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Abstract. Space weather is driven by the solar wind and It should be noted that extreme events are of both natural
many geospace storms and substorms are natural hazards anthropogenic origin, and are ubiquitous mainly because
with considerable societal impact. The dynamical and sta-of their damaging consequences. However, there is no single
tistical features of these events are complicated because afefinition, at least in the scientific sense, of extreme events
the turbulent nature of their driver, the solar wind. Large- (Jentsch et al2006. The interpretation of the degree of ex-
scale data sets of geospace storms and substorms are antiemeness often involves the attributes of infrequent occur-
ysed for this study of the inherent statistical characteristicsrence, low-probability or unexpected nature, strong impact,
of extreme events in geospace. The detrended fluctuatiortc. In general, it is not clear that extreme events can be
analysis, based on the autocorrelation functions, is used ancharacterized by one or even a few measures. However, it is
yields scaling behavior representing long-term correlationsclear that extreme events are rare and in the distribution of
The scaling function is represented by two exponents, arisingevents of all magnitudes they are identified as those outside
due mainly to the presence of the largely coherent internathe bulk, viz. the tail of the distribution. A main objective in
dynamics of the magnetosphere and the turbulent nature ahe analysis of extreme events thus relates directly to the un-
the solar wind driver. derstanding of the distribution function of the events, in par-
ticular the outliers. Another feature of extreme events is that
they occur suddenly and a well known characteristic of sud-
den transitions, such as phase transitions, is the emergence of
long-range order, i.e. the value of a physical variable at an ar-

. . - . itrar inti rrel with its val intl far
The inherent dynamical and statistical properties of complexbtaypo tis correlated with ts value at a point located fa

. . . _“away Dixon et al, 1997). Thus, long-range correlations are
phenomena in geosciences are critical to the understandin y O K g-rang

of extreme events, in particular those leading to natural haz_ﬁ’nportant indicators of the development of extreme events.
NP 9 In view of these features the dynamical and statistical ap-

ards. Many complex driven systems such as the coupled solar : . :
y P Y P roaches of complexiy science provide a natural framework

wind — magnetosphere system, are far from equilibrium ancfor the study of extreme eventSifarma et 212010

the commonly used techniques of statistical analysis can not The dynamical modeling and prediction based on the re-

.be ap_phed read!ly, and the nonlinear dynamics and Cornplex'construction of dynamics from observational time series data
ity science provide a natural framework for the study of such

systems, in particular in the study of the magnetosphere an(gaS been used extensively in many natural and laboratory
space weatheSharmal995 Klimas et al, 1996 Consolini ystemsAbarbanel et 3 1993 Kantz and Schriebe997).

and Chang200%. Zelenyi and Milovanoy2004. The im- This approach, based on the embedding theorem, has enabled

: . o the reconstruction of dynamical models from observational
portance of this approach arises from the recognition that dy- . . . .
. . . . . data, independent of modeling assumptions. In the studies
namical behaviour, including extreme events, are not isolable

) . - of the dynamics of the geospace environment this approach
phenomena but must be understood in terms of interaction y geosp PP

among different components, within and without the specificﬁa.s provided the first predictive models of geomagnetm ac-
system tivity and space weather, enabled by the extensive data from

ground-based and space-borne instruments. These studies,
focused on the dynamical behavior, led to the earliest space
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The nonequilibrium nature of large scale open systemshave been monitored for more than one and half centuries
limits the predictive capability of the dynamical models. In and these data have been used to compute the geomagnetic
particular, for extreme events the statistical properties aréndices Mayaud 198Q Love, 2008. Among the many in-
therefore essential for deriving important properties such aglices the auroral electrojet indices (AE, AL and AU) char-
the probabilities of recurrence. Recent developments in thecterize the substorms, and the ring current index Dst repre-
studies using the data of many natural phenomena such asents the geomagnetic or space storms. The substorms, with
floods, climate, earthquakes, etc. have shown long-range ina characteristic time of 1 h, are episodic in nature and are
teractions to be an inherent featuBufde et al.2004 Alt- the essential elements of magnetospheric dynamics. The au-
man and Kantz2005. The long-range correlations in cli- roral electrojet indices provide the detailed dynamical fea-
mate data is identified as leading to many features such as therres of the global aspects of substorms. On the other hand,
clustering of extreme eventBinde et al.2005 and studies the geomagnetic storms, with a typical time scale-aD h,
of the data sets of other phenomena are needed to understaacde the more global space weather disturbances during which
the nature of extreme events in general. intense substorms occur.

