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Abstract. A methodology is presented to understand the roleto the value of flow velocity and runoff intensity implies an

of the statistical self-similar topology of real river networks interesting connection between unit hydrograph theory and
on scaling, or power law, in peak flows for rainfall-runoff flow dynamics. Our results provide a reference framework
events. We created Monte Carlo generated sets of ensente study scaling exponents under more complex scenarios of
bles of 1000 random self-similar networks (RSNs) with ge- flow dynamics and runoff generation processes using ensem-
ometrically distributed interior and exterior generators hav-bles of RSNs.

ing parameterg; and pe, respectively. The parameter val-
ues were chosen to replicate the observed topology of real
river networks. We calculated flow hydrographs in each of
these networks by numerically solving the link-based masst
and momentum conservation equation under the assumption ] )
of constant flow velocity. From these simulated RSNs angSeveral theoretical anq observatlona! results have led to Fhe
hydrographs, the scaling exponeptaand¢ characterizing d_evelopment of a nonlinear geophysical theory of ﬂoodls in
power laws with respect to drainage area, and corresponddVer nétworks Gupta et al.2007). The central hypothesis
ing to the width functions and flow hydrographs respectively, of the theory stateg that soIgUons of coup!ed mass a'nd mo-
were estimated. We found that, in general> 8, which mentum_ co_nser\_/anon equ_atl_ons _under suitable physical pa-
supports a similar finding first reported for simulations in the F@Meterizations in a self-similar river network produce spa-
river network of the Walnut Gulch basin, Arizona. Theoret- U2l power laws, or scaling relations, between peak flows and
ical estimation of8 and¢ in RSN is a complex open prob- Qrainage area in the limit of Iar.ge area. Scaling in peak flows
lem. Therefore, using results for a simpler problem associS @" émergent property that is common to many nonlinear

ated with the expected width function and expected hydro-9€0Physical systemd.gvejoy et al, 2009. A central ob-

graph for an ensemble of RSNs, we give heuristic argumentéecnve of the theory, given a space-time rainfall field for a

for theoretical derivations of the scaling exponefité) and rainfall-runoff eyent, is to predict the.values of the intercept
#E) that depend on the Horton ratios for stream lengths andnd €xponent in the power law relation from the physics of
areas. These ratios in turn have a known dependence on tﬂgllslope-lmk runoff generation and runoff transport, and tegt
parameters of the geometric distributions of RSN generatorst 29ainst observed power law. The flood of June 2008 in

Good agreement was found between the analytically conjecEaStem lowa is the most recent example that supports the va-

tured values o8®) and¢® and the values estimated by lidity of the main hypothesis of the theory over four orders

the simulated ensembles of RSNs and hydrographs. The ir2f magnitude variation in drainage aréaL(pta et al.2010.

dependence of the scaling exponeit® ande with respect Testing the scaling hypothesis using direct observations re-
quires a large number of streamflow gauges in a river basin

. and data for multiple RF-RO events. Unfortunately, avail-
Correspondence tdR. Mantilla ability of such data sets is rather limited, which poses a great
BY (ricardo-mantilla@uiowa.edu) challenge for future development of the theory. In this paper,
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we take the first step towards developing a multi-step diag-A — oo, the peak flow obeys scaling, ma, (1) = c¢,Af,.

nostic framework to understand the behavior of the power-Here i, (¢) is a flow hydrograph. They also observed that
law parameters, which can be compared to observations fothe exponentp < 8. The above analysis was extended
developing suitable physical parameterizations. to the class of random self-similar networks (RSNs) with

Ogden and Dawd§2003 conducted the first study in the Bernoulli-distributed generatorsveitzer and Guptg42000
21km? Goodwin Creek experimental watershed (GCEW) introduced RSNs to represent self-similarity and randomness

and observed that the slopes and intercepts of the pealét)—hbsierved n reslsrlllver nSet\t/)vorkMentTtbde fltl al(.2t00|1) fzoouond
flow scaling, or power-law, relations vary from one event atg <f in s. Subsequentijfantilia et al. (2009

to the next. Furey and Gupt£2005 found that the event- simulated hydrographs in thg Walnut Gulph basin, Arizona
to-event variability in the slopes and intercepts of the peak-u?dler Ztgg sam de set dofSphys_lc_aI T\sstﬁmptlonlts Mﬁmab(éeth ¢
flow scaling relations is connected to rainfall-excess depthe al. (2001 ha used. Surprisingly, the resufts showed tha
and duration for storms. Building on this findingurey ¢ > . They conjectured that the qualitative different be-

and Guptz2007) developed a diagnostic framework to pre- havior between the two scaling exponents reflects the differ-
dict slopes and intercepts of peak flow scaling functions inénces between the interplay of aggregation and attenuation of

GCEW.Mantilla et al.(200§ demonstrated, for the 150 Km stream flow_s in a r<_aa| networl!_s/lantilla (2007 investigated .
Walnut Gulch basin in Arizona, that changes in the dynam-the generality of this result using an ensemble of RSNs. His

ics of runoff transport in the river network lead to changes!clndlngs supported that > §. Communication of this result

in the value of the scaling exponent. Recentiyanda- is a major objective of our Paper.

