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Abstract. During recent years, numerical ensemble predic-
tion systems have become an important tool for estimating
the uncertainties of dynamical and physical processes as rep-
resented in numerical weather models. The latest generation
of limited area ensemble prediction systems (LAM-EPSs)
allows for probabilistic forecasts at high resolution in both
space and time. However, these systems still suffer from
systematic deficiencies. Especially for nowcasting (0–6 h)
applications the ensemble spread is smaller than the actual
forecast error. This paper tries to generate probabilistic
short range 2-m temperature forecasts by combining a state-
of-the-art nowcasting method and a limited area ensemble
system, and compares the results with statistical methods.
The Integrated Nowcasting Through Comprehensive Anal-
ysis (INCA) system, which has been in operation at the Cen-
tral Institute for Meteorology and Geodynamics (ZAMG)
since 2006 (Haiden et al., 2011), provides short range de-
terministic forecasts at high temporal (15 min–60 min) and
spatial (1 km) resolution. An INCA Ensemble (INCA-EPS)
of 2-m temperature forecasts is constructed by applying a
dynamical approach, a statistical approach, and a combined
dynamic-statistical method. The dynamical method takes
uncertainty information (i.e. ensemble variance) from the
operational limited area ensemble system ALADIN-LAEF
(Aire Limit ée Adaptation Dynamique D́eveloppement Inter-
National Limited Area Ensemble Forecasting) which is run-
ning operationally at ZAMG (Wang et al., 2011). The purely
statistical method assumes a well-calibrated spread-skill re-
lation and applies ensemble spread according to the skill of
the INCA forecast of the most recent past. The combined
dynamic-statistical approach adapts the ensemble variance
gained from ALADIN-LAEF with non-homogeneous Gaus-
sian regression (NGR) which yields a statistical correction
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of the first and second moment (mean bias and dispersion)
for Gaussian distributed continuous variables. Validation re-
sults indicate that all three methods produce sharp and re-
liable probabilistic 2-m temperature forecasts. However, the
statistical and combined dynamic-statistical methods slightly
outperform the pure dynamical approach, mainly due to the
under-dispersive behavior of ALADIN-LAEF outside the
nowcasting range. The training length does not have a pro-
nounced impact on forecast skill, but a spread re-scaling im-
proves the forecast skill substantially. Refinements of the
statistical methods yield a slight further improvement.

1 Introduction

In numerical weather prediction (NWP), the use of en-
semble prediction systems (EPSs) has become the standard
method of accounting for uncertainties in initial conditions
and model formulations. In observation-based forecasting, or
nowcasting, emphasis has more recently shifted from purely
deterministic extrapolation towards inclusion of probabilis-
tic methods. Dance et al. (2010), for example, describe a
system which predicts thunderstorm strike probability using
a bivariate Gaussian model of speed and direction errors of
the cell tracking method employed. They show that the skill
of the system in predicting threat areas exceeds that of the
corresponding deterministic advection forecast.

Another approach to estimating the uncertainty of now-
casting products is the use of time-lagged ensembles. Using
a set of hourly initialized Rapid Update Cycle forecasts, Lu
et al. (2007) are able to improve NWP very short-range (1–
3 h) forecasts of meteorological fields compared to the de-
terministic forecasts. The improvements in this case appear
to result mainly from the correction of model errors due to
initial spin-up. The potential benefit of including forecast-
ers’ knowledge in the generation of perturbations in an EPS
has been investigated by Homar et al. (2006). Their study
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shows that the experimental ensemble improved short-range
numerical forecasts of severe weather and heavy precipita-
tion. However, because of the lack of global dispersion, fore-
casts of non-severe weather were generally less skilfull than
those of the reference system.

