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Abstract. Standard statistical methods involve strong as-that even slight departures from normality can be a source
sumptions that are rarely met in real data, whereas reeof concern (e.g.Wilcox, 2003. Another questionable as-
sampling methods permit obtaining valid inference without sumption is that of a linear model for the observed time se-
making questionable assumptions about the data generatinges, whereas the real data generating mechanism (DGM) is
mechanism. Among these methods, subsampling works uninherently nonlinear, so that estimation commonly based on
der the weakest assumptions, which makes it particularly apa fitted linear models may be misleading (e @luhovsky
plicable for atmospheric and climate data analyses. In the pa2008.
per, two problems are addressed using subsampling: (1) the Meanwhile, recent progress in computer-intensive (aka
construction of simultaneous confidence bands for the unbootstrap or resampling) methods makes it possible to avoid
known trend in a time series that can be modeled as a surreliance on questionable assumptions in time series analy-
of two components: deterministic (trend) and stochastic (stasis. One such method, the subsampliBglitis et al, 1999,
tionary process, not necessarily an i.i.d. noise or a linear prois particularly suitable for atmospheric and climate time se-
cess), and (2) the construction of confidence intervals for theies. In this paper, subsampling techniques are suggested to
skewness of a nonlinear time series. Non-zero skewness iaddress two fundamental problems in atmospheric and cli-
attributed to the occurrence of coherent structures in turbumate dynamics: trends and coherent structures (CSs) that are
lent flows, whereas commonly employed linear time seriesdescribed in Sect. 2. ABhillips (2005 noted, “no one un-
models imply zero skewness. derstands trends, but everyone sees them in the data”, and
in spite of observational successes, the problem of describ-
ing turbulent flows with CSs remains a formidable theoretical
challenge Tabeling 2002. In Sect. 3, subsampling is briefly
introduced and, as an example, the construction of subsam-
. - . . pling confidence intervals for the skewness of an observed
z\é'g] r:?; ?)\éae':]ag:g%?; givéigﬁ:ﬁifegs?r?éar'otl?ii Z?:T']issgﬂglritime series is provided (positive sI_<ewness indicates the pres-
&nce of CSs). Then the subsampling technique developed for

and climate studies. The problem is that conventional Sta'Confidence intervals is extended to that for the construction

t!stical methods are “based on Ce”@‘” probabilistic assuMPy¢ simultaneous confidence bands for unknown trends.

tions about the nature of the physical process that gener-

ates the time series of interest. Such mathematical assump-

tions are rarely, if ever, met in practiceGhil et al, 2002. 2 Motivating problems

One common assumption is that observations are normally

distributed. Yet in reality, distributions are often not nor- 2.1 Trends in climate variables

mal, such as those for the velocity field in a turbulent flow

(Lesieur 2008, the precipitation amount, or the economic AS with other important concepts, such as turbulence or co-
damage from extreme weather evertatz, 2002 Katz et~ herent structures, there is no commonly accepted definition

al., 2002, and new advances in statistics have made it clea®f @ trend, and though even today the trend remains rela-
tively little understood (e.gWhite and Grange2011)), it is

usually taken as a smooth function representing systematic
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One difficulty in trend analysis is that what one per-
ceives as a deterministic trend may well be produced by a
purely stochastic mechanism (as with random walks or long- .
memory processes); such an artifact is sometimes called
stochastic trend. In practice, when a relatively short portion
of the series is only available, the two possibilities (determin-
istic or stochastic trend) are often indistinguishable statisti-
cally (e.g.,Fatichi et al, 2009, though sometimes conclu-
sive statistical evidence can be obtained. For the temperatur
data, for instanceBeran and Feng2002 found statistical
evidence for a deterministic trend by fitting their SEMIFAR
model, Rybski and Bund€2009 detected linear trends us- e
ing detrended fluctuation analysis. And, to add more confu- T T T
sion, non-stationarity in the mean may also cause the long- 1900 1950 2000
memory effect Bhattacharya et gl1983.

