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Abstract. The Olami-Feder-Christensen model is probably
the most studied model in the context of self-organized crit-
icality and reproduces several statistical properties of real
earthquakes. We investigate and explain synchronization and
desynchronization of earthquakes in this model in the non-
conservative regime and its relevance for the power-law dis-
tribution of the event sizes (Gutenberg-Richter law) and for
temporal clustering of earthquakes. The power-law distri-
bution emerges from synchronization, and its scaling expo-
nent can be derived asτ = 1.775 from the scaling proper-
ties of the rupture areas’ perimeter. In contrast, the occur-
rence of foreshocks and aftershocks according to Omori’s
law is closely related to desynchronization. This mechanism
of foreshock and aftershock generation differs strongly from
the widespread idea of spontaneous triggering and gives an
idea why some even large earthquakes are not preceded by
any foreshocks in nature.

1 The Olami-Feder-Christensen model

The Olami-Feder-Christensen (OFC) model (Olami et al.,
1992) is a two-dimensional coupled map lattice model based
on the Burridge-Knopoff spring-block earthquake model
(Burridge and Knopoff, 1967). The model has attracted
much attention not only as a paradigm for nonconservative
systems in the context of self-organized criticality (SOC)
(Bak et al., 1987; Bak, 1996; Jensen, 1998). It was soon rec-
ognized (Olami et al., 1992; Olami and Christensen, 1992)
that it reproduces the most important statistical property of
real earthquakes, the Gutenberg-Richter law (Gutenberg and
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Richter, 1954) (i.e., a power-law distribution of earthquake
sizes) as well as the occurrence of large, more or less pe-
riodic earthquakes, so-called asperity events. Later it was
discovered byHergarten and Neugebauer(2002) that the
OFC model also reproduces another fundamental property
of earthquakes, the occurrence of foreshocks and aftershocks
according to Omori’s law (Omori, 1894; Utsu, 1961). In
this context it was found that the foreshock and aftershock
sequences of the model reproduce several further important
statistical properties of real seismicity such as the increase of
the number of foreshocks with the mainshock size and some
kind of aftershock diffusion (Helmstetter et al., 2004).

Understanding how the OFC model generates earthquake
sequences with apparently realistic statistical properties
may finally help to understand the Gutenberg-Richter law,
Omori’s law and the occurrence of asperity-like events in na-
ture. An idea on the origin of the power-law distribution was
published rather early byMiddleton and Tang(1995). De-
tailed studies on asperity events were recently published by
Kawamura et al.(2010). In contrast, the occurrence of fore-
shocks and aftershocks in the OFC model still needs clarifi-
cation.

The model itself refers to a square array ofL×L blocks
where each block is interconnected by springs with its four
nearest neighbors and with a rigid driving plate moving at
constant velocity. Each sitei supports a continuous variable
Fi ≥ 0 representing a force or local stress. The forces are
initially set at random values, while the model itself is deter-
ministic. The model is continuously driven by uniformly in-
creasing all forces until any sitei achieves the threshold force
Fi = 1. In this case, the sitei becomes unstable and topples
instantaneously into an equilibrium position (Fi = 0) and
thereby transfers a fractionα of its forceFi with α ∈ (0,0.25]
to each of its four nearest neighbors. Now in turn one or more
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of these neighbor sites may achieve or exceed the threshold
force (Fi ≥ 1) and topple. This leads to an avalanche that
continues until all sites are stable again (Fi < 1 for eachi).
Since the model is non-abelian, the relaxation rule must be
applied in parallel to all sites that are simultaneously unsta-
ble.

The transmission parameterα settles the amount ofFi that
is dissipated during toppling since a fraction 4α of Fi is trans-
ferred in total to the neighbors for sites in the bulk. Thus,
total force is preserved during an event forα = 0.25, while
the model is nonconservative forα < 0.25.

