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Abstract. We consider here pH and temperature fluctuations
in marine waters, recorded at fixed points using high resolu-
tion automatic devices. We analyze time series coming from
4 monitoring stations located along French coast: one station
is situated in the coastal area off Boulogne-sur-mer (Eastern
English Channel) and 3 stations in the Bay of Seine. All these
pH time series reveal large fluctuations at all scales similar
to turbulent temperature fluctuations. We compare the pH
and temperature time series through Fourier spectral analy-
sis methods: spectra, compensated spectra, cospectra. We
find good scaling properties of pH fluctuations, with power
spectral slopes close to 1.5 for marine stations and 1.2 for the
estuarine station. These analyses show that pH fluctuations
in marine waters are strongly influenced by turbulent hydro-
dynamical transport, and may be considered as a turbulent
active scalar.

1 Introduction

Geophysical fields and particularly the marine coastal area
are highly variable on a wide range of time and space scales.
In order to study these fluctuations and identify characteristic
scales, periodic forcing and scaling regimes, high frequency
data bases, recorded at fixed locations are needed (Dickey,
1991; Dickey et al., 1993; Chavez et al., 1997; Chang and
Dickey, 2001). In this framework, an important question, es-
pecially for coastal areas, is to characterize the response of
the aquatic environment to natural perturbations or human
activities. This is an objective of the Directive of the Eu-
ropean Parliament concerning water policy, adopted in De-
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cember 2000, and whose “ultimate aim” is to achieve “con-
centration in the marine environment near background val-
ues for naturally occurring substances and close to zero for
man-made substances” (Directive, 2000). In order to better
understand these background values, fundamental research
on marine water fluctuations is needed.

Like dissolved oxygen, temperature, nutrients, salinity,
chlorophyll a, the pH is an indicator of water quality and
is important for coastal waters studies and physics-biology
couplings (Millero, 1996). Furthermore, the mean marine
pH value is also more and more cited as a key issue in the
framework of climate change, where the increased dissolved
CO2 is assumed to be associated with a decrease of the mean
oceanic pH (Caldeira and Wickett, 2003, 2005; Blackford
and Gilbert, 2007; Iglesias-Rodriguez et al., 2008). This pre-
dicted acidification of the global ocean, computed by global
models, is expected to be a problem for many trophic en-
tities, including some phytoplankton organisms and for the
coral reef (Kleypas et al., 1999; Anthony et al., 2008; Woot-
ton et al., 2008).

The pH dynamics have been considered for lakes and
rivers in many studies since the 1920s (Philip, 1927; Moatar
et al., 1999a,b). While marine waters have traditionally
been considered a pH-stable environment with a mean pH of
8.0±0.5 (Hinga, 1992, 2002), some studies have also shown
that pH can fluctuate over many scales in estuaries (Millero,
1986; Howland et al., 2000) and in coastal or oceanic waters
(Yoo, 1991; Borges and Frankignoulle, 1999; Bates and Pe-
ters, 2007; Borges and Gypens, 2010). It has been also found
experimentally (Bensoussan et al., 2004) that pH may have
fluctuations at scales of hours.

In this study, we consider pH fluctuations at small scales,
between tens of minutes to several months. We use for
this four databases obtained at fixed mooring locations with
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Fig. 1. Map of the location of the measurements in the English Channel. The Seine and Somme rivers are indicated in the map.

Table 1. Data description: pH and temperature (T ).