Therefore, for a number of reasons (see #sbley and
Patterson201Q Mudelsee2010), it is often practical to fol-
low the classical approach to model the time series as a su

alies
5
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ig. 1. Global monthly temperature anomali€¥C), relative to

'961-1990 (gray curve) with a trend estimate (thick red curve), a

Zi=mi+e, (1) 90 % SCB for the trend (dashed red curves) and calibrated 90 %
SCB for the trend (dashed blue curves).

of an unknown function, trend:;, and a stationary zero-

mean procesg. Then the trend may be estimated from the

data by nonparametric techniques such as local polynomiaturves in Fig.1 indicate the two versions of 90 % subsam-

regression with globalGleveland and Devlin2009 Efro- pling SCBs for the trend in the temperature series obtained

movich 1999 or local Ruppert1997 Gluhovsky and Agee  in Sect. 3.2.

2007 bandwidth selection or by using wavele@réigmile et

al., 20049 For example, the red curve in FigShOWS atrend 2.2 Coherent structures in turbulent flows

computed via local polynomial regression in the global tem-

perature series that plays a prominent role in climate changg g sy of organized structures in turbulent flows began

studies (the gray curve, frorowpertwait and Metcalfe i, the well-known laboratory experiments Byown and
2009. The series of 1800 data points gives global monthly Roshko (1974 who provided the first documented visual

anomalies°C) from January 1856 to December 2005, rela- o\igence that the mixing layer can be dominated by what

tive to the average of the period 1961-1990. _ are now callectoherent structure¢CSs). The definition of
_ Another difficulty in assessing trends, as well as time Se-cgg continues to be somewhat evasive, but they are com-
ries parameters, is that estimates without any measure of thefﬁonly viewed as organized long-lived motions that sponta-

va!idity are not very useful. In nonlinear.regression, when neously arise, trap much energy, and cover the whole spec-
et in EQ. (1) are independent identically distributed random 1, of fluid motions (down to the Kolmogorov scale). Per-

variables, this is provided by themultaneous confidence 1 ans the most relevant atmospheric examples can be found in
bands(SCBs, e.g.Eubank and Speckmah993 that quan- organized structures that occur on a variety of spatial scales

tify the associated uncertainty (similar éonfidence inter- \yithin convective boundary layers that form during cold air
vals(Cls) in classical statistics), so that the two functids, ,tbreaks over warmer watekgee 1987).

anduy, in £q.Q) Meanwhile, turbulent flows with CSs are characterized
P (It < my < uy) ~0.90, (2) by non-Gaussian statistics (e.gvyngaard and Weil1991
Maurizi, 2006 reflected in the values of skewness and kur-
trap the unknown trend with a given confidence, say, 90 %. tosis that are different from those for a normal distribution
With dependence present (i.e., whanis a more gen- (0 and 3, respectively). Moreover, in numerical simulations
eral stationary process, which is typically the case in geo<e.g., Farge et al.2003 Ruppert-Felsot et gl2005, tur-
sciences), constructing SCBs becomes a considerably motdaulent flows were separated into coherent and incoherent
difficult problem, which has been addressed in various waysomponents using wavelet transforms. The coherent part,
(Buhlmann 1998 Wu and Zhap 2007 Mudelsee 2010). represented by only a small fraction of the wavelet coeffi-
When handled via subsampling, however, the problem becients, retained the total flow dynamics and statistical prop-
comes similar (as will be seen in Sect. 3.2) to a more familiarerties, notably non-Gaussian skewness and kurtosis, while
one of obtaining subsampling ClIs for parameters of a timethe incoherent part was characterized by Gaussian statistics.
series (described in Sect. 3.1). The red and the blue dashethus, there is considerable interest in accurate estimation
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3 Subsampling confidence sets

3.1 Subsampling confidence intervals for parameters of
time series

Although Cls for parameters of modeltime series are of
no particular interest, they can be obtained via Monte Carlo
simulations with the model (which leads to the idea of sub-
sampling). To construct, say, a 90% CI for a (known) time
~ series parameter, one could generate lots of the time series
realizations and compute from them estimates of, for exam-
ple, go.0s andgo.os, the 0.05 and 0.95 quantiles of the distri-
bution of theroot, § — 6. Then arequal-tailed(Politis, 1999

90 % Cl forf is

Vertical velocity, m/s

T T T T T
0 2000 4000 6000 8000

t, data points

(6 —q0.95, 0 — q0.05), (3

Fig. 2. Record of 20-Hz aircraft vertical velocity measurements wheref is a sample estimate 6f

over Lake Michigan. Or, one may comput€g oo, @ 0.90 quantile of the distri-
bution of |0 — 6], i.e., Prol§|0 — 0| < Qp.90) = 0.90, then a

