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Abstract. Rank-Ordered Multifractal Analysis (ROMA), a of the sporadic mixing and/or nonlinear interactions of local-
technique capable of deciphering the multifractal characterized coherent structures (Chang et al., 2004; and references
istics of intermittent fluctuations, was originally applied to contained therein). An example of such structures, in the so-
the results of a magnetohydrodynamic (MHD) simulation. lar wind for instance, was suggested to be in the form of field-
Application of ROMA to measured fluctuations in the auro- aligned magnetic flux tubes of various sizes, convected by
ral zone, due to the dominant physical effects changing fromhe flow (Bruno et al., 2001). In the case of the auroral zone,
kinetic to MHD as the scale increases, requires an additionatoherent structures probably include nearly two-dimensional
level of rank-ordering in order to divide the domain of scales oblique potential structures, such as those generated in sim-
into regimes. An algorithm for the additional step in this ulations based on the reduced MHD formulation of the iner-
double rank-ordering technique is discussed, and is demortial Alfv én fluid equations (Seyler, 1990), along with other
strated in the application to the electric field fluctuations in small-scale kinetic coherent structures. In general, coherent
the auroral zone as an example. As a result of the doublstructures in space may also be in other forms such as dou-
rank-ordering, ROMA is able to take into account the nonlin- ble layers, ion holes, electron holes, current filaments, etc.
ear crossover behavior characterized by the multiple regimettermittent fluctuations of electromagnetic fields are gener-
of time scales by providing a scaling variable and a scalingated when those structures interact stochastically. Such sig-
function that are global to all the time scales. natures of the interactions are Doppler shifted when detected
in frames moving relative to the plasma. Spatial fluctuations
and spatial scales of intermittent turbulence appear as tem-
poral when recorded in time-series measurements by space-
craft. Hence, time series of intermittent fluctuations observed
Electromagnetic field fluctuations in space plasmas are of" Sﬁ ace plasmas _T_ﬁmam Ilr}formalltlt;) nhab_out the m_tera(tjcthr;]s
ten observed to be intermittent. Such has been the case, f(? t_e stru_ctures. € n;uhu rleicta ehavior aSSQC'?te : wit
instance, for the measured fields in the solar wind, magne: ' Intermittent nature of the fluctuations, in particufar, Is re-
tospheric cusp, plasma sheet and the auroral zone (Burlaggated to the different fractal dimensions of those interactions

1991; Bruno et al., 2001; Weygand et al., 2005; Tam et aI.,gt r\1/a\r/|i0l;si scales'i].ti 'Il'r;u;c,:[hthe gg'“rt% t;’ d?:alyfz%n::ijlufr?ctiil_
2005; Echim et al., 2007). The origin of intermittent fluc- ehavior 1s essential for the understa g of multiscaie

tuations in magnetized plasmas was interpreted as the resutﬁractlons in the turbulent medium.

1 Introduction

A recently developed technigue, known as Rank-Ordered
Multifractal Analysis (ROMA), has demonstrated its capa-

Correspondence tdS. W. Y. Tam bilities to decipher the multifractal characteristics in a tem-
BY (sunwytam@pssc.ncku.edu.tw) poral or spatial fluctuating medium. The technique was
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first proposed by Chang and Wu (2008), who applied it to For the traditional analysis, one calculates the structure func-
the spatial fluctuations extracted from the results of a two-tions of time scale and moment ordej > 0 as:

dimensional magnetohydrodynamic (MHD) simulation. The
method was later applied to time series measured in the so-

lar wind environment (Chang et al., 2008) as well as otherS‘I(f) =
solar-terrestrial environments (Chang et al., 2010). At the

spatial and temporal scales considered in those studies, tighere...) denotes averaging overOne then finds the frac-
fluctuations were primarily governed by the physics of MHD. dimensionz, of the moment ordey by looking for the
Recently, an extension of the ROMA technique has beerscajing behavior

applied to electric field fluctuations observed in the auro-

ral zone (Tam et al., 2010). Unlike the cases of the previ-Sq(t) ~7%. 3
ous ROMA studies, the observed fluctuations in the aurora
zone carried the signatures of both MHD and kinetic effects,
with the former effect dominating at large scales, the Iattergq =qi1, (4)
effect at small scales, and a crossover behavior at scales in

between. In other words, the different governing physicsa” the fractal properties of the fluctuations can be character-
divides the scales into different regimes. The extension ofized by a single numbes, meaning that the fluctuations are
the ROMA method, using a double rank-ordering technique ,monofractal. One may then scale the PDFs for differest

was designed to obtain global scaling properties over all theVith one scaling functiorP; and one power-law scaling pa-
regimes of tempora| or Spatia| scales. rameters = constant as follows (Chang et al., 1973; Hnat et