After a transient time, the system approaches an appar-
ently critical state characterized by a power-law distribution
of the event sizes. However, the emergence of criticality in
the nonconservative regime has been debated from the very
beginning (Olami et al., 1992; Grassberger, 1994; de Car-
valho and Prado, 2000; Christensen et al., 2001; de Carvalho
and Prado, 2001; Drossel, 2002; Miller and Boulter, 2002,
2003; Wissel and Drossel, 2006). In return, temporal corre-
lations similar to those found in real seismicity (foreshocks,
aftershocks, and asperity events) were only recognized in the
nonconservative regime (Olami and Christensen, 1992; Her-
garten, 2002; Helmstetter et al., 2004). We therefore focus
on the nonconservative case in this study.

2 The basic mechanism of synchronization

Boundary conditions play a crucial role in the OFC model. It
was soon recognized that the model does not display SOC-
behavior under periodic boundary conditions (Socolar et al.,
1993; Grassberger, 1994). The basic mechanism how sites
synchronize from the boundaries to form larger events was
first investigated byMiddleton and Tang(1995). Without
any boundary effects, all sites might topple periodically at a
period 1−4α independently of each other. The period re-
sults from the fact that each time a site topples it drops one
unit of force and receives a forceα from each of its four
neighbors. However, boundary sites receive less force from
their neighbors, resulting in a lower toppling frequency. If
one of the neighbors of a sitei does not topple within a time
span 1−4α, the sitei cannot topple and must wait until the
delayed sitej topples and delivers its contributionα. At
this point, sitei becomes immediately unstable, i.e., it syn-
chronizes with the sitej . Middleton and Tang developed a
simplified model involving the phases of toppling instead of
the forces and numerically found power-law distributed event
sizes.

Apart from its directed structure (as only synchroniza-
tion in direction of two of the four neighbors is consid-
ered), the approach of Middleton and Tang differs from the
OFC model by neglecting “supercritical” forcesFi > 1. In
the OFC model, only hypocenters always topple exactly at
Fi = 1, while all other sites involved in an event may topple
atFi > 1.

100

102

104

106

108

100 101 102 103 104

nu
m

be
r 

of
 e

ve
nt

s

event size

OFC model

t = 4-16

t = 0-1

t = 1-4

Fig. 1. Event-size statistics of the modified OFC model with-
out supercritical forces measured over different time intervals on
a 4096× 4096 grid withα = 0.2 and random initial values. The
orange line refers to 2×109 events in the quasi-steady state of the
original OFC model. The dashed lines correspond to a power-law
distribution with a scaling exponentτ = 1.775 that is discussed in
Sect.3.

In order to demonstrate the importance of these supercrit-
ical forces for the OFC model we investigate a modified ver-
sion where supercritical forces are neglected, i.e., where each
unstable site only transfers an amountα of force to its neigh-
bors even ifFi > 1. The rest is simply lost. We simulated this
model withα = 0.2 on a 4096× 4096 lattice with random
initial conditions and found that it synchronizes from the
boundaries as expected. Figure1 shows the event-size statis-
tics for different time intervals. In the time intervalt ∈ [1,4],
the event-size distribution follows a power law for event sizes
from about 100 to 1000. The statistics of the smaller events
are governed by the still unsynchronized events in the bulk.
The scaling exponent of the power law matches that found
for the original OFC model within the accuracy of the data.
We verified that these results hold at least forα ∈ [0.16,0.24].

However, as synchronization proceeds towards the interior
of the domain, larger events dominate, so that the power law
distribution is soon lost. This happens long before synchro-
nization reaches the middle of the domain. Forα = 0.2, the
transition occurs when the synchronized region has a width
of less than 100 sites. Thus, criticality is only a transient
phenomenon in the model without supercritical forces; it
evolves rapidly towards a supercritical state. Therefore, self-
organized criticality in the OFC model must be closely re-
lated to the occurrence of supercritical forcesFi > 1, which
will be discussed in Sect.4.
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3 The scaling exponent of the event-size distribution

We now derive a semi-phenomenological approach to ex-
plain the power-law distribution arising from synchroniza-
tion. The idea is in its spirit identical to the hierarchical clus-
tering approach recently suggested byHergarten and Krenn
(2011) to explain the dynamics of the Drossel-Schwabl
forest-fire model (Drossel and Schwabl, 1992).

