceH is self-

adjoint, we must consider a projected Hessian in a symmetric

form
H=(B Y HB,

with some operatoB : X — X, defined in such a way that
the eigenspectrum of the projected Hessléris clustered
around 1, i.e. the majority of the eigenvaluestbfare equal
or close to 1. Since the condition numberfis supposed
to be much smaller than the condition numbertbfa sen-
sible approximation off ~* can usually be obtained (either
by Lanczos or BFGS) with a relatively small number of iter-
ations. After that, having? —1, one can easily recovei 1
using the formula:
H =B A YBYH" (15)
Assuming thatB—1 does not depend ofu;, we substitute
Eq. 15) into Eq. (L2) and obtain the version of EqL?) with
preconditioning:

y—pi(l
L

Nonlin. Processes Geophys., 19, 177784, 2012

L
> A +5u,)]—1) (B7H*.

=1

(16)

processes of this type are expected to convergeifis a
good initial approximation ofV, which is the case in the
considered examples. The convergence of E§).4nd other
methods for solving equation EdLY) are subjects for future
research.

Remark 3. Different methods can be used for evaluation
of the multidimensional integral in Eql8) such as quasi-

Tonte Carlo (Neiderreiter 1992. Here, for simplicity, we

pse the standard Monte Carlo method. This actually implies
areturn to the formula Eql6). Taking into account Eq16),
the iterative process takes the form

1& -
(Z D [H +au{’>r1> (B™H*,
=1

wheresu? ~N(0,VP). For each, we computesu? as fol-
lows

yrtl_p-t (19)

sul = (VP)Y2g,

where¢ ~ N (0, 1) is an independent random seriéss the
identity matrix and V?)1/2 is the square root &f 7. One can
see that for eaclp the last formula looks similar to EqL§)
with one key differencezSul” in Eq. 19) is not an optimal
solution, but a vector having the statistical properties of the
optimal solution.

Remark 4. Let us notice that a few tens of outer iterations
by the GN method may be required to obtain one optimal so-
lution, while an approximate evaluation &f 1 is equivalent
(in terms of computational costs) to just one outer iteration
of the GN method. One has to repeat these computagions
times, however, only a few iterations on indexare required
in practice. Therefore, one should expect an order of the
magnitude reduction of computational costs by the method

www.nonlin-processes-geophys.net/19/177/2012/
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Eq. (19) as compared to Eq16) for the same sample size.
Clearly, for realistic large-scale models, the sample size
going to be limited. Probably, the minimum ensemble size
for this method to work is 2* 4+ 1, whereL* is the accepted
number of leading eigenvectors B in Eq. (19).

Remark 5. In order to implement the process Eq9) a
sample of vectorg;(x,0) = (Sul” must be propagated from
t =0tot =T using the nonlinear model Eql)( Therefore,
for eachp one gets a sample of final statgéx, T') consistent
with the current approximation df 7, which can be used to
evaluate the forecast and forecast covariance. Siités
a better approximation of the analysis error covariance than
simply [H (i7)]~1, one should expect a better quality of the
forecast and covariance (as being consistent Withrather
than with[H (i7)]71).

4 Numerical implementation Fig. 2. Field evolution.

4.1 Numerical model scheme allowst(¢) to be as small as.Bx 104 for M =

As a model we use the 1D Burgers equation with a nonlinear00 without noticeable oscillations). For each time step we

viscous term: perform nonlinear iterations on the coefficient&) = ¢ and
5 u(p) in the form
dp 1a(p9) 0 < g . ) .
—+3 =—|un@—, (20) gl —pi7t 9 (1, ; N
or 2 ox ox ox n_n o, (= i L ! n1=0
I, tor <2w(¢,,1)<p,, n(p,_1) ™ ) s

=g¢(x,1),1€(0,T), x€(0,1), N ' :
¢=¢.0).1€0.1), xcO1 for n=1,2,..., assuming initially thak (¢}) = (¢’ 1) and

with the Neumann boundary conditions w(<p6) =¢'~1, and keep iterating until Eq28) is satisfied
(i.e. the norm of the left-hand side in ER3) becomes
dp|  _del  _, (21)  Smaller than the threshold = 10712/M). In all the com-
ax|  ox| putations presented in this paper we use the following pa-
=0 =t rameters: the observation peri@d= 0.312, the discretiza-
and the viscosity coefficient tion stepsh, = 0.004, 1, = 0.005, the state vector dimen-
2 sion M =200, and the parameters in EQ2) o= 104,
dg 6
M(¢)=M0+M1<a) . Mo, 1= const > 0. (22) =107