In Sect. 2, we review the ROMA technique applicable to al., 2002):
an individual regime of temporal or spatial scales. Our dis- p(|sx|, 1) = (v/70) " Py (18X1(z [t ™), (5)
cussion will focus on the similarities and differences between
this technique and the traditional structure function analysisvhere o is a reference time scale. Equation (5) im-
along with the one-parameter scaling of monofractals, anddlies a scale-invariant functional relation between
explain why ROMA has certain advantages over the tradi-P(18X1,7)(r /7o)’ and
tional method when analyzing multifractal fluctuations. In s
Sect. 3, we shall discuss in detail how ROMA can be system-Y =18X1(z/70) ", ®)
atically extended to analyze fluctuations featuring crossoveBy substituting Eqs. (5) and (6) into Eq. (2), one can show
behavior in the domain of temporal or spatial scales. We shalpat
demonstrate the extension of the ROMA technique in Sect. 4
by applying it to measured electric field fluctuations in the
aﬁroE:I >éor?e. Sq(1) = (v /70)" f YR (X) d¥ ~v%, ()

0

(ISX(T)I‘I):/|5X|qP(|5X|,f) dlsX|, &)
0

|For the special case wheggis proportional tay, i.e.

o0

which, from Eq. (3), gives
s=1{q /‘1' (8)

With the monofractal condition, Eq. (49,takes on the con-
The traditional structure function analysis combined with stant valuer;. For fluctuations that exhibit multifractal be-
the idea of single-parameter scaling is useful for describinghavior, Eqg. (4) is no longer true andcannot be a constant,
monofractal behavior. However, as we shall discuss belowthus invalidating the scaling relation Eq. (5).
the analysis becomes inadequate in the case of multifractals. For multifractal fluctuations, however, there may still be
The ROMA technique remedies such inadequacy. ROMAPortions of the PDFs for different's where Eq. (5) is valid
and the structure function analysis share the same initial step4ith a constant scaling exponentin which case such por-
in their applications to a time (or spatial) series. Given a timetions of the PDFs would share the same fractal behavior. The
series of a quantity(, both methods begin with the calcula- basic idea of ROMA is to rank order the domain of the PDFs
tion of the increment of the quantity over a prescribed timesuch that each rank can be scaled according to Eg. (5). In the
scaler: §X = X (t+1)— X (). One can then obtain the PDFs original application of the ROMA technique (Chang and Wu,
of the absolute value ofX at scaler, P(|8X|,t), with the 2008), the rank-ordering parameter was therefore chosen as
normalization condition:

2 ROMA and structure function analysis: similarities
and differences

Y =1[8X|(z/t0) ™. )
%® A scaling exponent was then determined for each rank. The
/P(|8X|,r) d|§X|=1 (1) function s(Y) can thus be considered as a spectrum of the
o scaling exponent varying over the different ranks. As a result
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of this rank-ordering, the PDFs for differeris can be scaled e e

with the scaling functionP(Y) and the power-law scaling 0 F O 32:
exponents(Y) as follows: i . Egs

10° " o9q=3
P(8X|,7)=(t/70) " Py(¥). (10) . 322
The methods of solving far(Y) and P;(Y) were detailed in 3 A R B
the literature (Chang and Wu, 2008; Tam et al., 2010; Wu T *
and Chang, 2011) and will not be repeated here. o Soa s T

w0’ 3 e . R . 3
3 ROMA with double rank-ordering E ‘

= 10" 3 N ¢ o o o E

3.1 Motivation 0 ., o .

10° £ ] L] E
For the application of ROMA to the electric field fluctuations 2 . . ]
observed by the SIERRA sounding rocket in the auroral zone al A e o 7
(Fig. 1 of Tam et al., 2010), however, there are reasons to be- i soe T et ]
lieve that the rank-ordering scheme based on Eq. (9) alone is O o © ]
not adequate enough to cover all the time scaleas dis- R
cussed in Section 1, the time series of the electric field fluc- wl o 5. O S
tuations measured by the rocket could be interpreted as spa- P 8 v
tial fluctuations, given that the rocket was moving relative to w.%% ¢ 1
the turbulent plasma. With the assumptions that a significant g
fraction of the fluctuations were electrostatic and transverse A o o