In this paper we use the detrended fluctuation analysis to The auroral electrojet indices are computed from the hor-
study the nature of long-range correlations in the coupled soizontal component of the magnetic field disturbances at a
lar wind — magnetosphere system. In the next section thelozen or so ground magnetometer stations distributed around
essential features of space weather and the relevant geospaite globe and are readily available with 1 min or longer
data are described. The detrended fluctuation analysis withesolution. These indices reflect the strengths of the large
autocorrelation functions computed from large scale data setscale ionospheric currents driven by the reconfiguration of
of geospace are described in Sect. 3. The main results of thdne magnetosphere during substorms. They are highly vari-
paper are summarized in Sect. 4. able during strongly disturbed periods, with peak values of

1000-2000 nT during extreme events cited earlier.

The substorms with AL index values less that000 nT

2 Extreme events in space weather are considered strong disturbances and these will be con-

sidered as extreme events for this study. The geomagnetic
The extreme events in space weather occur during the pestorms with Dst values less tharl00 nT are referred to as
riods when the magnetosphere is strongly driven by theintense stormsGonzalez et al.1994. The substorms, with
solar wind, which brings the energetic plasma and fieldstypical time scales of an hour, occur during the storms, with
from the solar eruptive events such as coronal mass ejedime scales of 10h or longer. Although the big substorms
tions to geospace. Many extreme space weather events ire accompanied by intense storms the relationships between
the recent past have caused serious damages to technologtorms and substorms are not fully resolvarfide et al.
cal systems such as satellites, power transmission systemg998 Daglis et al, 2003 Sharma et aJ.2003. In this study
etc. Some well known examples are: the collapse of Hydrothe AE/AL data will be used for the analysis of extreme
Quebec power grid during the great geomagnetic storm okvents in space weather.
March 1989, the Canadian telecommunication satellite out- The AE index at 1 min resolution for a highly disturbed
age during a period of enhanced energetic electron fluxes gseriod, viz. January 1983, is shown in Fify. It should be
geosynchronous orbit in January 1994, the electrical breaknoted that AE &£ AU-AL) has positive values and tracks the
downs and satellite malfunctions during the magnetic cloudAL values closely since AU values are usually not large.
event of July 2000 (Bastille Day event), the disabling of GPSThe episodic and high variability of the substorms are evi-
based aviation system during the severe space weather evenient in the sharp peaks of AE whose distribution reflect the
of October-November 2003 (Halloween Storms), the distur-nonequilibrium nature of the phenomenon. In this case there
bances in commercial airline traffic during several days ofare many substorms with AE values above 1000 nT and the
enhanced geomagnetic activity in January 2005, &R, corresponding Dst values were close-t@00 nT. As is the
2008. Although these events may not seem devastating bycase with extreme events in general, there is no single mea-
themselves, a confluence of natural hazards in the differengure of the exteme events in space weather, For example, the
regions of the environment of the Earth can make our sociDst for the well known “Carrington” storm of 1-2 Septem-
ety and its technological systems highly vulnerable becauséer 1859 is estimated to bel 760 nT {Tsurutani et al.2003,
of their interconnectednes8dker and Allen 2000 NRC, and its effects were felt across the globe. The more recent
2008. In this aspect the nonlinear dynamical framework for Bastille Day event of 14-16 July 2000 with a Dst minimum
the study of the extreme events become directly relevant t@f —300nT fittp://wdc.kugi.kyoto-u.ac.jp/dstnal/200007/
the extended Earth and space system. index.htm) was an extreme space weather event which led

The modeling of space weather events rely strongly on theo significant damages to satellites and other technological
availablity of good geospace data and among the most widelynfrastructure. It should be emphasized here that the main
used data are the geomagnetic indiddayaud 1980. The  objective in the studies of extreme events is the nature of their
data from ground magnetometer stations around the globdistribution.
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( ) Fig. 2. The mutual information function of the auroral electrojet
Fig. 1. The auroral electrojet index AE for January 1983 at 1 min index AE for January 1983 at 1 min resolution (Fig. 1). The charac-
resolution. The sharp spikes represent substorms and the strorigristic time, corresponding to half the peak valuey 0 min.
substorms usually occur during space storms.
In the case of a single time serieg:;) the time-delay
) ] ) variablex(s; — t) replacesy(¢;), and the mutual information
For systems with a high degree of complexity, such as theynction 7 () is expressed as a function of the delay time
magnetosphere, functions capable of charact_erizing the inz  This function is the nonlinear counterpart of the auto-
herent features are needed to develop appropriate models. ¢orrelation function, and includes correlations of all orders.
The auto-correlation function, which is widely used in  The mytual information function of the AE data for Jan-
these studies, is essentially a linear correlation function.uary 1983 (Fig.1) is shown in Fig.2. The characteristic
Given a time series date(s;) at N points ¢,i =1,N), the  ine associated with the average mutual information func-
auto-correlation functiol’(7) is defined as a function of the {5 is usually taken as the delay time corresponding to half

delay timer: the peak value and this yields10 min. This value can be
N-t used as the time delay parameter in many studies such as
C(r)= ZX(E)X(G +1) (1)  the reconstruction of magnetospheric dynamBharma et
i=1 al., 1993 Chen et al.2008. In general a system has a time