paka et al(2009 showed using numerical simulations in the RSNS are const'ructeq recursively from random generators,
1100 kn? Whitewater basin, Kansas how different aspects ofWh'Ch are essen_tlally_ simple ord_er-2 networks with a ran-
rainfall variability affect the scaling exponent. The results of dO(T tr_lun:_ber_of mtgrlobr ?odes/@ttze_r and dGuptta_ZOOQ.
these studies have already provided significant insights to ou’?‘ Istinction 1S made between Interior and exterior gener-
physical understanding of scaling in peak flows. However ators, and the probability distribution can be different for

the fact that these studies have been performed on specific irghese two types of generatorbréutman 2009. The class

dividual river networks leaves open key questions about theof RSN models exhibit important topological features of real

role of self-similar topology of a river network in determin- hetworks that other models, such as the random topology

ing the value of the exponent and intercept. We address thignOdel Shreve 1969, or optimal c_han_nel networksR(gon
issue here. etal, 1993, do not. These properties include the Horton law

of stream numbers\gitzer and Gupta2000, Hack’s law
Gupta et al (1999 first derived the scaling of peak flow (Troutman 2009, scaling properties of the width function

versus drainage area in a self-similar Peano channel network\eitzer and Gupta2001; Troutman 2005, and the power-
Their derivation was based on analysis of geometric propertaw tail probabilities of drainage areagejtzer et al, 2003.
ties of the network width function, which is defined to be Tokunaga mean self-similar networks exhibit many proper-
the number of channel links as a function of distance fromties of real networks, but do not include any statistical vari-
the outlet Rodiiguez-lturbe and Rinaldd997). Denoting  ability found in real networksNicConnell and Gupte2008.
W, (x) as the width function for a stream of Strahler order Building on an approach to estimate RSN generators for real
w, the scaling relationship with respect to the upstream connetworks thatTroutman (2005 introduced,Mantilla et al.
tributing areaA,, follows from the fractal structure of the (2010 carried out an extensive analysis to estimate and test
maximum contributing set and is given by maX,(x) =  the properties of RSN generators for 30 river basins in differ-
CﬁAE). Here, 8 andcg are constants that depend on the net-ent hydro-climatic regions of the United States. In all cases
work topology. Under the assumptions of, (i) spatially uni- it was found that the RSN generators could be modeled by a
form instantaneous inputs to the network, and (ii) movementgeometric probability distribution.
through the network at a uniform velocity without attenua- In this paper we simulate RSNs using geometric dis-
tion, the streamflow hydrograph at the outlet of any sub-basirtributed generators, and analyze the scaling properties of
will have the same shape as the width function for that subflow hydrographs that are obtained from solving mass and
basin. Therfore, the scaling behavior of peak flows in themomentum conservation equations in each netw@ipta
Peano network will be the same as that for the maximumet al, 2007. Our objective is to test i) > g holds under
of the width function. Troutman and Ove¢200]) general-  the assumption of constant flow velocity in space and time
ized these results to a wide class of deterministic self-similaras Mantilla et al. (2006 originally reported for the Walnut
networks. Menabde et al(2001) considered a more real- Gulch basin, Arizona. Where possible, we compare our nu-
istic physical situation by assuming that flow in a network merical results with the analytic expressions thedutman
is represented by a mass conservation equatBupi{a and (2005 obtained, which serves as benchmark for the accuracy
Waymirg 1998, and undergoes attenuation due to a changeof results from numerical simulations.
in a channel storage under uniform flow velocity. They found The rest of the paper is organized as follows. In S2et.
for the Peano and the Mandelbrot-Vicsek networks that, asletailed description of the RSN model and the process that is
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Fig. 1. (a) The populations of interior and exterior path-based generators. Generators are labeled by bold letters | (interior) and E (exterior)
followed by an integer that represents number of interior nodes in the genglgtdwo steps in the construction of an RSN indicating the
replacements made.

used to create the ensemble of river networks are presented.

In addition, the ensemble of flow hydrographs in RSNs that  0.52 | a)

form the basis of this study are presented in this section. In

Sect.3 we use results from some members of the ensembles 0.50 | ‘. 0’
to shed light on the results that were obtained for simulation .

in the Walnut Gulch river basin. Later, in Sedtwve present a <i . .o I
generalization of the results by analyzing the relation of ex- 0.48 1 . H e M
ponentsg and¢ on the full ensemble of RSNs. In Sect. 5 +* N o

we present some new analytical results of scaling properties 0.46 | * ..t

for RSNs and in Sect. 6 we test the validity of these results

on our ensemble of river networks and flow hydrographs. Fi- 0.44

nally in Sect.7 we present the conclusions of this work and

some areas of future research. 0.35 0.40 A 0.45

D

Fig. 2. (a)Parameter space determined by the estimated parameters

2 Generating RSN ensembles and flow routing pi and pe for generators sampled from different regions in the US.

RSNs are constructed by replacing, in an iterative fashion,

all the links of a network by randomly sampled generators

(Veitzer and Gupta2000. The process is initiated with a links and exterior generators constituting a different popula-
network that consists of only a single link, and this link is re- tion replace exterior links. Construction of RSNs thus re-
placed with a randomly sampled generator. Then the links irffuires specification of two probability distributions govern-
the resulting network are all replaced with randomly sampledind the random sampling of the different generator types, and
generators, and so on. Thus, at each step of the iteration pr@ll sampled generators are assumed to be mutually indepen-
cess, the branching structure of the network becomes moréent. Figurela illustrates the two populations of generators
complex. Each link replacement in the iterative process ist0 be used in this paper and Fitp illustrates two iterations
done in a manner that depends on whether the link to be reof the replacement process.