The Integrated Nowcasting Through Comprehensive
Analysis (INCA) system used in the present study is by
design non-probabilistic. It provides, among other prod-
ucts, short range deterministic 2-m temperature analyses
and forecasts on high resolution in time (60 min) and
space (1 km× 1 km) with special emphasis on the nowcast-
ing range (0–6 h). In analysis mode it combines NWP
forecast fields from the operational limited area model
ALADIN-AUSTRIA (Aire Limit ée Adaptation Dynamique
Développement InterNational) (Wang et al., 2006) with high-
resolution topographic data and integrates observations from
about 400 stations within the operational INCA domain.
In the nowcasting range, the temporal change of the NWP
model is superimposed on the latest analysis, modified by a
correction which depends on the NWP cloudiness error. Out-
side the nowcasting range it merges into the (topographically
downscaled) NWP model output through a fixed weighting
function (Haiden et al., 2011). The system shows high skill in
the nowcasting range (mean absolute error less than 1 Kelvin
in the first 3 h) and improves on the ALADIN-AUSTRIA
forecast due to bias correction and topographic downscaling
outside the nowcasting range, but the NWP trend it uses is
affected by uncertainties mainly due to errors in the initial
condition (Buizza et al., 2005; Hamill et al., 2000) and model
formulations and physical parameterizations (Buizza et al.,
1999). The aim of this study is to develop proper methods
to quantify these uncertainties and to provide sharp and reli-
able site-specific, probabilistic short range forecasts of 2-m
temperature.

2 The INCA system

The INCA temperature analysis and forecast methodology
has been described elsewhere (Kann et al., 2009; Haiden et
al., 2011), so only a short summary is given here. Hourly
analyses on a 1 km× 1 km grid are generated from a combi-
nation of numerical weather prediction (NWP) model output,
surface station data, and high-resolution topographic data.
Spatial interpolations of observation corrections are based
on distance-weighting in physical and potential temperature
space. NWP fields are taken from the Austrian version of the
ALADIN model (Wang et al., 2006), which has a horizontal
resolution of 9.6 km, and is run four times a day out to a fore-
cast range of 72 h. Observations are provided by∼350 real-
time surface weather and hydrological stations, with an aver-
age distance between the stations of about 15 km.

The three-dimensional analysis of temperature in INCA
starts with an NWP short-range forecast as first guess, which
is corrected based on observation-forecast differences. The

corrections are spatially interpolated using inverse-distance-
squared weighting (IDW) in the horizontal and IDW in po-
tential temperature in the vertical (Haiden et al., 2011). A
“surface-layer index” ensures that corrections derived at a
certain type of location (e.g. valley floor) have low or zero
weight at other types of location (e.g. slope).

The nowcast of temperature is obtained by adding the
trend given by the NWP model to the INCA analysis. A coef-
ficient between 0 and 1 reduces the trend in case of negative
cloudiness errors in the NWP forecast. Outside the nowcast-
ing range the trend extrapolation is smoothly blended into the
NWP forecast via a weighting function. The time-scale of the
weighting function depends on static stability to account for
observed variations in the persistence of temperature fore-
cast errors under different synoptic conditions (Haiden et al.,
2011).

3 The Limited Area Ensemble System ALADIN-LAEF

The ALADIN-LAEF (Aire Limit ée Adaptation Dynamique
Développement InterNational Limited Area Ensemble Fore-
casting) system is being developed at the Central Institute for
Meteorology and Geodynamics (ZAMG), which is part of
the ALADIN consortium and the Regional Cooperation for
Limited-Area modeling in Central Europe (RC LACE). The
very first version of ALADIN-LAEF was put into operation
in March 2007, and in 2009 a major upgrade of the system
took place. A detailed description of the ALADIN-LAEF
system can be found in Wang et al. (2011). In the following,
just the major characteristics are briefly described.

The ALADIN-LAEF system uses the spectral limited area
model ALADIN (Wang et al., 2006) to produce a 17 mem-
ber forecast ensemble: 16 perturbed members and one con-
trol member. The geographical domain covers Europe and
large parts of the North Atlantic. The ensemble system is run
twice per day (00:00 and 12:00 UTC) producing forecasts up
to 60 h. It has 18 km horizontal resolution and 37 vertical
levels.

In order to create the initial conditions (IC) for the 16 per-
turbed members of ALADIN-LAEF the following compo-
nents are combined:

– Large-scale atmospheric perturbations coming from
the first 16 ECMWF EPS members are created using
the singular vector approach (Leutbecher and Palmer,
2008).

– Small-scale atmospheric perturbations are applied on
ALADIN-LAEF resolution with a breeding technique
(Wang et al., 2011).