A cluster is here defined in the same way as in site percola-
tion where two sites belong to the same cluster if there exists
a continuous path of nearest neighbor sites connecting them.
Following the ideas of the previous section, we assume that
a cluster of synchronized sites persists until it is randomly
captured via its hypocenter by another cluster which has ex-
perienced a delay in toppling. LetN(s) be the number of
clusters of sizes on a lattice of total sizeA = L2. If an-
other given cluster topples with a sufficient delay, it captures
our cluster in case the hypocenter of our cluster is located
on the accessible perimeterpa of the delayed cluster. The
accessible perimeter of a cluster consists of those perimeter
sites which can be reached, in principle, by a random walker
coming from infinity (Grossman and Aharony, 1986), and it
was recently used in a modified forest-fire model to mimic
ignition by human impact (Krenn and Hergarten, 2009).

Assuming a random alignment of all clusters, our site is
captured by the delayed cluster with a probabilitypa

A
. Cap-

ture of clusters can then in principle be described by Smolu-
chowski’s coagulation equation with a suitable kernel. Al-
though capture is in principle possible among clusters of any
sizes, its effect on the cluster size is largest if both clusters
are of similar sizes. We therefore only consider the case that
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where the factor 2 in the second line states that two clusters
vanish in a single capture event. In equilibrium, which can
only be achieved if a sufficient number of clusters of size one
is supplied,δN(s) must vanish. This leads to
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Fig. 2. Scaling behavior of the accessible perimeter of events in the
OFC model numerically determined for different values ofα on a
1024×1024 lattice. The curves referring toα 6= 0.20 were shifted
vertically for clarity.

so that

N(s) ∼ s−
3
2 pa(s)

−
1
2 . (3)

Figure 2 shows the accessible perimeter of clusters in the
OFC model derived from numerical simulations on a 1024×

1024 lattice. The results suggest thatpa(s) scales like

pa(s) ∼ sh (4)

with h = 0.55 independently ofα at least for 0.16≤ α ≤ 0.24.
This immediately leads to

N(s) ∼ s−τ (5)

with a scaling exponentτ = 1.775 in perfect agreement with
the numerical results presented in Fig.1.

4 Desynchronization by supercritical forces

We now extend the idea of stress concentration proposed by
Kawamura et al.(2010). They observed that the forces of
the toppling sites approach one during a sequence of asperity
events and provided a first explanation of this phenomenon.

Let us first come back to the basic mechanism of syn-
chronization. Due to a delay in the toppling of a sitej , the
(neighbored) sitei cannot topple beforej topples, so that
they topple simultaneously. Then, the sitei topples at a force
Fi = 1+τ instead ofFi = 1 whereτ is the delay the sitei ex-
periences. Therefore, it transfers an amountα(1+τ) instead
of α to sitej , so that this site will topple earlier next time,
i.e., after a time spanT = 1−4α−ατ . At this time, the force
at the sitei will be Fi = 1−ατ < 1 including the contribution
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Fig. 3. Decay of the mean supercritical force excessS in six se-
quences of asperity events forα = 0.2. The dashed line corresponds
to the theoretical decay according toS(t) ∼ exp(−2.55t).

of sitej , so that it will not topple simultaneously withj , but
delayed byτ ′

= ατ . So the synchronization of the two sites
is immediately lost, but they will topple with a short time lag
in future. Asτ ≤ α in most cases,τ ′

≤ α2, which means that
the time lag will be shorter for smallα. As a consequence of
the small time lag, even a small delay in the toppling of site
j will be sufficient to resynchronize the sites temporarily.