placed is interior or exterior, where exterior links are defined Mantilla et al. (2010 demonstrated that the probabil-
as those with no upstream connecting links. Generators fronity distribution of external and internal generators of real
one population, known as interior generators, replace interioriver networks follow geometric distributions given by
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Fig. 3. Width functions,W,,(x) and average width functioB[W,,(x)] (solid black line) for RSN with different ordep, and parameters
pi = 0.36 andpe = 0.48. The vertical axis (number of links at distancéom the outlet) has been rescaled by the facfy/Ra)® 1 and

the horizontal axis (distance from the outigthas been rescaled by the facR@_l. Rpa andRc are the Horton ratios of areas and lengths,
respectively.
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Fig. 4. Hydrographsh,,(t) and average hydrograpi’, (¢)] (solid black lines) for RSN with different order, and parameterg; = 0.36

and pe = 0.48. The vertical axis has been rescaled by the fa(dt@r/RA)‘“_l and the horizontal axis has been rescaled by the fdtgﬁrl,
with Ra andRc given by Eq. 0).

P(Ki=ki) = pi(1— pp)¥, ki > 0 for interior generators and Troutman(2009, building on the analyses and results of
P(Ke=ke) = pe(1— pe)*e1, ke > 1 for exterior generators, Veitzer and Guptg2000, has shown that, for the family
where the random variablg; is the number of interior nodes of RSNs with geometrically distributed interior and exterior
in interior generators and the random variakilgis the num-  generators with parameters and pe, the Horton ratios of
ber of interior nodes in exterior generators (see Ridor areas and lengthBa andRc, respectively, are given by,
node types). They found that the parametgrand pe are

not equal, but each is constant With respect to itgratiop stef, = Di +Pe, and Rc= i 1)

in the replacement process, indicating scale invariance in real DiPe Di

networks. The geometric parameters are observed to exhibi{lote that Eq. ) holds for the RSN model under the assump-

significant basin-to-basin variability (Fig). . . . . .
We simulated ensembles of 1000 RSNs for combinationst'on of constant hillslope areas or independent and identically

of pi and pe in the parameter space. A total of 35 combi- distributed random hillslope areagjtzer and Guptg2000.
nations of the parameters in the ranges [0.36,0.48] and Estimating scaling exponents requires sets of networks of
pe € [0.45,0.53] were selected for a total of 35,000 distinct dlﬁergnt orders. This can be achieved in two ways. ,(') by
topologies. A sampling interval of 0.2 was deemed suffi- creat_lng a large network of ordérand then sampling width
cient after performing several tests of sensitivity of topologi- functions W, (x) ?_‘ the end .Of the embedded. complete or-
cal scaling properties to the parametgrandpe. We arrived der streams, or (ii) by crgatlng net_works of ldlﬁerent orders
at the 1000 RSNs per combination by finding a balance be® = 1,2,....,©2 and sampling the width function at the out-

tween statistical accuracy of the estimations performed fmj?t of each ',nd“,”d,ual river netwo_r k.', We choose approach
the ensemble and computational limits to the number of nu i) because it eliminates the possibility of dependencies cre-

merical simulations that can be performed ated by the nested structure of a single large ofderet-
' work. In addition, it is easier to develop statistical tests

when the sample size is equal for different ordaretworks

Nonlin. Processes Geophys., 18, 4892 2011 www.nonlin-processes-geophys.net/18/489/2011/
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which are provided by approach (ii). Figudeshows the es- the scaling exponents as explained in detail in Sedturey
timated E[W,,(x)] (solid black line) for RSNs of different and Troutmarf2008 have suggested an improved estimation
orderw, with parameterg; = 0.36 andpe = 0.48. Figure3 technique for the Horton ratios involving geometric means
also shows a few of the sampled width functioig(x). rather than arithmetic means that is routinely used. However,
For each of the members of the ensemble of RSNs, wewve did not use this improved technique in our analysis so we
calculated the flow hydrograph produced by applying ancould compare our results wittdantilla et al.(2006, but it
instantaneous-uniform runoff event over the entire network.is used in Sect.
Flow hydrographs are obtained by numerically solving, for The estimated exponents exhibited a large degree of vari-
each link in the river network, the link based flow equation, ability amongst the individual networks in the ensemble. The
dq (1) average value of8 is 0.460 with a standard deviation of
o - K(g(®)[aR(t)+q1(t) +q2(t) —q@)] (2)  0.0067, which is close to the value of 0.48 thMntilla et al.