Station La Carosse Grande rade Honfleur Carnot

Available data 1999-2004-2007 1999-2001-2004 1999-2001-2004 2006-2007-2008
Time resolution 60 min 60 min 10 min 20 min
Number of present data (pH) 9690 9794 99 187 51 186
% of missing values (pH) 28 30 22 23
Number of present data (T ) 16 427 11 325 113 459 70 804
% of missing values (T ) 29 35 30 10

automatic monitoring stations. We use various classical sta-
tistical approaches to characterize pH fluctuations over the
available scales, from 10 or 20 min to several years. In order
to consider the influence of turbulence, we compare pH fluc-
tuations with temperature, considered here as a passive scalar
at small scales (Corrsin, 1951; Obukhov, 1949; Monin and
Yaglom, 1975; Dimotakis, 2005). The structure of the paper
is the following. In the second section, we present the data
and their probability density functions (pdfs). In the third
section, we perform statistical analyses using power spectral
analysis, compensated spectra and cospectra. We also con-
sider the fluctuations of the pH over different scales, using
the structure function of order 1. In the last sections, we pro-
pose an interpretation of theβ = 1.5 pH spectral slope in the
framework of scaling laws for active turbulent scalars and we
provide a conclusion.

2 Presentation of the databases

2.1 The Marel system

The Marel system (automatic monitoring network),
in French “Mesures Automatiques en Réseau de
l’Environnement Littoral” has been developed and im-
plemented by Ifremer (French Research Institute for the
Exploitation of the Sea). The objective of this system is
to monitor and to understand the mechanisms of natural
or anthropogenic phenomena in the coastal environment
(Woerther, 1998; Blain et al., 2004). This program is
based on the deployment of moored buoys equipped with
physico-chemical measuring devices working in continous
and autonomous conditions. The measuring stations are
equipped with performance systems for seawater analysis
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Fig. 2. A portion of pH time series for all databases considered here:(A) Carnot;(B) Grande rade;(C) La Carosse and(D) Honfleur. These
plots show the high variability of pH time series.

and real time data transmission using telephone, GSM
(Global System for Mobile Communications) network or
satellite if necessary (Woerther, 1998). Several Marel buoys
are situated along the French coast. The data in this study
comes from two regions:

– the Marel Carnot station, situated in the Eastern En-
glish Channel in the coastal waters off Boulogne-sur-
mer (France). The measurement station is on the ex-
tremity of an embankment in the port of Boulogne-sur-
mer;

– buoys of the Seine Bay, situated in the English chan-
nel waters. Three buoys have been considered in this
bay: the estuary station, Honfleur buoy and two offshore
buoys, called La Carosse and Grande rade (Fig. 1).

For the Seine Bay database, the water samples are pumped
at different levels in the sea water column and are analyzed
by a sensor located in a measuring cell on the floating struc-
ture. In the estuary (Honfleur buoy) the measurement system
is located on the floating structure running up and down in a
tube which is protected against the effects of the swells and
flow. For the Seine Bay, the sampling was done from 1999
to 2007. For Marel Carnot, the sampling began in 2004 but
pH data are available only since 2006: see Table 1.

The Marel systems record many parameters, such as tem-
perature, salinity, dissolved oxygen, pH, nutrients, with a
high frequency resolution: 10 min for Honfleur buoy, 60 min

for two station of the Bay and 20 min for Carnot. The water is
pumped at 1.5 m below the surface. A quality control of the
measurements is established; verification with a buffer solu-
tion and calibration are done in the lab every three months
with a rotation in the measurement devices. According to
metrology reports, there is an excellent stability and preci-
sion of the measuring device, with a measurement error of
0.02 % determined using reference solutions, on the range of
pH values between 6.87 and 9.18. Temperature compensa-
tion is done automatically by the measurement device.

The Marel network provides an important and very use-
ful series of databases, which is operating measurements in
many places along the French coast. The Marel Honfleur
database has been analyzed in two recent studies:Dur et
al. (2007) have considered the temperature time series, and
Schmitt et al.(2008) have provided some first statistical anal-
yses of pH, dissolved oxygen, turbidity and salinity.