For the AE/AL dataC(r) yields a correlation time (defined scale characterizing the inherent correlations and the mutual
as the time at which the value 6f(r) reduces to half of its  information function shows that for the magnetosphere this
peak value) of 50 minRoberts 1991). However, the time basic time scale is-10 min. For the magnetosphere the Lya-
scale representing the development of substorms is expectgglinov exponent computed from the the AL time series is also
to be much shorter than its typical duration of 1 h. ~10min (Vassiliadis et a].1991). Thus the long-range cor-

The mutual information functionFraser and Swinney relations for the magnetosphere thus would emerge on time
1986 Abarbanel et a).1993 is a measure of correlations scales much longer than10 min.
in such systems and provides a suitable generalization of the Both the autocorrelation functiofi(r) and mutual infor-
auto-correlation function for nonlinear systems. The infor- mation function/ (z) reflect the inherent correlations and can
mation theoretic basis of the mutual information function be used to derive other physical quantities. In the studies of
makes it a reliable representation of the linear and nonlineatong-range correlations the auto-correlation function is the
dependences and has been used successfully in the studig®st widely used function, e.@unde et al(2009, and the
of the magnetospheric dynamics to isolate the characteristictollowing analysis of the long-range correlations is based on
inherent in the dataGhen et al.2008. this function.

The average mutual information of two given time series
datax(s;) and y(¢;) at N points ¢,i =1,N) is computed
from the corresponding probability functions. The probabil- 3 Detrended fluctuation analysis of AL index
ities p; (x;) and p;(y;), and the joint probabilityp;; (x;, y;) ) . )
are computed from the time series data, and the average m"€ long-range correlations in a system are analyzed using
tual information function’ (x, y) is then defined as: the scaling behavior of correlation functions. However this
requires careful analysis as trends in the data need to be
eliminated first so that the long-range correlations as gen-
uine features can be determined. The trends in data are usu-
ally caused by external effects, viz. they can be due to the

N N
I0ay) =)0 pij G, ypIog(pij (i y)) / piGidpj(3))  (2)

i=1,j=1
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Fig. 3. Autocorrelation function of long-range correlated data F19- 4. Average mutual information functioh(z) of long-range
(Makse et al., 1996). The correlations are weaker for higher val-correlated data for different values of the exponent (Makse et al.,
ues of the exponent (0.2, 0.4, 0.6 and 0.8). 1996). The higher the values of the exponent, the weaker are the

correlations.

driver of the system. Thus, in the case of the solar wind-

magnetosphere system, the long term trends in the solar wingroviding a benchmark in the studies using more complicated
can potentially show features in the magnetosphere resenfunctions. In the ideal case when the data is uncorrelated
bling intrinsic long-range correlaions. Among the techniquesC(t) vanishes forr > 0. Usually it decays exponentially
for removing trends in the data, the detrended fluctuationwith a characteristic time,. asC(t) ~ exp(—z/z.). In this
analysis Peng et a].1994 Kantelhardt et a).2001; Gao et  case a plot of I@'(7) vs. ¢ will show a linear dependence.
al., 2006 is widely used. In the presence of long-range correlatiah&) decays as a

Recent advances in the studies of extreme events using tHROWer law, viz.C(r) ~ 77, with a linear dependence in a
detrended fluctuation analysis have shown the role of longInC(7) vs. In(z) plot.
term memory in the development of extreme events. For ex- The nature of auto-correlation functions in a long-term
ample, when the memory function is represented by the autocorrelated data can be examined by using the data gener-
correlation function that decays algebraically with an expo-ated by modified Fourier filtering of white noisilgkse et
nent, the probability density function of the return intervals al- 1998. To obtain such a data-set a sequence of random
between events become a stretched exponential characteriz8§mbers is generated and then its Fourier components fil-
by the same exponent as the autocorrelation funcBom@e  tered through power law filters. The auto-correlation func-
et al., 2003 In the case of uncorrelated data the distribu- tions for the data generated with different values of the power
tion decays exponentially. Also, the return intervals them-1aw exponent exponentare shown in Fig3. The power law
selves are long-term correlated, again characterized by thBehavior expected in the &fi(r) vs. In(r) plots for the long-
same characteristic exponent. These results have providé@nge correlation are clearly seen fo= 0.2, 0.4, 0.6 and
an approach to the understanding of the clustering of event)-8. The dependence of the values of the correlation function
leading to the extreme cases. In the systems in which théor different exponents is evident in this figure.
linear correlations vanish long-term memory exists only in ~ The mutual information functio(z), defined by Eq. (2)
the form of nonlinear correlations, and both the probability 8¢ computed for the same data set and are shown i#.Rig.
distribution function of the return intervals and their auto- this case again the long-term correlation structure is clearly