– Small-scale initial surface perturbations are generated
on the ALADIN-LAEF resolution by using the so called
Non-Cycling Surface Breeding (NCSB) method (Wang
et al., 2010).
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The large-scale and small-scale atmospheric perturbations
are combined using a spectral blending technique (Brozkova
et al., 2001). In addition to the uncertainty in the initial con-
dition, a multi-physics approach is used to account for model
errors. The lateral boundary conditions are provided by the
first 16 members of the ECMWF EPS.

4 Methods and implementation

The basic concept is to use the deterministic INCA 2-m tem-
perature forecast as ensemble mean and to determine the
ensemble variance by different statistical and/or dynamical
approaches. Three different methods for constructing an
18 member ensemble are tested over a 1-month period (1–
30 November 2010): a purely statistical method, a dynamical
one, and a combined dynamic-statistical approach.

4.1 Statistical method “INCA-EPSstat”

This method uses the spread-skill relation and follows the
idea of Cui et al. (2005), who use the root mean squared er-
ror of the ensemble mean for calibrating the ensemble spread,
in a modified way. The operational INCA run is used as en-
semble mean and its RMSE over the past 30 training days
is used as ensemble spread. The generation of 18 ensem-
ble members is achieved by taking the quantile values from
the Gaussian cumulative distribution function (CDF) centred
about the mean in such way that the ensemble spread of the
new, re-scaled ensemble is limited by a fractional amount
(fre−scale= 3/4) of the root mean squared error of the train-
ing data (Kann et al., 2009). Formally the distribution can be
expressed by the Gaussian CDF

F(x) =
1

RMSEINCA
√

2π

x∫
−∞

exp
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−

1

2

(
t −FINCA
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)2
)

dt, (1)

whereFINCA denotes the (deterministic) INCA forecast and
RMSEINCA the root mean square error of the INCA forecast,
respectively, evaluated separately for each lead time and ini-
tialization. Finally, the 18 re-calibrated ensemble members
are generated fori = 1, 18 by

EPS(i) = µ+Q[p(i)]
(
σ 2
)
, (2)

whereµ denotes the ensemble mean,σ 2 the variance, and
Q is the quantile function (or inverse cumulative distribution
function; CDF) of the standard normal distribution, evaluated
at the probabilityp, given by

p(i) =
1−z

2
+(i −1)×

(
z
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)
, (3)

wheren is the ensemble size of 18 members. The value
of z, representing the re-scaled area around ensemble mean,
is obtained iteratively, satisfying the constraintσre−scaled≤

fre−scale×RMSEINCA (Kann et al., 2009), whereσre−scaled

denote the standard deviation of the re-scaled ensemble. In
other words,z determines the amount of reduction of the
standard deviation of the Gaussian distribution. Practically,
z is modified until the standard deviation of the new en-
semble is smaller than a fractional amount of the root mean
square error of the ensemble mean. For example, ifz = 0.5,
p(i = 1) = 0.25 andp(i = 18) = 0.75 etc. In general, well-
tuned probabilistic forecasts show similar values of RMSE
and ensemble spread. Thus, poor ensemble forecast qual-
ity in a well-tuned system is reflected by a large ensemble
variance. Although statistically consistent, the practical us-
ability is reduced if the spectrum of the ensemble member
forecasts covers an unrealistic range from a synoptical point
of view. Restricting the standard deviation should help to re-
duce this deficiency without loss of forecast skill. The value
fre−scale= 3/4 turned out to be a reasonable choice of sev-
eral experiments where the CRPS reaches a minimum. The
impact of spread re-scaling is further discussed in Sect. 6.2.

4.2 Dynamical method “INCA-EPSdyn”

The deterministic INCA run is used as control run and the
individual differences between the 17 ensemble members
and the ensemble mean of the last available ALADIN-LAEF
(Wang et al., 2011) model initialization is added to the INCA
run. Formally, the creation of thei-th ensemble member for
a specific forecast projectiont can be expressed by

EPS(i) = FINCA (t)−(LAEFmean(t)−LAEF(i,t)). (4)

In other words, the ALADIN-LAEF spread serves as spread
of the INCA-EPS. Thus, only the uncertainties are taken
from the limited area ensemble system.