2.2 Missing data at all scales

Large databases can be available with autonomous monitor-
ing systems. Such databases often possess a rather high per-
centage of missing values, due to maintenance and rough
conditions met by the autonomous measuring systems. The
proportion of missing values are given in Table 1: the propor-
tion varies between 22 and 30 % for pH and between 10 and
35 % for temperature. The databases contain between around
10 000 and 113 000 data, the difference coming from the time
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Table 2. Maximum and mean void interval durations, and mean values for pH series.

Station La Carosse Grande rade Honfleur Carnot

Max void intervals (days) 619 743 140 530
Mean void intervals (h) 4.1 3.5 3.1 0.7
Mean pH value 7.68±0.9 8.07±0.3 7.92±0.2 8.20±0.5

Fig. 3. A portion of 800 successive void intervals for the Marel
Carnot series. This shows the stochastic aspect of the distribution
of these missing values, and the many scales involved.

resolution of the measurements. Figure 2 gives an example
of the data collected by each buoy, showing their variability
at many scales. The void maximum values and mean dura-
tion are given in Table 2 for pH time series: we see that there
are some failures associated with long measurements inter-
ruptions. The mean void interval is a few hours, except for
Marel Carnot where it is about 40 min.

It has previously been found that there is a wide range
of time scales involved in these void intervals (Dur et al.,
2007; Schmitt et al., 2008). This is visible in Fig. 3 show-
ing 800 successive void intervals found in the database from
Marel Carnot. A regular sampling, with no missing val-
ues, would be represented by a horizontal line at a value of
20 min = 0.014 days. Here the stochastic pattern of the peaks
indicate that missing values are spread almost randomly into
the series, with amplitudes varying quite widely. We repre-
sent in Fig. 4 the probability density functions estimated for
the four pH series, showing that there is no obvious charac-
teristic time in interruption periods, except the time scales
associated with maintenance; this result is similar to what
has been recently reportedSchmitt et al.(2008). We see in
this figure that the local extremum, associated with periodic

Fig. 4. The probability density function of void intervals for pH
series. This shows that many scales are involved. It also shows
some local maxima associated with maintenance.

maintenance, is not the same for all databases; it indicates
different maintenance protocols for each station: the local
maximum is close to 4 h for the Honfleur station, whereas
for the three others, it is close to 10 to 12 h. This may be
explained by the fact that the Honfleur station is an estuary
station with the equipment easily accessible from the bank of
the river, so that maintenance operations can be done more
frequently and for shorter durations, whereas for the others
in the Seine Bay, a boat was needed for maintenance, leading
to less frequent and larger duration interventions.

This irregularity in missing data intervals prevents the use
of classical analysis methods which have been built for regu-
lar time series. In order to characterize fluctuations on a wide
range of scales, analysis techniques must be adapted to miss-
ing data. In the following, we use analysis methods (Fourier
spectra, structure functions) that are able to be applied to data
with missing values, without any smoothing or interpolation.
When the length of continuous intervals (regular sampling)
are larger than the length of void intervals, frequency infor-
mation can be extracted even with missing values, and for
the Fourier power spectra, the autocorrelation method can be
used to compute the spectra, as shown inDur et al.(2007).
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Fig. 5. Probability density function of the pH values:(A) in linear units and(B) in log-linear units.

2.3 pH pdfs

We consider here the pdfs of the various pH databases. First,
let us discuss the mean values of pH series (Table 2): the
largest value is found for the coastal station Marel Carnot
whereas the three stations situated in the Seine Bay, in the
estuary or at the exit of this estuary, have much smaller mean
values linked to fresh water input. We may note also that
La Carosse and Grande rade buoys are quite close, but have
a different mean pH due to the fact that one of them is in-
side the flush zone of fresh waters. The pdf is shown in
Fig. 5 in linear units and in log-linear scale to emphasize
the pdf of extremes (rare events). It can be seen that each
database has a different distribution: Carnot is more widely
distributed; Honfleur seems closer to Gaussian, Grande rade
and La Carosse are similar for small values, and differ mainly
for large ones. This variability seems to depend on the site
location, for example, Marel Carnot station is strongly in-
fluenced by the Liane river discharge and tidal cycle. The
Grande rade station is mainly influenced by marine waters,
and the pH distribution can be more linked to CO2 exchanges
between atmosphere and sea. The La Carosse Station is situ-
ated out of the estuary but receives fresh waters. La Carosse
and estuarine station (Honfleur) are close to the mudflat and
the pH distribution may be influenced by organic matter de-
composition.