correlation function decay as a power laBogachev et a).  depicted byl (7) for all values of the exponent. This func-
2007. tion however, unlike the autocorrelation function, encom-

The use of auto-correlation function in the detrended fluc-P35€S all nonlineavities, and provides smoother variations
over a wider range of scales.

tuation analysis has the advantage that the scaling rela-
tion can be derived analyticallyTéqqu et al. 1995, thus
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Hourly AL Index 1978-88 5 5-min AL index Data 1978

o DFAl]

L Fig. 6. Detrended fluctuation analysis of 5-min averaged data of AL
for 1978. The scaling of (L) is similar to the case of 1-h averafed
Fig. 5. Fluctuation and detrended fluctuation analysis of 1-h aver-data (Fig. 5). The fluctuation analysis (FA) shows a different scaling
aged AL index data for 1978-1988. The functifiiZ) shows a  €xponent forl, ~ 300 min.
break in the scaling near 300 min.

to DFA2 of Kantelhardt et al(200J). In the fourth step the

4 Long-range correlations in AL index data variance of each segmeit (/) is calculated:

L
The large database of the auroral electrojet index AL pro-p2(;y — _y2(;)~ — 1 Y2[(j — DL + i] 5
vides a suitable data set for the studies of long-range corre- L L L ; L ©)

lations in the magnetosphere and space weather. In order to ) ) , )
analyze the details of the correlations in AL data different 1he detrended fluctuation functidn(L) is then obtained
data sets with different resolutions are used. The first casé&®

is the hourly averaged AL for the period 1978-1988, which 2N

1
covers a typical solar cycle of 11 yr. F3(L) = N > F? (6)
The detrended fluctuation analysis of the AL time series Li=a

data is accomplished in four steg&atelhardt et a.2001).  f the original data are long—range correlated the fluctuation
The first step computes the profile of the data set as: function is expected to have a scaling as

i F(L) o< L*. 7
Y(i):Zxk—<x> 3) %

k=1 For uncorrelated or short-range correlated data, the exponent

The subtraction of the global meanx > of the dataset how- is 0.5 qnd larger values show the presence of long-range
. ) ) : correlations Kantelhardt et a).2001).
ever is not essential as the third step, described below, re- . .
. .~ The detrended fluctuation analysis of the 1 h averaged AL
moves this and other trends. In the second step the profile, . . : .
e : . data for 1978-1988 yields a scaling functiBiL) shown in
Y (i) is divided intoN;, = N/L non-overlapping segments _. ; o . . .
of lenath Z. In order to avoid a loss of data in the case Fig. 5. Also shown in this figure is the function using the
gin L. fluctuation analysis (FA) followindPeng et al(1994 and

is not a multiple ofL, the same process is repeated startlngKarnel and Brende{1993. The DFA functionF (L) yields
from the other end of the data set, yieldiny2 segments. ) ;
an exponent~0.87, thus showing long-range correlations. It

ggfeinti?]'rd;:gg; t\p:a h:; (t.k;ef;rreggsr:nsgle”?:r:; g rear%:?i?]ved bghould be noted that this data is hourly averaged and as noted
roced%re ed. a Ieaslt-é Lares fit Th% detren){jed timgseri egrlier, the substorms last typically an hour and higher reso-
:‘Oor the se ’mé%t duratioh?s then défined as: fition data are required to confirm this result. The detrended
9 ' fluctuation analysis using 5 min averaged data yield a similar
YL() =Y (i)—q;(i) () picture, as shown in Figh. The exponent in this case is 0.90,
very close to the case of 1-h averaged data. Thus the scal-
The local trend is usually represented by a polynomial and ining of the F(L) in both the 1 h and 5min averaged datasets
this study a quadratic function is used, and thus correspondshow the presence of long-range correlations in the AL data,
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weather. In both the cases there is a break in the function 2004. _ _

F (L) at 200—-300 min and similar results are obtained in theBunde, A., Eichner, J. F,, Kantelhardt, J. W., and Havlin, S.: Long-
case of other data sets of AL for different periods. More de- term memory: A natural mechanism for the clustering of extreme
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