developed byGupta and Waymiré1998 andMenabde and (2006 obtained. Similarly, the average value tpiis 0.485
Sivapalan(2003), whereq(t) is the flow at timer, K () is with standard deviation of 0.0095, which is smaller than the

in general a non-linear function Qf([), a is the total hills- value of 0.55 inMantilla et al(2006 The hiStOgram for the
lope areaR(¢) is the runoff intensity coming from the hill-  Values calculated are shown in Fig.The range of the sim-
slopes, and.(r) andgz(¢) are flows coming from the up- ulated scaling exponents includes the values observed in the
stream tributaries when present. We assume that flow velocValnut Gulch basin. ,

ity is constant at all times, making (¢(1)) = v/ wherel Although the hypothesig > 8 holds for the average val-

is the link length enabde et al2007). We letv=1ms1 ues, it does not hold for every river network in the ensemble

I =300m anda = 0.1 kn? throughout the network. These (hat was analyzed. In Fig. plots comparings and¢ are

values are consistent with observed properties of real rive@VeN- It can be seen that the hypothesis § breaks down

networks Mantilla, 2007). R(¢) equals O for alk, and an for some of the networks. . )
initial conditiong (0)=1 3 s~L is imposed for all of the links ~ OUr analysis of the data indicates that the hypothgsis

in the network. Note that this initial condition is equivalent £ holds for approximately 700 of the 1000 networks in the

to the volume of water generated by a finite duration runoff €nSemble. The histogram of the difference is shown in&ig.
event that is applied instantaneously from the hillslope to the 1h€ results in this section provide a context to understand
nearest channel, for example a runoff intensity of 36 mrh h scaling of flows in a more generic family of RSNs tigan-

applied during 5 min or a runoff intensity of 180 mmhap- tilla et al. (2010 have identified. This knowledge is nec-
plied during 1 min. The stored water in the channel for the €SSary because only a handful of basins around the world
instantaneous event = aizs, wherea is the total hillslope are as heavily instrumented as the Walnut Gulch. Therefore,

area, is the runoff intensity and is the storm duration. Un- the understanding of these features can come from simula-

der the assumption that cross sectional area and flow dem?)ll(r)]nSSOl\rl:nlil}tlﬁg ]‘c'(")(ljkr)k '_?] thsee c?t(')cl)Lrj]tlor; ?gcthse ;Iorwat?gr??gr?r;
- - - . wi ion we focus ou i
are constant across the link we can wejte- 7S, and it fol- 9

. gl . how the two scaling exponents compare with each other, and
lows th?t’ ~ fav’ A sample of the hydrographs calculated is address issues regarding estimation of scaling exponents in
shown in FigA. simulated RSN topologies that are larger than order 6 of the
Walnut Gulch basin.

3 Interpreting simulation results in RSNs

corresponding to the Walnut Guich, AZ 4 Comparing two scaling exponents for peak flow

Our first objective is to use simulated ensembles of hydro- ~ Prediction on RSN ensembles

graphs in RSNs corresponding to the Walnut Gulch basin

and develop a framework that allows us to test the validity . .
of the results reported bylantilla et al.(2006. We used the scaling gxponentg gndqb that_are estimated for the set of
X ) RSNs with geometrically distributed generators and the cor-

techniques thaMantilla et al. (2010 explained to estimate . > i
the parameters of the geometric distributions for the frequen-reSpondmg flow hydrographs.  Specifically, we test the hy

. L . . lpothesis that the scaling peak flow exponent under constant
cies of the interior and the exterior generators in the Walnu Velocity routingg is larger than the scaling exponent of the
Gulch basin. We found that the two distinct geometric dis- Y 9 9 g exp

tributions have parameters — 0.345 andpe — 0.462. The peak of the width functio. As indicated in the introduction

results are shOV\I/Dn in Fig vﬁ\gre.confidenlég;térvalls for the our hypothesis is qualitatively different from results obtained

values ofp; and pe are alqso given in idealized fractal river networks and for a family of RSNs
1 e .

In order to test the hypothesis> 8 for this type of net- with Bernoulli-distributed generatorMgnabde et a]2001).
works we generated an ensemble of 1000 RSNs, and cal-

culated the two scaling exponents for each individual net-
work. Mantilla et al.(2006 used Horton ratios to calculate

The goal of this section is to present the analysis of two

www.nonlin-processes-geophys.net/18/489/2011/ Nonlin. Processes Geophys., 58248011
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4.1 The scaling exponeng

We use the ensemble of networks to obtain an estifiate

the parameteg defined by,

B =l0gRe/I0gRA

where,Rg is the Horton ratio for the maximum of the width
function ®, = max. W, (x). The Horton ratioRg is esti-
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Fig. 7. Histograms forg and ¢ for RSNs with parameter values
pi = 0.345 andpe = 0.462.

the E[log(®,,)] vs. stream ordes» following recommenda-
tions byFurey and Troutmaf008. It leads to a geometric
mean for the Horton ratio rather than the arithmetic mean
that is routinely used. The parameéy, has been studied by
Veitzer and Guptd2000 for RSNs and byMantilla et al.
(2009 for real networks as it has a direct bearing on the
scaling relation for peak flows. The random variaBlg is

of particular interest because it has been showrvéiyzer

mated as the linear least square regression slope betweemd Gupta2001]) to exhibit statistical self similarity (SSS);