In principle, the same mechanism applies to larger events,
although they are not broken immediately. Let us consider an
event whereh is the hypocenter,E is the set of all involved
sites,s is the size,N(i) is the neighborhood of the sitei, and
Fi is the (supercritical) force of sitei when it topples. The
hypocenter will topple next time after a time span

T = 1−α
∑

j∈N(h)

Fj . (6)

Including the contributions from its neighbors, each sitei ∈

E will have a force

F ′

i = T +α
∑

j∈N(i)

Fj , (7)

so that the supercritical force excessSi = Fi −1 of the sitei
turns into

S′

i = α

( ∑
j∈N(i)

Sj −

∑
j∈N(h)

Sj

)
. (8)

As long asS′

i ≥ 0 for all i ∈ E, the event will take place (at
least) at the same size. If this happens several times, a perfect
sequence of asperity events arises. In return, ifS′

i < 0 for
any site, the event will cease at sitei. This site becomes the
hypocenter of a new event which takes place with a probably

small delay|S′

i |. Thus, the event is broken into two or even
more events.

The first sum in Eq. (8) describes a diffusive decay of the
valuesSi , while the second sum can be seen as an inhomo-
geneity that may cause negative values and thus desynchro-
nization. The decay of the mean supercritical force excessS

can be estimated by assuming thatE is surrounded by events
without any supercritical force (as it is the case for events
of size one), i.e., thatSi = 0 for i /∈ E. In this case, Eq. (8)
yields

S
′
= α

(
1

s
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∑
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∑
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)
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whereni is the internal coordination number of the sitei, i. e.,
the number of its neighbors which belong toE. As clusters of
sites toppling simultaneously are rather compact in the OFC
model, almost all sites involved in a large event should have
ni = 4, so that

S
′
≈ α

(
4S −

∑
j∈N(h)

Sj

)
. (11)

If the force excess inN(h) is the same asS, too, we imme-
diately obtain

S
′
≈ α(4−nh)S. (12)

As the decay fromS to S
′
takes place within a time span of

length 1−4α (strictly speaking, slightly shorter), the mean
force excess of an event sequence decays exponentially ac-
cording to

S(t) ∼ exp(−λt) (13)

with

λ = −
log((4−nh)α)

1−4α
. (14)

Obviously, events where the hypocenter is a “nose” at the
border of the event (nh = 1) have the lowest decay constant,
so that they shall be most stable against decay, followed by
those with hypocenters at a corner (nh = 2). This result gives
an explanation for the recent finding that the vast majority of
the asperity events hasnh = 1, followed bynh = 2 (Kawa-
mura et al., 2010). In return, Eq. (8) immediately reveals
that desynchronization is more likely at the borders where
ni < 4. In particular, noses which are not hypocenters will
rapidly lose synchronization, leading to rather smooth bor-
ders of asperity events.

The data shown in Fig.3 confirm our result on the expo-
nential decay numerically forα = 0.2 by tracing the mean
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Fig. 4. Cumulative distributionP(τ) of the time spansτ between
receiving the last portion of force from a neighbor before becoming
unstable and time of instability. The black line shows the distribu-
tion that would arise from completely uncorrelated events.

supercritical forces of large asperity events. Six sequences
where the hypocenter persisted for at least 25 periods were
selected. According to Eq. (14), the smallest decay constant
should beλ = 2.55 here. One of these 6 sequences obeys the
exponential decay even down toS(t) ≈ 10−6, while the ma-
jority of sequences tends to larger supercritical forces when
S(t) ≈ 10−3, presumably caused by the supply of supercrit-
ical forces from other events in the neighborhood. In some
cases, the decay is slightly slower than predicted by Eqs. (13)
and (14). This occurs if the supercritical forces in the neigh-
borhood of the hypocenter is lower than the mean supercriti-
cal force of the whole event.

5 Temporal correlations

As discussed in the previous section, large events tend to be
broken into sequences of smaller events with a small time
lag. This obviously causes a strong short-term correlation
of events. In Fig.4, the time spanτ between receiving the
last portion of force from a neighbor before becoming un-
stable and time of instability is analyzed for all hypocen-
ters. The distributions were derived from simulations on a
2048×2048 grid using an implementation where the forces
are stored in 64 bit integer format with a numerical precision
of ε = 2−62