_ ) ) symmetriqHall, 1988 90 % CI for6 is given by
of skewness and kurtosis from time series records, however,”

common practices may produce misleading results. (@ — Q0.90. 6+ Q0.90). (4)

As a typical example, consider a time series of the verti- |, 1oy jife sjtuations, where the DGM (the model) is un-
cal velocity of wind in a convective boundary layer during | \on and typically only one record is available, subsam-

an outbreak of a polar air mass over the Great Lakes region,jing comes to the rescue by replacing independent computer
The record in Fig2 (that has passed a test for stgtlonanty generated realizations from the known modeshfpsamples
Gluhovsky and Ageel994) consists of 8192 data points over s of consecutive observations from the single record

about 29 km across Lake Michigan, 50 m above .the lake. Thethat retain the dependence structure of the time sePialiic
sample mean, variance, skewness, and kurtosis of the vertis; 5| 1999 Underscored below are the first, intermediate,

cal velocity computed from the record a+@.04, 106, 83, _and the last block, all of the same lengt{ithe block siz¢ in
and 410, respectively. Although large skewness and kurtosis

i N - a record of a time serie$}, containingr observations and,
may result from nonlinearities in the underlying data gener-yareforen — b+ 1 blocks:
ating mechanism (DGM), sample characteristics like these
(routinely obtained in field programs as well as in laboratory Y1,....Yp, ..., Yi ... Yiqp—1, coos Yupy1,... Y. (5)
experiments and computer simulations) are just point esti- b b
mates (our “best guesses”) of the true values of the parame-
ters. Therefore, to learn how far one can trust these number§1
Cls are employed.

A 90 % Cl is the range of numbers that traps the unknown
parameter with probability 0.90 called tieeverage proba- are useful since it is with models that one may assesadhe

b'“.tY' Also refer_red toas a_ommalortar_g_etcove_rage prol_t)- tual coverage of Cls via Monte Carlo (MC) simulations: with
ability (e.g.,Davison and Hinkleyl1997), it is attained only if known model, one may generate numerous records, compute

the assumptions underlying the method for the CI construc—frorn each one the subsampling Cl, and estimate its cover-

tion are met. Since in geosciences this is rarely the case, thgge probability by counting the fraction of times the known
actual coverage probability may differ from the target level rparameter valug. was within the Cl

(sometimes con_siderab_ly). For example, when the DGM (© With this in mind, consider the modelénschow et aJ.
amodel time series) is linear, Cls for the mean or the varianc 994

of the time series may be found analytically, but the common ’
practice of computing Cls from fitted linear models may re- Y;= Xt+a(Xt2— 1), (6)
sultin erroneous Cls when the real DGM is, in fact, nonlinear
(Gluhovsky and Agee2007, Gluhovsky 2008. Meanwile,
Cls for the skewness cannot be based on linear models, whichXt = ¢ Xt—1 +€t, )

imply zero skewness. This is where subsampling becomeB< ¢ < 1 anda are constants, angis a white noise process

instrumental since subsampling Cls do not rely on quesuon-(a sequence of uncorrelated random variables with mean 0
able assumptions.

and variance2) with 02 =1— ¢ so thato2 = 1.

Subsampling does not require that any model, linear or
onlinear, be fitted to the data, and it works in complex
dependent data situations under the weakest assumptions
among other computer-intensive techniques. Still, models

whereX; is a first order autoregressive process (AR(1)),
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S b =200 (exceeding by far actual coverages of Cls based on

o linear models e.gGluhovsky 2008, while the curve for the
skewness (solid red), where conventional Cls are unavail-

8 able, provides the maximum of abouB@ atb = 250. Es-

o

timating the skewness does require longer records than those
for the variance (e.gGluhovsky and Ageel994 Lenschow
etal, 1994.

A simple way to improve the coverage is to increase (when
feasible) the record length. The dotted curves in Hg.
show the increased coverage probabilities for the variance
and skewness (blue and red, respectively) due to records of
4096 observations. Otherwise, the so-caltatibration can
, , , , , , , be usedPolitis et al, 1999: nominal 0.90 Cls in the subsam-