10

(Chang, 2001), and that the horizontal spéedf the rocket 10° 10° 10°

was much larger than that of the movements of the turbulent vme)

fluctuatlo'ns and the geomagnetlc f'e"?' was e'ssentlglly Ver'“'Fig. 1. Plots of S, (t) vs.t generated from measured electric field

cal, the time scales in the study and in the discussion be- fluctuations in the auroral zone at selected moment ayder

low may be viewed approximately as spatial scales U,

whereU ~1.5kmsL. With structures ranging in size from

kinetic to MHD scales in the auroral zone, the measured fluctwo ends of the time-scale range, we expect the fractal be-

tuations included a mixture of the effects due to the differenthavior of the fluctuations to Change Significant|y across the

governing physics. From the physical point of view, there isrange as well.

no particular reason why fluctuations due to the MHD and  The changing fractal behavior with the time scale mo-

kinetic effects, and a mixture of the two should be character+iyated us to introduce another level of rank-ordering for

izable by the same scaling exponent. ROMA, which involvest (Tam et al., 2010). The domain
To support the above argument, let us approach the probof time scale is to be divided into regimes, each of which to

lem from another perspective by examining Fig. 1, plots ofpe further examined with the original rank-ordering scheme

Sq(7) vs. T in logarithmic scales (referred to as the log-log of ROMA (see Sect. 2) to find a spectrum of the scaling

plots hereafter) generated from the electric field fluctuationsexponents(y). Hence,r is the first parameter to be rank-

in the auroral zone for a number of moment orgeat ime  ordered in this double rank-ordering ROMA scheme; each

scales ranging from 5 to 1280 ms. At the smaller time scalesyank at this level corresponds to a regime of time scales. The

the plot for any givery appears as a straight line, implying rank-ordering is based on how well the data points in the log-

a power-law relationship betweef) () andz. Whent in-  |og plots can be fitted with straight lines. Time scales that

creases to about 160 ms, some of the results start to deviatge fitted well together belong to the same regime. In other

from the straight lines, particularly those for moment order yords, the time scales within each regime is characterized by
q =2, indicating that the above power-law relationship startsa power-law relationship betweesp(r) andz.

to break down. Ag further increases to 320 ms and beyond,

it is clear from all the plots that the relation betweg(z) 3.2 Rank-ordering algorithm on time scales

andr is totally different from the power-law relationship ex-

hibited at the small scales. Based on Eg. (3), we can interpreto discuss the rank-ordering procedure involvingh more

the fractal dimensioy, as the slope of the plot Idf (7) vs. detail, let us use the notatiapnwith i =1,---,9 to represent
logz. The local slope at thus corresponds to the fractal di- respectively the nine time scales in our study, which range
mension at that time scale. As the local slopes of the plots ifrom 5 to 1280 ms and whose PDFs|8f| with E denoting
Fig. 1 change withr and become drastically different at the the measured electric field fluctuations are shown in Fig. 2.

www.nonlin-processes-geophys.net/18/405/2011/ Nonlin. Processes Geophys., 218449611
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We assume that each regime of time scales is continuous and (5, | /7
covers at least two of the;’s. The regimes are also as- 107 ¢ »
sumed to be contiguous, with the non-power law crossover £
. . . /
ranges between adjacent regimes being very narrow such 10t ]
that the changes across regimes are essentially characterized * g=25
by abruptly changing but piecewise continuous power-laws. R > >
. X . 10 10 10
The boundary between two adjacent regimes is taken to be at 7 (ms)