4.3 Dynamic-statistical method “INCA-EPSdynstat”

The ensemble created by combining the INCA 2-m tempera-
ture forecast and the ALADIN-LAEF ensemble spread given
in Sect. 4.2 is additionally calibrated by applying the non-
homogeneous Gaussian regression (NGR) technique (Gneit-
ing et al., 2005; Hagedorn et al., 2008; Kann et al., 2009).
This statistical calibration technique addresses both the first
and second moments by modelling the mean and the ensem-
ble variance according to the ensemble skill within a cer-
tain training period. The Continuous Ranked Probability
Score (CRPS) serves as measure of skill, and optimal regres-
sion coefficients of mean and spread are estimated by min-
imizing the CRPS. The CRPS of the Gaussian distribution
can be expressed by the coefficientsa, b, c andd (Gneiting
et al., 2005):

CRPStrain=

1

k

k∑
i=1

(c+dσ 2
i )

1
2

{
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(5)
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Fig. 1. Example of an EPSgram for 2-m temperature, forecast initialized at 15 November 2010, 00:00 UTC, for station Vienna Hohe-Warte.

with

Zi =
Yi −(a+bµi)(

c+dσ 2
i

) 1
2

. (6)

8 andφ denote the cumulative distribution function (CDF)
and the probability distribution function (PDF) of the stan-
dard normal distribution, respectively.k is the training length
in days,Yi is the observation at dayi.

The final 18-member ensemble is generated as described
in Sect. 4.1 by taking the quantile values from the Gaussian
CDF, centred about the mean under the constraints of the
spread re-scaling factor.

4.4 Implementation

The three sets of ensembles described above are generated
retrospectively for one month from 1 November 2010 to
30 November 2010. Hourly INCA initializations are taken
into account, each of them up to +36 h ahead. The 2-m tem-
perature forecasts of INCA and of ALADIN-LAEF are inter-
polated bi-linearly to the locations of the automatic surface
weather stations (about 250) in Austria, separately for each
station and lead time up to +36 h.

Note that ALADIN-LAEF provides two probabilistic fore-
casts per day at 00:00 UTC and 12:00 UTC. The spread used
for the experiments INCA-EPSdyn and INCA-EPSdynstat is
calculated from the latest operationally available run, valid
for the same target time as the considered INCA run (e.g.:
the spread of the INCA ensemble initialized at 1 Novem-
ber 2010, 11:00 UTC + 06 h is provided by the ALADIN-
LAEF initialization at 1 November 2010, 00:00 UTC + 17 h).
There may be concern about the temporal consistency of
combining different lead times as the skill of the NWP mod-
els usually decreases with time. However, the verification of
the 00:00 and 12:00 UTC initializations only (i.e. combining
model runs of the same initialization time) did not affect the
results.

Fig. 2. Bias, root mean square error (RMSE) of the ensemble mean,
and ensemble spread of the 3 experimental INCA ensembles (dy-
namical: red, statistical: dark blue, dynamic-statistical: light blue).
Note that the BIAS of the experiments INCA-EPSstat and INCA-
EPSdyn as well as the RMSE of INCA-EPSstat and INCA-EPSdyn
are the same and therefore overlapping.

Figure 1 shows an example of a probabilistic 2-m INCA
forecast for 15 November 2010, 00:00 UTC at the location of
Vienna Hohe-Warte (11035). The ensemble was generated as
described in Sect. 4.1 by using the root mean square error of
the past 30 training days as ensemble spread and by applying
the spread re-scaling.

5 Validation results

The evaluation was carried out for a one month period (1–
30 November 2010) using 2-m temperature measurements
of the network of∼250 TAWES (“Teilautomatische Wet-
terstationen”, Semi-automated weather stations) in Austria.
The network covers most of the topographic elevation range
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Fig. 3. Percentage of outliers as a function of lead time, for the
dynamical (red), statistical (dark blue) and dynamic-statistical (light
blue) method.