0 200 400 600 800 1000 1200 pling procedure are replaced with those of higher confidence
level, which may be determined via MC simulations with an
b approximating model (such as modé) &ta = 0.145 for the
] . ) time series in Fig2). For example, the dashed red curve in
S e o oo e | 19.3 S oianed o e seunessncase 2045 by r
i . : placing 0.90 subsampling Cls (which resulted in the solid red
ata =0.145: n = 2048 (solid),n = 4096 (dotted), calibrated Cls . .
atn = 2048 (dashed). Horizontal green lines denote 0.85 and 0.8§:urve) with 0.96 subsampllng_C_I_s. The dashed curve demon-
levels. strates that coverage probabilities close to the target can be
achieved for a range of block sizes (the curve is above 0.89
level here ab € (125,350)). A similar curve for the variance

AR(1) with a Gaussian white noise is widely employed in (not shown) that also approaches the target(@tb = 150)

studies of climate as a default model for correlated time se?V@S obtained by replacing 0.90 subsampling Cls (which re-

fies (e.g.von Storch and Zwierd 999 Percival et al.2004). sulted in the solid blue curve) with 0.94 subsampling Cls.
When the white noise in modef)is not Gaussian, the model This also brings the problem of the block size choice in sub-
may exhibit nonlinear behavior and is referred to agan ~ S@MPpling addressed in Sect. 3.3

plicit nonlinear model Fan and Yap2003, as opposed to !t was found that a 90% subsampling ClI (E4.for the
explicit nonlinear model &), where AR(1) is altered with a skewness of the observed t!me Seriesin Elg.(0.63, 1.02),
nonlinear component. wherel_as acﬁaélébrj;ed one(\j/\_/lttQ? c;ﬁverage (|._e., ett_96 % s(;Jbl)
. .sampling g4), according to the approximating mode
of@t (Cilnzn?(.)%ji?é)thaerénr:n’e\é:\r/lsln(:e' skewness, and kurt03|sls (0.41, 1.24). Although the calibrated one is larger, both

t ' P Y: serve the purpose of confirming that the skewness of the ver-
M=0, V=1+24°~1.04, S=(6a+84%/V1® ~0.84, tical velocity time series is positive, thus indicating the pres-

K = (3+60a2+60u*)/ V2~ 3.95, ence of CSs in the flow.

i.e., they are close to the corresponding sample charactes 2 subsampling confidence bands for trends
istics (—.04, 106, 083, 410) of the vertical velocity time

series in Fig2. Thus, model§) might provide a better de- To construct subsampling SCBs for the unknown trend func-
scription for that series than linear models, which inherentlytion in Eg. (1), the subsampling procedure of Sect. Bad to
have zero skewness. In simulations belgws 0.67 and the  be modified to include sample estimates of the trend in place
the records contain 2048 data points, which permits to im-of those for the skewness. Therefore, functigrendu; in

itate the dependence structure of the vertical velocity timeEq. ) in this case were computed as

series as characterized by autocorrelation functions.

Figure3 presents the actual coverage probabilities of sub- 4
sampling Cls for the variance (blue curves) and the skewnesghereri; was the sample estimate of the trend computed (via
(red curves) computed via MC simulations with mod®ldt  |ocal linear regression) from the whole record, o was
a=0.145. Subsampling Cls were found following Ed) (  the Q90 quantile of the distribution of the maximum of the
with & now being the sample skewness (or variance) fromapsolute value of the trend in residuas— ri;, estimated
the whole record, and quanti@o.go being estimated from  yia subsampling. That is, the statistic of interest heZe—
all values of|¢ — 6;|, whered; was the sample skewness (or ,;,|, was evaluated over subsamples of the record, instead
variance) computed from thieth subsample). of independent realizations of the time series in case of MC

The curve for the variance in Fi@ (solid blue) corre-  simulations (cf., Eq4).
sponding ton = 2048 has the maximum of about 0.87 at

Coverage
0.80
|

0.75
|

0.70
|

=mt— Qog0, ut=nit+ Q0.90, (8
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Fig. 4. A realization of time series9j ata =0 (gray curve), trend  Fig. 5. Actual coverage probabilities of 90 % subsampling SCBs
functionmt (thick black curve), a trend estimate computed from the for the trend in model9) ata =0 (solid red curve)q = 0.2 (blue
realization (thick red curve), a 90 % SCB for the trend (dashed redcurve), and for a calibrated SCB @t= 0 (dotted red curve). Hori-
curves) and calibrated 90 % SCB for the trend (dashed blue curveskontal green lines denote 0.85 and 0.89 levels.