one of ther;’s, which is a common time scale that belongs
to both regimes. The rank-ordering procedure is based on _ »
applications of an algorithm that determines the upper limitF9- 3. Linear fitting of the log-log plot of§ (r) vs.z atg =2.5
of a regime, provided that the lower limit of the regime is based .on subsets: ofdatg pc?lnts that correspond Fo the following .tlm'e
given. The algorithm utilizes the idea that linear fitting of scales: (Top) solid |.red line: (20, 40 and 80_m§), dashed blue line:
. . . (10, 20 and 80 ms); dot-dashed magenta line: (5, 10 and 80 ms).
three of more data points in the log-log p_IOtS IS more accu'(Bottom) The data point at 320 ms is added to the subsets of the top
rate for the case where the's at those points are all from 56 represented by the corresponding line styles.
the same regime than in the scenario where they belong to
different regimes. This idea is illustrated in Fig. 3, whose
two panels show the log-log plot far = 2.5 along with a
few fitted straight lines for subsets of the data points. Onedetermine the domain of a regime, let us use the example of
can see, in particular, that the data points franto zs, cor- Regime 1, which is defined to be the regime of the smallest
responding to time scales from 5 to 80 ms, line up close tatime scales in our study. The lower limit of Regime 1 is set
a straight line, while the data points gt (t =320ms) or  attj. The regime must also include, but may or may not
larger clearly deviate from that line. Now if we try to fit a include more time scales. Hence, the upper limit of Regime 1
straight line through a subset of the first five data points, ads atz,, for somen > 2. Because the regime is continuous by
we do for three of the subsets to result in the three straightissumption, for any that satisfies >i > 1, the time scale
lines in the top panel, we can see that the discrepancy beg; must belong to the regime. To find what the value: aé,
tween the fitted values and the actual values ofSjogt the ~ we check consecutivg’s one at a time, starting witls in
7;'s that belong to the subset is small. In contrast, the corthe case of Regime 1, examining the average accuracy of the
responding discrepancy becomes larger, as shown in the bofitted straight lines in the log-log plots involving that specific
tom panel, when the fitting includes also the data point atr;, together with all the subsets of at least two smaller time
77, a point that clearly does not line up with those at smallerscales that are in the regime. If the average accuracy is too
7;'s. The contrast between the two scenarios suggests thdbw (i.e. the average discrepancy of the fitting, to be defined
the discrepancy discussed above can be utilized to determinigelow, is larger than an acceptable level), then the upper limit
whether a specifie; shares the same regime with other time of the regime would be;_1. On the contrary, if the average
scales. To explain how this idea is applied to our algorithm todiscrepancy of the fitting is within an acceptable level, then
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S. W. Y. Tam and T. Chang: Double rank-ordering technique of ROMA 409

the ; being examined would be added to the regime. We 12
would then move on to use the same procedure to examine
7;+1 and so on, until we find the upper limit of the regime. 1t
Because the upper limit of Regime 1 corresponds to the lower
limit of Regime 2, and so on, the algorithm can be readily ap- _z 08
plied to the next adjacent regime, eventually distinguishing )
the domain of all the regimes in terms of thes. 7 06

To complete the description of the rank-ordering algorithm N oal
on the time scales, we shall discuss how the average discrep-
ancy involving a particular; is defined for the purpose of 02l
checking whether the time scale belongs to a certain regime. g *
First of all, in any given log-log plot of, (7) vs., there are o0 5 x **’Z*W . .
nine data points corresponding to the nip's in our study. log, N
If one chooses a subset of three or more data points to fit a 2
straight line, the fitted values of I may not be exactly the 0.08 ‘ ‘ ‘ ‘ I
same as the actual values at the corresponding subget.of 0.07} -
Thus, there is a discrepancy associated with every such fitted 0.06 * xR
line. For our purpose to examine whether a particujdre- - __—

. . . . . L * ¥ 4

longs to a certain regime, we take into consideration all the > 0.05 e,
possible combinations of data points that incluglealong —  0.04f L k]
with at least two of the smaller time scales that are in the (g 0.03} ]
regime, and calculate an average discrepancy over the fited ~ . . * * :
lines of all such combinations at all the moment orgein 0.02} L
order to keep track of the data point combinations for presen- 0.01}
tation purpose, we find it convenient to use the binary form 0 ‘ ‘ ‘ ‘ ‘
of nature numbers. The binary digits, reading from the right, 0 1 2 3 4 5 6
would represent the order of thgs; a “1” in the digit would |092 N

indicate that the correspondingis included in the combi-

nation and a “0” means that it is not. The solid red line in fig. 4. (Top) (AS/S)|y vs. logN for every natural number

the top panel of Fig. 3, for instance, is determined by fitting 5, _ 29 hat represents a subset of three or mgre. (Bottom)

data points of the subset of time scaleg t4,75). The line  game as above but for < 26 only.