(100–3800 m), with the highest stations at Brunnenkogel
(3440 m) and Sonnblick (3105 m). The average horizontal
distance between stations is 18 km. All 24 forecast cycles
(00:00, 01:00, . . . , 23:00 UTC) are combined for a specific
forecast lead time. Figure 2 compares the BIAS and the
RMSE of the ensemble mean and the ensemble spread of the
three experiments as a function of lead time. Note that the en-
semble mean error is almost identical for all experiments as
they are all based on the same deterministic INCA forecasts.
Thus, the BIAS of the experiments INCA-EPSstatand INCA-
EPSdyn as well as the RMSE of INCA-EPSstat and INCA-
EPSdyn are the same. However, as the NGR method, which
is applied in experiment INCA-EPSdynstat, corrects both mo-
ments (ensemble mean and variance), marginal differences
occur. The spread (standard deviation of ensemble members
from ensemble mean) of the pure statistical approach and
the combined dynamic-statistical approach are much more
realistic with respect to the spread-skill relation. Especially
in the nowcasting range, the statistical methods are able to
adapt the spread consistently according to the higher skill
and lower errors during the first couple of hours. In case of
the dynamical approach, the percentage of outliers is about
two times higher than with the statistical and the dynamic-
statistical method (about 40 %–45 % and 20 %, respectively)
(Fig. 3). Taken into account an expected statistical propor-
tion of outliers of 2/(n+ 1), which corresponds to approx.
10 % for an 18-member ensemble, the under-dispersive be-
haviour is improved by about 70 % by statistical adaptations.
Another tool for assessing the forecast quality of an ensem-
ble system is the ROC curve, and the area below it (Zhu et
al., 2002), with the False Alarm Rate (FAR) on the x-axis and
the Hit Rate (HR) on the y-axis. Compared to the dynami-
cal approach, the dynamic-statistical and the pure statistical
methods increase the ROC area (Fig. 4).

Fig. 4. Area under ROC curves for 2-m temperature anomaly>0◦C
as a function of lead time, from the dynamical (red), statistical (dark
blue) and dynamic-statistical (light blue) method.

The Continuous Ranked Probability Score (CRPS) mea-
sures the overall distance of the ensemble to the observa-
tions (Hersbach, 2000) and is the generalized form of the
discrete ranked probability score integrated over all pos-
sible thresholds. The CRPS has the appealing property
that it generalizes the mean quadratic error, to which it re-
duces in case of a deterministic forecast. In the nowcast-
ing range up to approx. 4–6 h, all methods are of similar,
high skill. Outside this range, the statistical and dynamic-
statistical approaches yield about 10 % lower CRPS values
than the dynamical method (Fig. 5). Analogously, the Con-
tinuous Ranked Probability Skill Score (CRPSS), using the
deterministic ALADIN-AUSTRIA model forecast as refer-
ence, is slightly increased for both statistical and dynamic-
statistical methods (not shown). Furthermore, reliability di-
agrams are created, to provide information about the ability
of the probability forecasts to reflect the observed relative
frequency (Stanski et al., 1989). The verifying events cho-
sen are 2-m temperature anomaly exceeding 0 K, using the
ERA-40 dataset as climatological reference. In comparison
to the dynamical ensemble approach, both the statistical and
dynamic-statistical probability forecasts are more reliable for
both high and low observed relative frequencies (Fig. 6). Es-
pecially the results of the dynamical method show that high
observed frequencies are slightly overforecast and low fre-
quencies are underforecast, which is reduced by the statisti-
cal applications.

6 Additional considerations and sensitivity studies

6.1 The impact of training length

The statistical approach “INCA-EPSstat” and the dynamic-
statistical method “INCA-EPSdynstat” are tested with an
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Fig. 5. CRPS as a function of lead time, from the dynamical (red),
statistical (dark blue) and dynamic-statistical (light blue) method.

Fig. 6. Reliability diagram for +6 h(a) and +24 h(b) from the dy-
namical (red), statistical (dark blue) and dynamic-statistical (light
blue) method.

Fig. 7. CRPS of the dynamic-statistical ensemble as a function of
lead time, with (red,fre−scale= 3/4) and without (dark blue) spread
re-scaling.

extended training length of 50 days, but in both cases without
significant impact (not shown). This result agrees with pre-
vious findings which state the marginal impact of the train-
ing length for calibration of probabilistic 2-m temperature
(Hamill et al., 2008), especially in the short range.