To get an idea of the method's performance, the Cover-pefore looking for and running an approximating model) de-
age of the thus obtained SCBs was assessed, as before, Bije depending on the purpose of the study, whether cali-
_MC_S|muIat|ons with a model time series (representing thaty ation is justified. For example, subsampling SCB for the
in Fig. 1), temperature time series in Fif.does not seem to need a
Zi=mi+ Vi (9) calibration (see the last paragraph of the Sect. 3.3).

In model @), the trend functionm; = 0.1sin(4xt/n)+1t/n 3.3 Choice of the block size
(the black curve in Fig4), is added to the stochastic pro-
cess ) considered in Sect. 3.1, which plays the roledh  As seen in Figs3 and5, coverage probabilities of subsam-
Eq. @). The gray curve in Figd shows the total signal:,  pling Cls and SCBs depend considerably on the blockisize
an example of estimated trend is presented by the red curveynd the numbers characterizing the maximum actual cover-
and the dashed red curves show a 90 % subsampling SCB. age in previous sections were found using the optimal blocks
For simulations with modeld), records of 1800 observa- ( ;, — 200 for the variance antl= 250 for the skewness in
tions were used, as in the temperature series inlFighose  gect. 3.1, ok = 600 for the trend in Sect. 3.2) obtained via
correlations in residuals are roughly described by the autopc simulations with models. With only one record available
correlation function of time serieg( with ¢ =0.67. Fig-  in practice, however, the choice of the block size becomes the
ure5 demonstrates the actual coverage of 90 % subsamplingost difficult problem in subsampling (shared by all block-

SCBs for the trend in serieS)(found, again, via MC simula-  jhg methods). The asymptotic resud(itis et al, 1999,
tions. The solid red curve shows the actual coverage (at vari-

ous block sizes) when the noise is linea={0 in Eq. 6), the b— o0 and b/n—0 as n— oo, (10)

blue curve corresponds to the nonlinear noise with 0.2.

It can be seen that nonlinearity practically does not affect thehat the block size needs to tend to infinity with the sample

coverage, but both SCBs somewhat undercover, reaching th&ze but slower, does not help to choose the block size for

maximum actual coverage of slightly over8@ ath =600.  relatively short atmospheric and climatic records.

Hence a calibration might be in order, and the dotted red line To handle this problem, one more resampling technique

in Fig. 5 corresponds to the calibrated subsampling SCB athas been developeds(uhovsky et al. 2005 for comput-

a =0 (nominal 94 % SCB that provides the actual coverageing the optimal block size from one record in case of sub-

of 0.90). It turns out, however, that the nominal and cali- sampling Cls (Eq3). Recall (see Sect. 3.1) that to assess

brated SCBs here (shown by the dashed red and blue curvehe actual coverage of subsampling Cls via MC simulations,

respectively, in Fig4) are very close, so that the calibration one generates numerous records, computes from each one

in this case is probably unnecessary. the subsampling Cl, then estimates its coverage probability
In practice, one may easily compare subsampling SCBgy counting the fraction of times the known parameter was

(or ClIs) with calibrated ones at various confidence levels andwithin the CI, and chooses optiméalas that providing the

www.nonlin-processes-geophys.net/18/537/2011/ Nonlin. Processes Geophys., 58453011
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best coverage. Now, with only one record available, inde-
pendent realizations generated from a model are replaced
by pseudo realizationgbtained from the single record via
the following procedure (a version of the circular bootstrap
Politis and Romanol992. The record of: data points is
“wrapped” around a circle, thep < n points on the circle
are chosen at random (following a uniform distribution on
the circle) as starting points fgr consecutive segments of a
pseudo realization. Thus the length of each segment jis

(n should be a multiple op) and the pseudo realization has
lengthn. The procedure is repeated to generate numerous
pseudo realizations (from the same record) that substitute in-
dependent realizations generated from a model time series.

—————

0.90 quantile
0.08 0.09 0.10 0.11 0.12 0.13 0.14
!