thus corresponds to the binary number 11100, which is the

natural numbenN = 28. Having quantified data point combi-

nations with the labeV, we now proceed with the mathemat- We would like to relateAy to the discrepancy from the struc-

ical formulations for finding the average discrepancy. Let theture function due to the fitting. The differential form associ-

equation of the line fitted for a subset of data points, repre-ated with Eq. (11) suggests the following approximation for

sented byv, at moment ordeg bey, =ay 4x+bn 4, Where  the average fractional difference between the values of the

x =logr and structure functions and the results of the fitting based on the
data point subset labeled:

v =logs,. (11)

=(In(10) (Ay)y- (14)
N

A
Suppose the number of data points in the subset;isPro- <T>
vided ny > 3, we take the discrepancy associated with the

linear fit line for a data point to be: The quantity in Eq. (14) constitutes one of the two require-

ments for adding a specific time scajdo a specific regime:
(AS/S)|, <0.1for all the data point subseds that are rel-
1 2 N . o .
YN g= n—Z[yj,q —(an.gxj+bng)]", (12)  evant to that specific step of examinimgin the algorithm.
N With this criterion, the structure functions for each subset of
7;'s within a regime deviate from the respective fitted lines
in the log-log plots by less than 10 % on average. If multiple

STUbSEt’ and; , =095, (z;) 'S the actual value of at t.he subsets of data points are relevant, then there is an addition
time scaler;. We then obtain the root-mean-square discrep- :
requirement o AS/S)_ <0.05, where

ancy over all the moment order for the subset of data points: T

A= {603, (13)

www.nonlin-processes-geophys.net/18/405/2011/ Nonlin. Processes Geophys., 18449611
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determination of the upper limit of Regime 1.
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Fig. 6. Rank-ordered spectra for the scaling exponent¥;) of
the four regimes, witti =1, 2, 3 and 4 corresponding to the regime
number. The extent of the horizontal lines indicates the ranggs in
over which the scaling exponestis obtained.

AS/S
a5y _azs O (15)
(T)r,- - Z nny '

ny>3

is the weighted average of the relevgmts /)|, with the

weighing factor being the number of points used in the lin- time scales ofr; or larger is added into consideration. In
ear fitting of the log-log plots. With the additional require- particular, it is clear that; does not belong to Regime 1,
ment, our study essentially aims for an average uncertaintyecause when it is added as the largest time scale for the
of 5% or less in the fitting of the log-log plots when we fitting (6 < log, N < 7), the correspondinQAS/SﬂN may
examine the possibilities of four or morg’s in the same  reach as high as 0.2. On the other hand, all the values of
regime. Such a stricter requirement in uncertainty is imposed(Ag/S)}N at log, N < 6 appear to be smaller than 0.1 in
because Eqg. (15) involves multiple subsets of data pointsthe plot. This is confirmed by the plot in the lower panel
which makes the concept of average uncertainty statisticallypf Fig. 4, which shows(AS/S)\N only at such a range of
more meaningful. log,N. When it comes to determining the upper limit of
Regime 1, as discussed earlier, the first time scale to ex-
amine ist3. But for 73 to be the largest time scale for the
fitting of three or more data points, there is only one possi-
bility, namely the subsdiry, 72, 73) corresponding tav =7.

We have applied the rank-ordering algorithm described inThus, forzs to be included in Regime 1, there is only one
Sect. 3 to the electric field fluctuations in the auroral zone, agiterion: (AS /) [N=7 =01, which is satisfied as shown in
shown in Fig. 1 of Tam et al. (2010). Below, we discuss how Fig: 4. The subsequent steps in the algorithm would be to ex-
to determine the domain of Regime 1 as an example. ThéMiners and, if necessarys andze. There are multiple sub-
top panel of Fig. 4 shows the results ()AS/S)|N for all sets of data pom'ts that would be relev'an.t to th.e procegiure of
subsets consisting of three or more data pointszive> 3. qhecklng these time scales. In fact, within a given regime of
The same results, but limited 16 < 64, is shown in the bot-  time scales, there aré'2' —m subsets of three or more data