≈ 2×10−19 (Krenn and Hergarten, 2011).
If the events were completely uncorrelated, and each of the

four neighbors topples once per time span 1−4α, the prob-

ability should beP(τ) =

(
1−

τ
1−4α

)4
. The OFC model ap-

parently approaches this distribution forα → 0.25, while the
correlations become stronger asα decreases. Forα = 0.16
even valuesτ down to the numerical precision occur with
significant frequency. This phenomenon is interesting for
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Fig. 5. A sequence of events computed on a 512×512 grid, starting
from a large event spanning 37 % of the grid. Only events over-
lapping the rupture area of the initial event are plotted. Red bars:
Events starting from the same hypocenter as the first one. Green
bars: Events starting from hypocenters within the rupture area of
the first event. Grey bars: Events starting from outside the rupture
area of the first event. The upper plots are parts of the sequence
around selected events where the time axis is nonlinearly stretched
according totstretched= tredbar+2 3

√
t − tredbar.

the behavior of the OFC model in the limit of infinite pre-
cision (Drossel, 2002; Miller and Boulter, 2003), but has no
meaning with respect to real earthquakes: The propagation
of a large earthquake takes at least several seconds in nature,
so that the minimum detectable valuesτ are much lower than
the numerical precision used here (Helmstetter et al., 2004;
Hergarten and Jansen, 2005).

The mechanism of desynchronization with very small time
lags generates sequences of foreshocks, a mainshock and af-
tershocks, where the mainshock is simply the largest event
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Fig. 6. Top: State of desynchronization of the first event from Fig.5
at t = 3. Individual events are marked with random colors. Bottom:
Respective hypocenters (red points). The arrow marks the hypocen-
ter of the initial event.

according to the usual definition. The conjecture that fore-
shocks and aftershocks arise from desynchronization of large
earthquakes is somewhat opposite to the widespread idea of
spontaneous triggering as it is, e.g., assumed in the epidemic
type aftershock model (Ogata, 1988).

Figure 5 shows an example of a decaying asperity se-
quence. The second (marked with an A) occurrence is al-
ready accompanied by aftershocks, and their number and size
increases in the following. Most notably, no foreshocks are
observed at this stage. The 9th occurrence (marked with a F)
is the first one where the initial event (red) is no longer the
largest one, so that it will be no longer the mainshock, but a
foreshock of a larger event. At event no. 20 (marked with a
D), the asperity has been destroyed; almost the entire initial
rupture area has been captured by an event with a hypocenter
outside this area with a significant time lag.

Figure6 shows how the initial event has been broken at
t = 3 and the respective hypocenters. The hypocenters ac-
cumulate at the border of the initial earthquake indicating
that desynchronization preferably takes place there. This
phenomenon was already explained above from Eqs. (8) and
(10). Furthermore it immediately explains why aftershocks
are preferred to foreshocks.

6 Omori’s law

In the following, we present a simple idea of fragmentation
to explain the origin of Omori’s law based on desynchroniza-
tion. Let us start with one event involvings0 � 1 sites at
time t0. In the first step, this event falls into two pieces of
sizeqs0 and(1−q)s0 with a delayτ in time. For simplicity
we assume that the first one is still at timet0 (modulo the
period), so that the second takes place att0 +τ . In the next
step, each event falls into two pieces according to the same
mechanism, but with a smaller delay1

2τ . This factor is mo-
tivated by the exponential decay of the supercritical forces
discussed above. If we repeat this procedure infinitely, we
recognize thatqns0 sites topple at a total delay smaller than(

1
2

)n

τ . Thus, the number of sites that topple with a delay

smaller thant is

s(t) = s0q
−log2

t−t0
τ = s0

(
t − t0

τ

)−log2q

, (15)

so that the number of toppling sites per time is

ṡ(t) ∼ (t − t0)
−(1+log2q) . (16)

This power law decay does not describe the number of after-
shocks per time directly like Omori’s law, but a mixture of
number and event size. However, if we assume that all after-
shocks obey the same size distribution (i.e., the Gutenberg-
Richter law), it turns into Omori’s law with an exponent
p = (1+ log2q) < 1. If q approaches 1 (i.e., if desynchro-
nization is strongly confined to the border),p approaches
1. At this point it should be mentioned that it was already
observed that the OFC model yieldsp < 1 (Hergarten and
Neugebauer, 2002; Helmstetter et al., 2004), while values
p > 1 are frequently found in nature (Kisslinger and Jones,
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1991). Valuesp > 1 were also observed in modified versions
of the OFC model (Hainzl et al., 1999; Jagla, 2010).