Then the “coverage” is determined as before, butdbe 0 200 400 600 800 1000 1200
rectcoverage proves very different. This is because the max-
ima of the curves analogous to any of those in Fgyand b

5 (but based on pseudo realizations) vary wildly, depending ) . ) _ )

on the initial record used to generate the pseudo realizationd.19- 6- QuantilesQo.go in Eq. (8) estimated for differenb using

It turns out, however, that such curves essentially retain thé)seudo realizations generated from one record: each blue dashed
shape of tf’1e Correspl)onding ones obtained via MC simulaSi™ve is based on pseudo realizations generated from a record of

tions, thus indicating a suitable block size to be used in sub-mOdeI time seriesy), while the solid red curve is based on pseudo

. realizations generated from the record in Rig.
sampling.
The procedure was successfully used to construct subsam-
pling Cls for the mean and variand8l(thovsky et al.2005,
skewness Gluhovsky 2008, and kurtosis Gluhovsky and
Agee 2009. Employed in all these studies were Cls (Bj.
where the coverage probability could be estimated as thd he purpose of this simulation study was to demonstrate that
fraction of times the sample estimate (used in place of thesubsampling techniques may be developed to obtain valid
parameter known in MC Simu|ati0ns) was within the Cl, and statistical inference in a Variety of prOblemS, where tradi-
the block size choice was determined based on coverage. tional time series analyses are hindered due to nonlinear data
In CI (Eq. 4), however, the sample estimate of the param-generating mechanisms and limited records. Trends in cli-
eter isalwayswithin the Cl. In this work, therefore, it was Mmate variables and coherent structures (CSs) in turbulent
found that dependence @90 on block sizeb could be flows are two important problems of this kind considered
used in place of that for the coverage in block size selecin the paper. Subsampling simultaneous confidence band
tion. In Fig.6, for example, each blue dashed curve is basedSCB) for the trend in the time series in Fiyconfirms the
on pseudo realizations obtained from two different recordsPossibility of an increasing temperature trend, and subsam-
(I’l — 180Q p= 30) generated from modax(one record for pllng confidence interval (Cl) for the skewness of time series
each curve). By comparing the dashed curves with those i Fig. 2 confirms that the vertical velocity skewness is posi-
Fig. 5, one can see that the they indicate a range of blocKive, thus suggesting the presence of CSs in the flow - infer-
sizes { € (500,800)) appropriate for subsampling. Return ence unattainable by conventional statistical methods. Other
now to a real life example: the global temperature series intopics of intense development, where applying subsampling
Sect. 3.1. The solid red curve in Figwas computed from  should be advantageous, are extreme events and long-range
the time series in Figl in the same way as the dashed onesdependence (e.gNordman and Lahiri2005 Rust 2009
from model ©). Thenb = 600 was chosen as a suitable block Jach etal.2011), i.e., problems arising in analysis of heavy-
sizes and subsampling with= 600 was carried out, result- tailed and/or long-memory time series, where common Cls
ing in the SCB shown by the red dashed curves in Eig. based on asymptotic maximum likelihood fail to capture the
Calibration was then applied (based on 94 % SCB, accord!€al variability Kallache et al.2003.
ing to approximating modelj resulting in the SCB shown The new tool for the analysis of nonlinear time series
by the blue dashed curves. Similar to FHg.the difference  presented here is the construction of subsampling SCBs for
between the original and calibrated SCBs in this case is negtrends. Our previous work on subsampling (including a re-
ligible. sampling technique for selecting the optimal block size for
subsampling Cls — the most difficult practical problem in
subsampling shared by all blocking methods) focused on
equal-tailed Cls for parameters of nonlinear time series,
the skewness and kurtosis in particular, as they are closely

4 Conclusions

Nonlin. Processes Geophys., 18, 5344 2011 www.nonlin-processes-geophys.net/18/537/2011/
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related to CSs. Because subsampling SCBs for trends are derays to decide how much importance is reasonable to confer
veloped in this paper as extensionsgimetricCls (Eq.4), on estimated trends.

modifications in subsampling procedures proved necessary, Finally, the evolution and subsequent growth of CSs may
especially in the block size selection. The new implemen-represent an underlying physical mechanism that can lead
tation of the subsampling procedure that permits a straightto extreme events. Due to the incidence of CSs in tur-
forward extension to trends has also provided an opportupulent flows (indicated by non-Gaussian velocity skewness
nity to update the previous analyses of the vertical velocityand kurtosis), the tails of probability density functions be-
time series with that based on symmetric subsampling Clsome heavy, thus increasing the probability of extremes
and a longer record (of 8192 data points vs the record ofMcWwilliams, 2007, and long-term trends observed in me-
4096 used previously), and to make this paper self-containedeorological variables may alter conditions for the formation

Also, although almost all published work on bootstrap Cls of CSs, thus affecting the intensity and frequency of extreme
has focused on equal-tailed intervals, symmetric Cls are ofevents.

ten shorter and have better coverage accurkieyl,(1988.
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