3 Scaling analysis

3.1 In the physical space: pH fluctuations versus scale

The data displayed in Fig. 2 show that pH have wide fluc-
tuations on a large range of scales. We consider first here
the mean variability of pH fluctuations across scales. Let
us recall that this index is defined as the logarithm of the
concentration of a chemical species, and as such, may have
variations associated with chemical reactions involving this

species, but also associated with turbulent advection and
transport. Let us notec = [H+

] the ion concentration; we
have pH= −log10c. If c is fluctuating, as a chemical species
transported by turbulence, for small fluctuationsδc compared
to c (δc/c � 1), we have:

δpH≈
−1

ln10

δc

c
(1)

To a first order, we can assume thatc is almost constant at the
scales for whichδc are considered, so that pH fluctuations
are proportional toc fluctuations. The concentrationc itself
is expected to vary since it is a concentration of a chemical
species in a turbulent flow (Monin and Yaglom, 1975). We
thus expect strong pH fluctuations due to turbulent transport,
as a passive, or chemically, or biologically, active turbulent
scalar.

We show this here: we introduce the pH fluctuations at a
given scaleτ : 1pHτ = |pH(t +τ)−pH(t)|. In the statistical
fluid mechanics literature, this is called “structure function”:
moments orderp of this quantity and calledp-order struc-
ture functions (Monin and Yaglom, 1975). We plot in Fig. 6
the first order structure function for the series. We see that
the mean fluctuation is increasing with the time scale, and is
not reaching a plateau, except for the largest scales (around
1 yr). At small scales both curves are quite close, and we
see that fluctuations at a scale of 4 days are close to 0.1 pH
units, and at a scale of 3 months, the mean pH fluctuations
go from 0.2 to 1 pH unit, which is quite large. The dotted
lines correspond to power laws of slope 0.2 and 0.3, corre-
sponding respectively to active or passive scalar turbulence
(Monin and Yaglom, 1975) (see below). The scaling range
is limited here, possibly due to contamination from periodic
forcing, which may destroy the scaling of structure functions
but is less problematic in the Fourier space (seeHuang et al.,
2008, 2010).
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Fig. 6. First order structure function1pH versus the time incre-
mentτ : it shows how the mean fluctuations ofpH depend on scale.
This also indicates that local pH values may have huge variations.
Dotted line: a power-law with slope 0.3; straight line: a power-law
with slope 0.2. Stars: two points of coordinates (90 yr, pH= 0.10
and 0.25) corresponding to a mean decrease of pH marine waters of
0.1 and 0.25 at the horizon 2100.

3.2 In the spectral space: power spectra, compensated
spectra, and cospectra

We consider here spectral analysis of the pH and T time se-
ries. In order to deal with missing values, we use the follow-
ing form for the estimation of the power spectrumE(f ):

E(f ) =
2

π

∫
∞

0
R(τ)cos(f τ)dτ (2)

whereE(f ) represents the spectral density,τ the time in-
crement,f the frequency andR(τ) the autocorrelation func-
tion. As Marel data possess a high rate of missing value, the
FFT algorithm, which requires regularly sampled data, can-
not be directly applied to the measured data. Instead, we es-
timate the autocorrelation function taking into account miss-
ing values, and perform a Fourier transform (cosine Fourier
transform) to estimateE(f ) (Dur et al., 2007). We consider
power spectra in log-log plots, and attempt to detect possible
power laws of the form:

E(f ) ≈ f −β (3)

Whereβ is the spectral exponent, which characterizes the
scaling regime:β = 0 for a noise,β = 2 for Brownian mo-
tion and for passive scalar turbulenceβ = 5/3 (Monin and
Yaglom, 1975). We perform spectral analysis for pH series
and compare them to temperature spectra, where temperature
is here considered as a passive scalar used for reference.