Nonlin. Processes Geophys., 18, 4892 2011
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which means tha®,,/E[0,] 4 Ouw+1/E[O4+1]. This con-
dition is necessary to assert that méx, (x) = c,gAf) when Fig. 9. Fitted plane to values fof.
upstream aread, obey SSS. Figur® shows the field of
values estimated over the parameter space being considered
here that is taken frorMantilla et al.(2010. It is interest-  the range of parameters considered. Figifi® shows an in-
ing to note that the contours have a nearly vertical orienta-creasing value of the differenez’é—ﬁas a function oﬁ. In
tion, which means that a changepnhas a greater effect on the context of the Walnut Gulch basin, the observed differ-
B than pe. We conjecture that this feature comes from the enceg — 8 = 0.025 as discussed in the last section, which is
property that peak of the width functions are dominated bycomparable to the valué:— E: 0.03 shown in Figl12.
interior generators rather than exterior generators. SSSis also observed for rescaled peak flows (F3p’

In addition, Komogorov-Smirnov tests confirmed that

0,/E[0,] 2 7 for » > 4, where the distribution of does
not depend ow. FigurelOillustrates this property for RSNs
with parameterg; = 0.36 andpe = 0.48. The collapse of
the rescaled cumulative distributions of the random variabIeDe\,ekaing theoretical formulas for the exponegitand 8
©./E[0,] into a single common distribution follows from  remains an open problem. However, recent developments
scale independence (Figi0a). The same feature is demon- iy Troutman(2005 allow us to conjecture theoretical rela-
strated for rescaled basin areas/ E[A,] (Fig. 100). The  tjons for the exponents® and¢E) which are connected
convergence of the probability distribution of the quantity tg the scaling properties of the ensemble average width func-
A,/ E[A,] was proved analytically by/eitzer and Gupta  tion and hydrograph, respectively. The accuracy of the theo-
(2000 and the convergence result is also given by Trout-retical formulas is tested in Sect. 6 by comparing theoretical
man (2005). with estimated values from the ensembles of RSNs used in
this study.

5 A summary of conjectures regarding two theoretical
scaling exponents in RSN ensembles

4.2 The scaling exponen

) ) ) 5.1 On topologic network properties
Using the results from the numerical solutions of E2).We

calculate the peak flow for each member of the ensemble obefine

RSNs. These simulations are used to estimate the exponent (E)

¢ using the relation, ) _ 109Rg (®)
logRA

¢ =logRg/l0gRa (4) E) . , _

whereR," is the Horton ratio for maxE[W,,(x)] andRa is

whereR,, is the Horton ratio for peak flows. Heretofore the the Horton ration of areas. Helg, (x) is the number of links

e_stmator of the exponel.fjnt |s_IabeIed¢.. R.es:ults of this es- 1we changed the value of the intensity of the event and we found
timation are prgsented in Fig.1. Again it is to be noted that it does not have any effect on the value of the estimated expo-
that a change ip; has a greater effect of than pe Sug-  nents. Modifying the value of intensity is equivalent to rescaling the
gesting that peak flows are influenced more by the interiorgischarge axis by a constant. The same result was obtained when
generators than exterior generators. Comparing the resultge double the flow velocity value. Modifying the velocity value is

in Fig. 11 with those in Fig.9 it is observed thap > g for equivalent to rescaling the time axis by a constant.
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having distance to the outlet equalxito For RSNs, distance . . )
to the outlet of a given link is simply a count of the number of peak of the width function from the result for the cumulative

links between the downstream end of the given link and the/Vidth function remained open. In what follows we give a
outlet. Thus,8E) represents the scaling exponent describ-Neuristic argument to support the conjecture in . The
ing the power-law behavior of ma¥[W,,(x)] with respect simulation .results given in Seou: prowdEe further support
to drainage area. Note that this scaling exponent is define'at EQ. 6) is the correct expression f@*) for RSNs.

for the maximum of the ensemble average (expected) width 1routman(2009 proved that, for alk > 0,

function, yvhich is Qiﬁerent fr_om the maxima of individual RyE[J,(R2x)]— F(x) as w—> oo @)
random width functions considered so far.
Troutman (2009 presents theoretical results which sug- where
gest thai®) is given by Lx]
Jo(@) =" Wau(j) ®)
logRc ‘
E) =g == 6 =0
B 00 R (6) j