6.2 The impact of spread re-scaling

The re-scaling factor determines the PDF of the final cal-
ibrated ensemble values. Without re-scaling, i.e. by tak-
ing the quantile values of the predictive PDF at face value,
the ensemble loses sharpness, and the CRPS increases com-
pared to the experiment with spread re-scaling (using a value
of fre−scale= 3/4 (Fig. 7). Lower values of the factor do
not lead to significant improvements in terms of CRPS (not
shown). However, for an optimized re-scaling factor, a
seasonal- or situation-dependant factor should be calculated,
based on retrospective training data.

6.3 Validation on another, independent sample
(July 2010)

The same three approaches have been validated for another
one-month period from 1 July to 31 July 2010 in order to gen-
eralize the findings and to test the statistical significance of
the results gained from the period in November 2010 (Fig. 5).
In terms of CRPS the results for July 2010 confirm the con-
clusion that all three methods provide sharp and reliable fore-
casts and that the statistical and dynamic-statistical methods
slightly outperform the purely dynamical approach (Fig. 8).
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Fig. 8. CRPS as a function of lead time, from the dynamical (red),
statistical (dark blue) and dynamic-statistical (light blue) method.
Verification period: 1 July 2010–31 July 2010.

Fig. 9. CRPS as a function of lead time, from the reference
dynamic-statistical method (red) and dynamic-statistical method in-
cluding the analogue “add-on” which uses training data selectively
(dark blue). Verification period: 1 July 2010–31 July 2010.

6.4 Refinements of the statistical methods

Generally, the statistical methods use historical training data
to improve the skill of the raw probabilistic forecast. An
optimized way of choosing proper training data or of tak-
ing into account error persistence could provide added value.
A time-decaying variant of the NGR approach, i.e. giving
higher weights to the latest model errors (Kann et al., 2009),
was applied, but did not lead to further improvements.

An analogue-type correction that takes only into account
the 30 most similar training days (from a sample of the
last 60 days) for the RMSE calculation, is applied on both
validation periods (July and November 2010). Note that
“similar” is defined as those INCA runs with lowest sum
of squared differences compared with the current run. In

case of November 2010, the analogue method does not add
significant value, probably due to rather persistent weather
regimes during late fall anyway (e.g. long-persisting stable
situations with low stratus). During summer, the analogue
add-on slightly improves the skill compared to the reference
dynamic-statistical approach by about 5 % (Fig. 9).

7 Conclusions

The basic concept, combining INCA with statistically and
dynamically derived ensemble variance, provides sharp and
reliable probabilistic 2-m temperature forecasts. In accor-
dance with the general higher skill of INCA in the nowcast-
ing range, all methods show the highest skill during the first
12 h. The statistical and the coupled dynamic-statistical ap-
proaches give slightly better results than the pure dynamical
method, i.e. statistical adaptations are able to overcome the
under-dispersive behavior of the limited area ensemble sys-
tem, at least from +12 h onwards. These results, obtained
from a one-month validation period (November 2010), are
confirmed by an independent verification sample from an-
other season (July 2010).

Additional refinement of the statistical approaches using
an analogue technique leads to slight further improvements
(about 5 % in terms of CRPS) of the combined statistical-
dynamical method, especially for July 2010.

Although the mean skills of the statistical and the com-
bined dynamic-statistical method are very close, statistical
methods alone are not ideally suited for handling uncertain-
ties originating from dynamical processes. For example,
temporal uncertainties concerning the passage of a front and
the associated temperature de- or increase can only be ad-
dressed by an NWP model. Thus, “dynamical” uncertainties,
adapted by statistical methods to reduce systematic model
errors, are suitable and necessary ingredients for optimized,
probabilistic 2-m temperature short range forecasts.

In general, these methods are not restricted to 2-m tem-
perature only, although the assumption of a Gaussian distri-
bution is a limiting factor. However, applying similar meth-
ods on 10-m wind speed using a non-negative variant (with a
cut-off at zero) of the non-homogeneous Gaussian regression
(Thorarinsdottir and Gneiting, 2010) confirms the results ob-
tained for 2-m temperature and leads to the result that a com-
bined dynamical-statistical approach performs best.

The experiments have been carried out based on station
locations, but the method can easily be extended to gridded
fields if this is required for operational purposes.
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