A general property of the Burgers solutions is that a
The nonlinear diffusion term with.(¢) dependent ofp/dx smooth initial state evolves into a state characterized by the
is introduced to mimic the eddy viscosity (turbulence), which areas of severe gradients (or even shocks in the inviscid case).
depends on the field gradients (pressure, temperature), rathéhese are precisely the areas of a strong nonlinearity where
than on the field value itself. This type pf(p) also allows ~ One might expect violations of the TLH and, subsequently,
us to formally qualify the problem Eq2Q)—(22) as strongly the invalidity of Eq. {). For numerical experiments we
nonlinear Eutik and Kufner 1980. Let us mention thatthe Choose a certain initial condition that stimulates the highly
Burgers equations are sometimes considered in DA contexionlinear behavior of the system; this is given by the for-
as a simple model describing the atmospheric flow motion. Mmula:

We use the implicit time discretization as follows 0.5—0.5cog8rx), 0<x <0.4,
ol 91 . g - u(x)=¢x,00=40, 0.4<x§26
T —( Zw(pHe —u)— | =0, (23) 0.5c0847x)—0.5 06 <x <1
h; dx \ 2 0x

. . L L . The resulting field evolutiop(x, ) is presented in Fig2.
wherei =1,..., N is the time integration index, =T /N is

the time step. The spatial operator is discretized on a uniformy 2 BFGS for computing the inverse Hessian and

grid (h, is the spatial discretization step=1,..., M is the other details

node numberM is the total number of grid nodes), using

the “power law” first-order scheme as describedaténkar ~ The projected inverse Hessidii(ii 4+ du) is computed as
1980, which yields quite a stable discretization scheme (thisa collateral result of the BFGS iterations while solving the

www.nonlin-processes-geophys.net/19/177/2012/ Nonlin. Processes Geophys., 1918472012
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5 Numerical results

First we computed a large sample £ 2500) of optimal so-
lutions u; by solving L times the data assimilation problem
Egs. )-(2) with perturbed datayp = it +£&, andy = Cp +&o,
wheregp ~ N (0, Vp) andéo ~ N (0, 0021). This large sample
was used to evaluate the sample covariance matrix, which
was further processed to filter the sampling error (as de-
scribed inGejadze et al2011); the outcome was considered
as a reference valug®. Then, the original large sample was
partitioned intoone hundregubsets includind. = 25 mem-
bers and intdwenty fivesubsets including = 100 members.
Let us denote by/; the sample covariance matrix obtained
for a subset includind. members. Then, the relative error
Fig. 3. Correlation function. in the sample variance (which is the relative sampling error)
can be defined as the vec#r with the components:

0.8

o
o

correlation
o
'S

o
)

-0.3

following auxiliary DA problem: Coi=Vii/Vij =1 i=1.... M.

The relative error in a certain approximationofis defined
%‘3;2 _Fl(¢)8¢ =0, 1e(0,T) as a vectok with the components:

8¢|,_o= B "du 24) v V-1 i=1..M. 27)
J1(u) = infJ1(v), ’

v We compute this error withr in Eqg. 27) being estimated by
one of the following methods:

where
1

J1(8u) = E(Vb‘lB‘l((Su —&p), B Y (Su —&0) x+ 1. by the inverse Hessian method, i.e. simply using

Vsu=[H@)]™;
15

+5Wo (€3¢ =50), Co9 =50, (25) 2a. by the EIH method implemented in the form E46),
which requires a sample of optimal solutiohs to be

The preconditioner used in our method is computed;

B~ =V, P[H @) Y2, (26)

2b. by the EIH method implemented as the iterative process
Eqg. @9), which requires a sample éi;;, but does not

In order to compute{ (@)]~*/2 we apply the Cholesky require thadu; are optimal solutions.

factorization of the explicitly formed matrixd —1. How-
ever, it is important to note that the square-root-vector prod-+For the computation oV by the methods 2a or 2b a sample
uct A~Y2y can be computed using a recursive procedureof §u; is required, hence, the result depends on the sample
based on the accumulated secant pairs (BFGS) or eigenvasize L. The results (obtained by the methods 2a and 2b)
ues/eigenvectors (Lanczos) as describedshimangaetal.  presented in this paper are computed witk- 100. In the
2008, without the need to forn7 ~* and to factorize it. Con-  method 2b we currently allow enough iterations on the index
sistent tangent linear and adjoint models have been generategl for the iterative process Eql9) to converge in terms of
from the original forward model by the Automatic Differ- the distance between the successive iterates. In practice, this
entiation tool TAPENADE Kasc@t and Pascua004 and  requires just a few iterations, typically-23.

checked using the standard gradient test. The background er- In the upper panel in Figd, a set ofone hundredrectors

ror covariancéy, is computed assuming that the background ¢,5 is presented in dark lines, and a settwenty fivevec-

error belongs to the Sobolev spald&[0, 1] (seeGejadze et tors21qg - in the overlaying white lines. These plots reveal
al,, 201Q for details). The correlation function used in the the envelopes for the relative error in the sample variance ob-
numerical examples is as presented in Bighe background  tained with L = 25 andL = 100, respectively. The graphs
error variance isr2 = 0.2, the observation error variance is of ¢ are presented in the lower panel: line 1 corresponds to
002 =10"3. The observation scheme consists of 4 sensorghe method 1 (the inverse Hessian method, see alsdlfig.
located at the point§;, = 0.4, 0.45, 0.55, 0.6, and the obser- lines 2 and 3 — to the methods 2a and 2b (variants of the EIH
vations are available at each time instant. method).