is the cumulative width function,x | denotes the greatest in-
whereRc andRa are the Horton ratios of channel length and teger less than or equal 19 and F is a scale-independent
area respectively. More precisely, the result prove@rout- function which is continuous and increasingvnand which
man(2005 gave scaling of the cumulative width function for tends to a finite value asgrows large. There are some tech-
RSNs, but a derivation of the scaling exponent in B f¢r nical restrictions on the generator distribution for EQ. to
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1.0 T T T deposited into the upstream end of the link. But the asymp-
' / totic results below remain essentially the same if the lateral
0.8 ] inflow is distributed over the length of the link. Let the time
distribution of rainfall excess for an event be described by a
0.6 —w=4 function R(¢), which has integral one, and let total volume of
w=5 rainfall excess for a link be denoted . Under the linear
047 w=6 ] flow model, it is assumed that the outflow from each link is
w=7 the convolution of the total upstream inflow to the link with
021 | ] a link response function, say(s; IT), wherell is a vector
0.0 L. / ‘ of properties such as length and hydraulic parameters associ-
ated with the link. We may think ¢f as a probability density
0 1 2 3 4 5 function of the arrival time at the downstream end of a link
of a unit parcel of water deposited instantaneously at the up-
X= Qw/E[Qw] stream end. The result is that the impulse response function
for a path beginning at any initiating (upstream) link and con-
Fig. 13. The collapse of the distribution of rescaled peak flows for sisting ofk connected links is thé-fold convolution of the
networks of different orders imply Statistical Self Similarity. individual link response functions. By linear superposition,
the response function for the entire network is obtained by
summing over all such initiating links in the network. In this
hold, butTroutman(2009 has shown that these restrictions gection we assume th@ll, R(1), and Sg are spatially con-
are satisfied for geometric generators. Equatigms(known  stant for all links in the network. This assumption allows us
as an “integral limit theorem” because it gives a result onyg collect terms in the sum over links in the network so that
the expected¢umulativewidth function. An important open  paths of a given length are weighted by the value of the width
problem is to obtain what is known as a corresponding “lo- fynction at that length. As we shall see below, constancy of
cal limit theorem™ on the expected width function itself. We 1y is consistent with the constant velocity assumption of this
conjecture that such a result would have the form paper.
(Rc/Ra)*EIWo(LRSx]))] — f(x) as w— oo (9) We n_ote herg several weII—knovx_/n spgcial cases. First,
translation routing would result ifl is a single elemenT’

The scaling on the left hand side is formally obtained by representing constant travel time through a link gni$ a
differentiating Eq. 7) with respect tax, although such an delta functiong(¢; 1) = g(¢;T) =8(t — T). Another com-
operation is not justified becaud# J,,(x)] is discontinuous mon model is the linear diffusion model for which the pa-
in x and therefore it is not differentiable. We would then rametedl consists of link lengtl, celerityC, and diffusivity
expect the maximum of the expected width function to obey D. In this case; is given by
the same scaling, or

P(X < X)

l 2
) STy — . — —(—Ct)=/4Dt

(Ro/Ra)”MaxE[We, ()] - const (10) 8D =g:l.C.D)=—"r—=5¢ (12)

This would then lead to Eq6) because area scales{g, Finally, for linear storage routing, for which simulation re-
implying sults are given in Sect, the link parametell consists of a

1 loaRe/IoaR single constant elemenk;, andg is defined to be the expo-

mjaxE[Ww(j)]~cons(Rj§) ~109Rc/logRa (11)  nential probability density function

Although a rigorous proof of Eqs9) and (L0) remains  g(s; 1) =g(+; K) = Ke X' (13)

open, the numerical results in Segtend support to Eq.6).
One important characteristic gfis the mean residence time
5.2 Onflows in a link, given by

In this section we give asymptotic results that hold for lin- _ 00
ear flow in a RSN. The linear flow model to be used in this ! Z/ tg(r; THdr
section is essentially the width function formulation of the
geomorphological instantaneous unit hydrograph (GIUH)For the three special casesis given byT, [/C, and YK,
(Rodiiguez-lturbe and Rinaldd 997, Sect. 7.7). Very sim-  respectively.

ilar linear modeling approaches, but which are grid-based For a randomly generated ordemetwork from the RSN
rather than link-based, are describedQlivera and Maid-  model, leth,(¢) be flow at the outlet and denote the width
ment(1999, Liu et al. (2003 andOlivera and Kokg2004). function by W,,(x), 0 <x < oo (the width function is zero
We shall assume here for simplicity that all rainfall excess isfor x larger than the topological mainstream length of the

(14)
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work instantaneous unit hydrograph(z) is given by

o [ T
Go() =) Wo(j)g,(t;T0) (15) 0.52 /
j=0 L
whereg; = gxgx*...xg is the (j 4+ 1)-fold convolution ofg 0.50 -
andh,, (¢) is given bySr(R *q,,)(¢). This method of express- Q @
ing flow in terms of the width function is given in a num- ? A

ber of publications in the context of GIUH (see for example 0.48f Qo ]

Mesa and Mifflin 1986 Marani et al, 1991, Rinaldo and @ © § é
Rodiiguez-Iturbe 1996 and Rodiiguez-lturbe and Rinaldo 0.46 - / (S}

1997, Eq. 7.112). Next, lev,(r) be the corresponding cu- L / 1 /
mulative flow, or

network). Then under our linear flow assumption, the net- ,B(E) — ¢(E)

0.38 0.40 0.42 0.44 0.46 0.48

t
V() = / he(T)dT (16) D
0
Using Eq. (L5) we can obtain a convergence result analo- Fig. 14. Theoretical values fopE) = ¢(E) as functions of RSN
gous to Eq. ) for cumulative flow; for every >0 parameters.
(SRR TLE[V,(RETx)] — F(x) as w— oo (17)

6 Estimation of two theoretical scaling exponents

hereF is th functi that the right i - .
whereF is the same function as that on the right in Ef). ( in RSN ensembles

The proof of this result is very much like that givenTrout-
man and Karlingef1988 for topologically random networks
and will not be repeated here.