tom panel. Note that a given, is the largest time scale in PoINts where the:-th smallest; is the largest time scale of

a subset of data points if and only if the corresponding |a-the subset. We have shown in Fig. 4 that the criterion based
bel N is in the range2"~1,2" —1]. Thus, to determine ©ON (AS/S)] does notexcludes, zs andzs from Regime 1.
whetherr,, belongs to Regime 1, the results in Fig. 4 with In Fig. 5, we show the results ¢S /S)  for these three
m—1<log,N <m are all that is relevant. We notice from time scales (40, 80 and 160 ms), obtained by applications of
the top panel of the figure that & increases,(AS/S)|N the averaging scheme in Eq. (15) to tH&=2 —m relevant

in general becomes significantly larger in each consecutivesubsets in the range of = [2"~1,2" — 1] with m =4, 5 and
range of N =[2"~1,2" —1] for m > 7 (log, N > 6), mean- 6, respectively. AiAS/S)T[_ is smaller than 0.05 for only,

ing that the approximation of a linear relationship in the log- and s, but notzg, the upper limit of Regime 1 would be at
log plots becomes increasingly inaccurate when each of thes, which corresponds to a time scale of 80 ms.

4 Results of ROMA application to the auroral zone
electric field

Nonlin. Processes Geophys., 18, 4054 2011 www.nonlin-processes-geophys.net/18/405/2011/
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Fig. 7. Scaling functionPy; (¥;) obtained from the PDF at each time scale of Reginweherei =1, 2, 3 and 4.

For Regime 2, it would then consist of at leastand multifractal characteristics of each regime separately (Tam
16. T0 check whetherz belongs to Regime 2, there is et al., 2010). The reference time scafgis taken to be the
only one relevant subset of data points, nameby s, 77), smallestr; of the regime. Figure 6 shows the results of the
corresponding tav = 112. We find that(AS/S)|N:112= scaling exponent; (Y;), where the subscript is added to
0.125, which is too large fot7, which corresponds to atime “s” and “Y” (see Eq. 9, for instance) to denote the regime
scale of 320ms, to be in the regime. Regime 2, thereforenumber. The variation of; as a function off; can reveal
ranges from 80 to 160ms. The results for Regime 2 pro-certain information about the fluctuations at the time scales
vide the lower limit of Regime 3 atg = 160ms. Apply- of the regime. For example, Tam et al. (2010) has pointed
ing the same rank-ordering procedure to Regime 3, we fincbut the similarity between; and the Hurst exponent; thus,
that (AS/S)|N:224: 0.274, whereV = 224 corresponds to  the persistency (anti-persistency) of the fluctuations is indi-
the subselts,17,78). The range of Regime 3 is thus de- cated bys; of values larger (smaller) than 0.5, following the
termined to be fronrg to 77, that is, from 160 to 320ms. classical demarcation for the Hurst exponent. In addition,
Thus, 7 is the lower limit of Regime 4, which also includes how fasts; changes witt¥; suggests how developed the tur-
tg. At this point, only oner; in our study remains unac- bulence is at the time scales of the regime. Based on these
counted for, namelyg = 1280 ms. To determine whether general indications by;, we can see from the top left panel
19 would belong to Regime 4, we only need to calculate of Fig. 6 that the fluctuations are persistent at the time scales
(AS/S)|N:448 for the subsetz7,tg,79). It turns out that of Regime 1. The persistency may be due to kinetic effects,
(AS/S) |N:448= 0.089, small enough forg to be incorpo-  Which are probably important in this regime of small scales.
rated into Regime 4. Hence, the auroral zone electric fieldAt small values ofY1, which correspond to small sizes of
fluctuations are rank-ordered into four different regimes in[$E|, the scaling exponeny; increases rapidly, an indica-
terms of the time scales from 5 to 1280 ms: Regime 1 fromtion of possible developing instabilities and turbulence. The
7~ 5 to 80 ms; Regime 2 from ~ 80 to 160 ms; Regime 3 fluctuations seem to settle down to a more stable and devel-
from ¢ ~ 160 to 320 ms; and Regime 4 for> 320 ms. oped turbulent state at larg&s, as the values of; seem

to become more and more slowly varying. Such interpreta-

For each of the regimes, we have applied the originaliions of the turbulent state based on the behavior ),