Spectral analysis is applied to the time series data and
shown in Fig. 7. The power spectra exhibit approximate scal-
ing regimes for almost all the accessible range of frequency

Table 3. Values of the spectral slopeβ for pH and temperature
series, andR2 parameters.

Station Carnot Grande rade La Carosse Honfleur

βpH 1.46 1.51 1.52 1.27
R2

pH
0.87 0.95 0.98 0.94

βT 1.66 1.61 1.47 1.68
R2

T
0.96 0.92 0.96 0.92

scales, except at large frequencies for some series, due to in-
strumental noise. The spectral exponents were determined
by regression using for the central part of each spectra, ex-
cluding low and high frequencies (see Fig. 8 for compen-
sated spectra). The value ofβ for pH time series is close to
1.5 for both series, except for the estuarine station, for which
it is close to 1.27 (see Table 3). This lower value could be
explained by the strong mixing processes in estuaries, with
the mixture of river flow and straining and stirring by tidal
circulation (Simpson et al., 1990, 2005). The spectral slope
of temperature is close to 5/3 except for the La Carosse se-
ries, for a reason unknown to us. Some series display also
some small scale noise: this is the case for the pH series for
Marel Carnot, and for both series for the Grande rade and
La Carosse databases. The spectra also reveal peaks, asso-
ciated with deterministic forcing. This is quite clear for the
Honfleur database where the daily and tidal frequencies are
clearly visible. This is also the case for the Carnot series, and
to a smaller extent, for the La Carosse series.

The pH fluctuations could be due, as we underlined above,
to turbulent transport. A comparison of pH with tempera-
ture fluctuations is then useful to determine if pH has statis-
tics similar to passive scalars, or has a different behaviour,
which could indicate some biological or chemical activity,
corresponding to active scalars. Such behaviour could be
scale dependent: this could reveal passive scalar statistics for
some range of scales, and biogeochemical activities for an-
other range (Seuront et al., 1996). In order to perform this
comparison and to check possible correlation in the spec-
tral space, we consider cospectra, and more precisely the
coherency spectraRpH,T (Bendat and Piersol, 1986). The
cospectrum is the Fourier transform of the covariance func-
tion, and the coherency spectrum is defined as the ratio of
the modulus of the cospectrumEpH,T by square root of the
product of both spectra:

RpH,T (f ) =
|EpH,T (f )|√

EpH,T (f )ET (f )
(4)

In the case of local linear relation between the two variables,
the coherency spectrum indicates the fraction of variability
of a quantity due to the other quantity (Bendat and Piersol,
1986). For uncorrelated processes, the coherency spectrum
goes to 0; if a quantity is proportional to the other, the co-
herency spectrum is 1. In the present situation, a coherency
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Fig. 7. pH and temperature spectra:(A) Carnot;(B) Grande rade;(C) La Carosse and(D) Honfleur. This indicates scaling regimes, with
different spectral slopes, between 1.27 and 1.68.

Fig. 8. Compensated spectraf βE(f ) for pH data withβ estimated by regression.(A) Carnot; (B) Grande rade;(C) La Carosse and
(D) Honfleur. Flat zones indicate the range of values for which the scaling is verified.

spectrum close to 1 is an indication that pH may be consid-
ered as a passive scalar directly related to temperature and
a flat coherency spectrum may indicate that the covariation
of both quantities is independent of scale whereas when the
coherency spectrum decreases with frequency, this indicates
that the relation between both variables is less and less strong
for smaller and smaller scales.