We point out several interesting features of the result inpor every scales we estimate the maximum of the mean
Eq. (L7). First, the only property of that is of importance \iqth function: labeled'Z). Horton ratios have been shown

asymptotically is the mean residence time (If [ is link ;1,014 for this quantity in an asymptotic sendequtman
length, we may define velocity to he=1/z.) Secondly, the 2009 which implies that

form of the rainfall excess time distributioR(r) does not

enter into this result because letting the order of the networkg (£)

grow large makes this time distribution unimportant. Thirdly, % — Rgx) as w—>o0 (19)
and most important for this paper, the scaling with respect to O

orderw in Eq. (L7) is the same as that of the expected cumu-_, . N . A .
lative width function in Eq. 7). However, we note that the 1> result implies that estimates &) can be obtained

) ) . ~ () ;
result is again for cumulative hydrographs rather than hy-PY taking the ratio of the estimated,,” for networks with

drograph peaks, and further analysis would be necessary ti'9€®. Our largest simulated networks are of orgee 7.
obtain rigorously the result for peaks. Using an argumentWe found that the estimates &) were strongly biased

similar to that above for the width function, we conjecture Py small variations of the valugd!)”. In order to eliminate

6.1 The scaling exponeng®

that the scaling exponent for peaks would be this source of error we found that it is convenient to take
the average ratio for the four largest orders. Thus, we define
pB =1 logRe (18) Ié@uz) in terms of the average ratio given by,
logRA
_ _ X 18.[6®
and that this would hold exactly and generally for any linear Row == Z w+1 (20)
flow model under the restrictions imposed above. Simula- 34| 6P
tions in Sect4 indicate that Eq.18) does hold in the case of
linear storage routing. In a similar fashion we use Edg)to calculate3£). Fig-

Equation () provides closed analytic expressions to cal- ure15a shows the difference between the estimated values of
culate explicit formulas fog£) and¢(£) as a function of; the exponents and the theoretical valg€?), computed by
and pe. Applying the formulas to the values that we deter- Eq. (6) for some combinations g and pe in our parame-
mine to be our parameter space, produces the fields showter space. We have fitted a plane passing through all those
in Fig. 14. Notice that the contour lines are almost parallel points using linear regression (Figob), and calculated the
to each other, implying that a plane can closely approximatesrror with respect to the theoretical E48J (see Figl5c).
the functional relation between the exponefit®) andg(£) The average value of the differeng€”) — (&) is 0.0047,
and the RSN model parametegrsand pe over our domain. and the standard deviation is 3.0~4. This difference is
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not statistically significant different from zero (5% signif- B values. These differences are significant because the expo-
icance level). Figurd5c shows that the larger differences nentg has practical implication for flood predictionggjtzer
between the estimated and the theoretical exponents occand Gupta2001; Mantilla et al, 2006).

for larger values of8®) however this departure can be at-

tributed to the plane-fitting process since no systematic dif-6.2 The Scaling exponeng®

ferences are observed in Fiha. In addition, it is important

to recall that the theoretical result holds asymptotically and” fitted plane for the estimated quantities is shown in