It is noteworthy, too, that this mechanism of aftershock
generation hinges on a stepwise desynchronization during a
sequence of asperity events. Disturbances in the force trans-
fer close to the hypocenters will affect the small time lags be-
tween the aftershocks which may result in resynchronization
and thus wipe out Omori’s law. This explains an observation
made byYamamoto et al.(2010) who found numerically that
Omori’s law is destroyed even by a very small dynamic ran-
domness in the force transfer, while the Gutenberg-Richter
law and the occurrence of asperity events itself is more ro-
bust.

7 Conclusions and potential implications for
real seismicity

We found that the dynamics of the OFC model is governed
by two competing mechanisms: Synchronization pushes
the system towards a critical state and thus generates the
Gutenberg-Richter law. In return, desynchronization pre-
vents the system from becoming overcritical and generates
foreshocks and aftershocks.

The theoretical concept proposed in Sect.3 suggests that
the scaling exponent of the event-size distribution isτ =

1.775, independently of the parameterα, as long as synchro-
nization is sufficiently strong. However, the concept does not
allow an estimate of the minimum value ofα that is sufficient
to maintain synchronization. Desynchronization may disturb
the power-law distribution, so that our results suggest that
any dependency ofτ onα is a spurious effect.

In contrast, a dependence on Richter’s b-value (which is
closely related toτ ) on the type of fault zones was recently
found in real seismicity (Narteau et al., 2009). However, this
result is not in contradiction to our findings since numerical
simulations of the OFC model for different values ofα and
different lattice sizes practically yield a variation inτ .

The mechanism of foreshock and aftershock generation
by desynchronization differs in its spirit strongly from the
widespread idea of spontaneous triggering of aftershocks. If
foreshocks and aftershocks are the result of desynchroniza-
tion, a “new” (i.e., just generated by synchronization) asper-
ity event should occur without foreshocks and with only few
aftershocks. As synchronization hinges on a delayed occur-
rence, there should be an increased probability of a large
event without foreshocks if the time since the last earth-
quake is longer than the characteristic asperity recurrence
time. Furthermore, the “productivity”, i.e., the number of
aftershocks (and foreshocks) would mainly depend on the
“age” of the asperity (beside the mainshock magnitude). This
may be the reason for the large and apparently random vari-
ability of the number of foreshocks and aftershocks found in
nature.

Even more important, our approach also provides a sim-
ple explanation of Omori’s law which is one of the most
fundamental relationships in statistical seismology. Beyond
this, the mechanism of desynchronization immediately ex-
plains another phenomenon sometimes found in real earth-
quake sequences: Foreshocks migrate towards the hypocen-
ter of the mainshock (Kagan and Knopoff, 1978; von Seggern
et al., 1981), and aftershocks diffuse from the hypocenter of
the mainshock (Tajima and Kanamori, 1985; Marsan et al.,
2000).

Although our results provide several arguments in fa-
vor of desynchronization being responsible for foreshocks
and aftershocks, it currently seems to be impossible to de-
cide whether real foreshocks and aftershocks arise from this
mechanism or not as there are still too many open questions
concerning the nature of asperity events. One may argue that
the OFC model is too simple and obviously contains unre-
alistic simplifications such as a constant loading rate at all
sites. Variations in the loading rate would weaken synchro-
nization, but this would mainly cause a faster decay of the
asperities and thus more foreshocks and aftershocks. This
would even be reasonable since it was already found that the
number of foreshocks and aftershocks in the OFC model is
too low compared to nature (Helmstetter et al., 2004). In
contrast, the arguments that our simple mechanism of frag-
mentation only predicts Omori exponentsp < 1 and is not
robust against random disturbances cannot be refuted so far,
leading to the conclusion that this mechanism is probably not
the only one responsible for aftershocks in real seismicity.
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