The result is displayed in Fig. 9 for both series. These
figures illustrate different types of behaviour. For the es-
tuarine Honfleur station (D) and the coastal one of Carnot
(A), there is a rather strong decrease from large to small
scales of the coherency spectrum, indicating more and more
decorrelation between pH and temperature, for smaller and
smaller scales. For the Grande rade series, the coherency
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Fig. 9. Coherency spectraRpH,T estimated between pH and temperature for each series.(A) Carnot;(B) Grande rade;(C) La Carosse and
(D) Honfleur. Flat zones indicate frequency ranges for which the pH fluctuations have spectral properties proportional to temperature’s.

Fig. 10. Different regimes for an active tracer: here an “inertial
reactive” regime if found for scalesLφ ≤ ` ≤ L.

spectrum is flat, whereas for the La Carosse series, the co-
herency spectrum shows that at a scale of 1 day there is a
change of behaviour: for small scales the correlation is in-
creasing whereas for larger scales the correlation decreases
with scale.

4 β = 7/5 scaling regime for a chemically active scalar

We have found above that pH time series often possess a
−1.5 power law spectral slope for coastal waters. This has
been confirmed by a study of a pH time series in the open
ocean (unpublished result). We thus state here the hypoth-
esis that, under quite general conditions, pH time series in
marine waters have a universalβ = 1.5 power-law spectral
slope. Since this slope is different from 5/3, it is of interest
to look for a possible theoretical explanation.

Let us noteη the Kolmogorov scale corresponding to the
smallest scale of turbulent velocity fluctuations,φ the con-
centration of a chemical species,ηφ the smallest scale of in-

homogeneity of concentration fluctuations,Lφ a large scale
associated with the characteristic time scaleTφ of the chem-
ical reaction of the speciesφ, andL a large injection scale
for turbulent motion. We also assume large Reynolds and
Schmidt numbers, and thatν � χ , whereν is the viscos-
ity and χ the rate of reduction in the species inhomogene-
ity due to diffusion and reaction (Monin and Yaglom, 1975;
Celani et al., 2004). Several scale ranges can then be identi-
fied (Fig. 10):

– The viscous-diffusive range for scales` < η: at these
scales there is no turbulence and no chemical reactions
affecting the chemical species;

– The inertial-diffusive range for scalesη < ` < ηφ : these
scales correspond to the turbulent regime but the asso-
ciated time scales are too fast for scalar diffusion and
chemical reactions to have influence on the concentra-
tion of the species;

– The inertial-convective range for scalesηφ < ` < Lφ .
For this range of scales, the concentration distribution
has statistics similar to a passive scalar.

– The “inertial reactive” range for scalesLφ < ` < L.
This denomination is not classical and is introduced by
us here, following an analogy between reactive scalars
(with first-order chemical reaction) and a thermally
stratified fluid (Monin and Yaglom, 1975).

Here we consider measurements with a sampling time of
10 or 60 min. We assume that reaction rates of the carbon-
ate system are such thatTφ is smaller than 10 min (Millero,
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1996), so that we are in the inertial reactive regime. This
regime is similar to the buoyancy subrange found in ther-
mally stratified flows, corresponding to Bolgiano-Obukhov
scaling laws (Monin and Yaglom, 1975; Celani et al., 2004).
For such a regime, temperature fluctuations display a power-
law Fourier spectrum with a slope ofβ = 7/5 (Monin and Ya-
glom, 1975; Celani et al., 2004; Skandera et al., 2009). This
has been experimentally verified in the laboratory (Zhou and
Xia, 2001). Here we consider that a reactive chemical species
in the inertial reactive range has similar statistics to the tem-
perature field in the buoyancy subrange in thermally strati-
fied flows, corresponding to a power-law slope ofβ = 7/5
or for spatial scaling a scaling exponent ofH = 1/5, as op-
posed toH = 1/3 found for passive scalars. This theoretical
interpretation may apply to pH fluctuations and could be an
explanation of theβ = 1.5 scaling we have found on several
series. The difference between this experimental value of 1.5
and the theoretical one of 7/5= 1.4 may come from intermit-
tency effects. Indeed, for passive scalars as well as for the
velocity field, experimental values are not exactly 5/3, but
are often slightly different, the difference being interpreted
as corresponding to intermittency effects (Schmitt, 2005).