match. defined in Sect5.2 with exponential link response function

in Eq. 13). Therefore, it is conjectured that an exact ex-

We find that the differencg — 8€) has mean 0.074 and pression for the exponent®) is given by Eq. {8). We can
standard deviation 5% 10~4. In addition we found that calculate the difference between the theoretical expression
the value of this difference exhibits a strong dependence omnd¢£) (Fig. 17b). The average differenag®) —¢(£) is
the estimated and theoretical exponest®) andg£). Fig-  —0.0031. The bias is similar to the one encountered for the
urel6a andl6b show that the largest deviations are observedparameters of the width function in the previous section.
for values of (&) and (£) near 0.3, while for values near  An interesting result is that the bias observed in estimated
0.5 the difference is closer to zero. Note that the largest descaling parameters of the max of the mean width function
viations are 8 times larger than the bias in estimation of theis the same as the one found for the scaling parameters of
scaling exponents. Also note from this figure that the over-the max of the mean hydrograph. The average value of the
all range of 3E) values is greater than the overall range of difference&) — &) is —0.0016 which is not statistically
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different from O with a 5 % significance level. Thisresultim-  Good agreement was found between the analytically con-
plies that the purely topologic exponefit?) is an accurate jectured values oB£) and ¢£) and the values estimated
surrogate for the exponeat:) which represents the dynam- by the generated RSNs and hydrographs. Good agreement
ical response of flows to runoff input in the network. was also found for other geomorphic characteristics such as
the scaling statistics of areas and SSS of maxima of width
function. These results lend support to the correctness of the
7 Conclusions conjectured expressions in Eq$) @nd (8). Our conclu-
sions apply to the parameter space establishddantilla
In order to understand the role of statistical self-similar topol- et al.(2010 for real networks.
ogy observed in real river networks on spatial scaling statis- It was found that the exponengs?) and¢ are different
tics of hydrographs, we created Monte Carlo generated enand thatp > ¢£). This difference seems to be a direct con-
sembles of 1000 RSNs with geometrically distributed inte- sequence of the differences observed betwgemd g£).
rior and exterior generators with parametgrsand pe, re- These differences in the exponents highlight the need to de-
spectively Mantilla et al, 2010. We calculated hydrographs velop analytic results for the exponemt@nd¢, which have
in each of these networks by numerically solving the link- direct bearing in flood prediction for individual event#gn-
based mass and momentum conservation Bquiider the tilla et al, 2008.
assumption of constant flow velocity. From these simulated The independence of the scaling exponept®) and ¢
networks and hydrographs the scaling paramegessnd ¢ with respect to the value of flow velocity and runoff inten-
were estimated. Results showed that, for RSNs with geometsity implies an interesting connection between unit hydro-
rically distributed generators, the scaling expongnt 8, graph theory and flow dynamics. These results make the
which supports the finding thaflantilla et al. (2006 first unit hydrograph theory fully consistent with the flow dy-
reported for the Walnut Gulch basin. However, the use ofnamics pertaining to constant velocity. Thus, a numerical
ensembles of RSNs enabled us to find that the valykeisfa ~ solution of the link equation of flow can be interpreted as
lower bound for the value of the exponentThis finding has  producing a family of GIUHs corresponding to the width
important implications for flood prediction in real networks function for each node in the network. Moreover, an av-
that are ungauged. erage GIUH that solely depends on network Strahler order
Theoretical estimation o and¢ in RSNs is a complex (e.g.Rinaldo and Rodguez-lturbe 1999 is insufficient to
mathematical problem that remains open. However, progresgescribe flow transport in a river network. This results pro-
has been made on a simpler problem which is the theoreticatide a reference framework to study scaling exponents under
derivation of the scaling exponent§?) and¢®) associated more complex scenarios of flow dynamidddntilla, 2007
with the expected width function and expected hydrograph.and runoff generation process&sifey and Gupte2007) us-
respectively. Using rigorous asymptotic scaling results thating ensembles of RSNs. It also highlights the importance of
Troutman (2005 obtained, we conjectured expressions for combining numerical solutions of the equations along with
the functional dependence gf£) and¢®) on the Horton  analytic developments in order to make progress on this com-
ratiosRc andRa. These ratios in turn have a known depen- plex mathematical and scientific problem.
dence on the parameters of the geometric distributipasd

Pe-
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Our results open several questions regarding the corredbupta, V. K., Castro, S. L., and Over, T. M.: On scaling exponents
estimation of the scaling exponents. As shown Fayey of spatial peak flows from rainfall and river network geometry, J.
and Troutman(2008 the estimation technique and pre-  Hydrol., 187, 81-104, 1996.
asymptotic effects can impact the correct estimation of theGupta, V. K., Troutman, B. M., and Dawdy, D. R.: Towards a Non-
scaling exponents from ensembles. Thus, all our conclusions linear Geophysical Theory of Flooq§ in River Networks: An
are subject to refinements as simulation of larger networks CVerView of 20 years of progress, in: Nonlinear Dynamics in
and larger ensembles become computationally possible, or Geosciences, edited by: Tsonis, A. A. and Elsner, J. B., Springer,

IVt Its b ilabl New York, NY, 121-151, 2007.
as new analytic results become available. Gupta, V. K., Mantilla, R., Troutman, B. M., Dawdy, D., and Kra-

jewski, W. F.: Generalizing a nonlinear geophysical flood the-
ory to medium-sized river networks, Geophys. Res. Lett., 37,
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. Liu, Y. B., Gebremeskel, S., Smedt, F. D., Hoffmann, L., and Pfister,
Notation L.: A diffusive transport approach for flow routing in GIS-based
. flood modeling, J. Hydrol., 283, 91-106, doi:10.1016/S0022-
A = Basin Area 1694(03)00242-7, 2003.
& = Strahler stream order Lovejoy, S., Agterberg, F., Carsteanu, A., Cheng, Q., Davidsen, J.,
Wo(x) = Width function of a stream of ordes Gaonac'h, H., Gupta, V., UHeureux, I., Liu, W., Morris, S. W.,
he(t) = Hydrograph of a stream of order Sharma, S., Shcherbakov, R., Tarquis, A., Turcotte, D., and Urit-
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Oow = maximum of hydrograph mai,, (¢) AGU, 90,d0i:10.1029/2009E0480003009.
B = Scaling exponent oE[®,,] with respect toA Mandapaka, P. V., Krajewski, W. F., Mantilla, R., and Gupta, V. K.:
b = Scaling exponent oE[Q,,] with respect to4 Dissecting the effect of rainfall variability on the statistical struc-
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» = maximum of mean hydrograph mai(A,,(t)] Mantilla, R.: Physical Basis of Statistical Scaling in Peak Flows and
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