Nonlin. Processes Geophys., 19, 177784, 2012 www.nonlin-processes-geophys.net/19/177/2012/
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At the same time, the relative error obtained by the meth-
ods 2a and 2b is much smaller as compared to the error in
line 1 and it would largely remain within the white enve-
\ ‘ lope. The difference between the estimates by the methods
M‘ H , i ‘ ‘ 2a and 2b does not look significant. The best improvement
‘ ‘ l ‘ -”" can be achieved for the diagonal elementd/gf (the vari-
ance). Thus, the covariance estimate by the EIH method is
noticeably better than the sample covariance obtained with
the equivalent sample size. The suggested algorithm is com-
putationally efficient (in terms of the CPU time) if the cost of
computing the inverse Hessian is much less than the cost of
computing one optimal solution. In the example presented in
this paper one limited-memory inverse Hessian is about 20—
i ‘ — T3 30 times less expensive than one optimal solution. Thus, on

\“”““w‘w ‘”

—1 | average, the algorithm 2b works about 10 times faster than
r ---3 ] the algorithm 2a, whereas the results by both the algorithms

are similar in terms of accuracy.

05 i
€l /\ ] 6 Conclusions
0;/:"“/\1\\\,}‘: A A < ,-,—: Error propagation is a key point in modeling the large-scale
VW / geophysical flows, with the main difficulty being linked to

i | the nonlinearity of the governing equations. In this paper
o5 oW we consider the hind-cast (initialization) DA problem. From
the mathematical point of view, this is the initial-value con-
trol problem for a nonlinear evolution model governed by
Fig. 4. Up: the sample relative errér Set ofé for L =25 - dark  partial differential equations. Assuming the so-called tan-
envelope and set éffor L = 100 - white envelope. Down: the rela-  gent linear hypothesis (TLH) holds, the covariance is often
tive errore by the inverse Hessian - line 1, and by the EIH methods approximated by the inverse Hessian of the objective func-
with L =100: method 2a - line 2; method 2b - line 3. tion. In practice, the same approximation could be valid even
though the TLH is clearly violated. However, here we deal
with such a highly nonlinear dynamics that the inverse Hes-
Looking at Fig.4, we observe that the relative error in Sian approach is no longer valid. In this case, a new method
the samp|e variances (dark en\/e|ope) exceeds 50% almost for Computing the covariance matrix, named the “effective
everywhere, which is certainly beyond reasonable marginsinverse Hessian” method, can be used. This method yields a
and£100 (White envelope) is around 25% (that is still fairly Significant improvement in the covariance estimate as com-
large). In order to reduce the white envelope two times, onePared to the inverse Hessian. The method is potentially fea-
would need to use the sample size= 400, etc. One should sible for large-scale applications because it can be used in
also keep in mind that the relative error in the diagonal el-a multiprocessor environment and operates in terms of the
ements of the sample covariance matrix is the smallest aklessian-vector products. The software blocks needed for its
compared to its sub-diagonals, i.e. the envelopes for any sudmplementation are the standard blocks of any existing 4-D
diagonal would be wider than those presented in Fig.4(up)Vvar system. All the results of this paper are consistent with
Thus, the development of methods for estimating the covarithe assumption of a “close-to-normal” nature of the optimal
ance (a]ternative to the direct Samp”ng method) is an impor.SO'Ution error. This should be expected, taking into account
tant task. the consistency and asymptotic normality of the estimator

Whereas the method 1 (the inverse Hessian method) glveand the fact that the observation window in variational DA

is usually quite large. In this case the covariance matrix is
an estimate o¥s, with a small relative error (as compared to

a meaningful representative of the p.d.f. The method sug-
the sample covariance) in the areas of mild nonlinearity, this

gested may become a valuable option for uncertainty analy-
error can be much larger in the areas of high nonlinearity.

For example, if we imagine that the lower panel in Figs sis in the framework of the classical 4D-VAR approach when

superposed over its upper panel, then one could observe “n%pplled to highly nonlinear DA problems.

1 jumping outside the dark envelope in the area surround-
ing x = 0.5, i.e. the relative error by the inverse Hessian is
significantly larger here than the sampling error foe 25.
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