Let us also mention here that the 7/5 exponent found here
for the passive scale field is different from the more classical
11/5 exponent found for Bolgiano-Obukhov scaling in ther-
mally stratified turbulence (Monin and Yaglom, 1975; Celani
et al., 2004) and in the vertical direction in the atmosphere
(Lazarev et al., 1994; Tuck, 2010).

5 Discussion and conclusion

In this paper we have considered pH data measured by auto-
matic monitoring stations with a rather high frequency sam-
pling rate, between 10 and 60 min. We have first considered
the structure functions of order 1 of the pH data, showing that
the local mean fluctuations increase with the scale increment.
Let us recall that, due to ocean acidification, the mean pH
value of the marine waters are expected, according to model
simulations, to decrease by 0.1 or 0.25 units in the next 90 yr
(horizon 2100) (Wolf-Gladrow et al., 1999; Zeebe and Wolf-
Gladrow, 2001; Caldeira and Wickett, 2003). We see using
Fig. 6, that the local fluctuations present much larger values
than this mean increase: considering a value of1pH= 0.1,
the predicted time scale for mean values is 90 yr, whereas
local measurements show that this is obtained at a scale of
4 days. The ratio between 90 yr and 4 days is about 104.
This shows that locally, marine organisms are subject to pH
variations at a rate which is 4 orders of magnitude faster than
the expected mean acidification. This could indicate that the
acidification problem is less acute than sometimes believed:
indeed, marine organisms live in their local environment; the
relevant value for them is the local pH value, not the average
large scale one. These organisms are used to local changes

in pH and may not suffer too much from a very small trend
toward acidification.

Temperature, a passive scalar, was considered here to pro-
vide a comparison with pH fluctuations. We have performed
spectral analysis, and estimated coherency spectra. We found
scaling power spectra over quite large range of scales, to-
gether with some small-scale noise and some peaks associ-
ated with deterministic forcing (daily cycle, tidal cycle). We
have proposed a theoretical explanation for the 1.5 power
spectral slope of pH data, in the framework of chemically
active turbulent scalars. We have considered the inertial reac-
tive subrange for such quantity, as an analogy with the buoy-
ancy subrange for thermally stratified turbulence. Here the
1.5 slope is seen to be close to the 7/5 Bolgiano-Obukhov
scaling for temperature in the buoyancy subrange; the dif-
ference between the experimental value of 1.5 and the the-
oretical value 7/5= 1.4 could be an effect of intermittency
in pH fluctuations. We have found that the value ofβ for
the estuarine station is close to 1.2, a lower value that could
be explained by the stronger mixing processes in estuaries
(Simpson et al., 1990, 2005). This remains to be checked
in other estuaries characterized by a strong mixing between
tidal and river flows.

In future work we plan to consider multifractal prop-
erties of pH fluctuations, using structure functions or, to
avoid perturbation by energetic large scales (Huang et al.,
2010), recent methods based on empirical mode decomposi-
tion (Huang et al., 2008).

We underline here that our results are obtained for coastal
waters; the present methods remain to be tested for moored
stations in the ocean. If the theoretical picture presented here
is correct, the 1.5 spectral slope should be rather universal
in the coastal or deep marine waters, in the inertial reactive
range. Our results are valid for time scales between hours
to three months, but such power-law is expected to be valid
also for smaller scales, down to the characteristic time scale
Tφ of the chemical reaction of the species. More precise and
fastly reacting pH-metres may be used to access smaller time
scales.
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