ROMA technique to rank order the domain 6|, the ab- iy particular, are consistent with the effects of rapidly grow-

solute value of the increment of the electric field that playsing |inear or nonlinear instabilities when the amplitudes of
the role of|§X| in the discussion of Sect. 2, to study the
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the turbulent fluctuations are small (corresponding to small N
Y1) but has smaller influence on the nearly stationary statisti-
cal processes (including such effects as nonlinear saturation
for large turbulent fluctuations (corresponding to laigé. 0
For Regime 25, exhibits fluctuations in the range around

0.5 at small values of>, as shown in the top right panel of

Fig. 6. Such fluctuating behavior is rather similar to that of -1
s1 at small values of1, except that the values fes are con- g
siderably lower. Thus, the developing turbulence seems to be,®

of a mixture of persistent and anti-persistent nature, probably ;42|
as a result of effects beyond the kinetic range starting to play

a non-negligible role at the scales of this regime. Yade-

comes larger, the values gf become more stable, indicative 107
of the turbulence settling down to a more stable and devel-

oped state, similar to the case for Regime 1. The apparen v
persistent nature of the fluctuations suggested by the value: 10"‘0 o5 : s 5 2‘5“** s
of so at largeY» is perhaps due to kinetic effects still being ' Y '

more dominant than those of larger scales. Regime 3 features

large fluctuations inz at smallYs (lower left panel of Fig. 6).  Fig. 8. Mapping of the PDF at the time scate= 160 ms using the
The significant decrease in the valuessgffrom 0.677 to  scaling exponent of Regime 1. Comparison with the same mapping
0.285, which covers the range Bf from 5 to 19, indicates for the PDFs at the time scales of Regime 1 shows that the PDF at
that the turbulence is highly unstable at the time scales of this60 ms does not collapse to the scaling function of Regime 1.
regime at those values &%. At largerYs, s3 seems to set-

tle at around 0.5 when the turbulence becomes more stable,

suggesting a mixture of persistent and anti-persistent fluctu- We have shown that application of ROMA to the four
ations similar to the case of Regime 2. However, the lowerregimes allows us to find the power-law scaling exponent
settling value of the scaling exponent in Regime 3 compared (¥;) and the scaling functioRy; (Y;) for each regime. The

with Regime 2 is probably due to the kinetic effects becom-scaling relation for the PDFs in thieth regime ( goes from

ing even less dominant with the increase in time scale. For to 4 in our case) is:

Regime 4, as shown in the bottom right panel of Fig. 6, there

is an increase in4 at small values ofr. After reaching P,»(|5E|,r)=(r/f,')*s"(y")Ps,- (|8E|(r/fi)*‘”(y")>, (16)

a peak value close to 0.54 then decreases monotonically

asY, increases further. The monotonically decreasing trendwheref; is the smallest time scale of theh regime and; is

of the rank-ordered spectrum and the anti-persistent naturéhe “scaled” parametric scaling variable implicitly provided
of the fluctuations are qualitatively similar to those obtainedby the equation:

for the solar wind (Chang et al., 2008) and MHD numerical

simulations (Chang and Wu, 2008). Thus, it is tempting toy; = 8E| (7 /%)
conjecture that in Regime 4, where the time scales are larger

compared with the other regimes, the fluctuations bear the'he four scaling variables as well as the scaled PDFs for
signatures of MHD turbulence. With the solutigY;), we i =1,2 3,4 are related due to the assumed piecewise contin-
have mapped the PDFs of the time scales in each regime a¢tous property across the contiguous regimes. To derive the
cording to Eq. (10). As shown in Fig. 7, the PDFs collapse relationship among the scaling variables, let us consider fluc-
quite well into the corresponding scaling functid; (Y;) tuations of an arbitrary magnitud&E| = Xo at an arbitrary

of the regime, particularly at values &f that are not too time scaler =t* in the (+1)-th regime. The fluctuations
large so that the samples are sufficient for the statistics to bgorrespond to a value af 1, which, according to Eq. (17),
meaningful. We should note that the scaling exponent of onds implicitly given by:

regime is generally not applicable to the time scales of other

regimes. For instance, if we map the PDF of a time scaleYi+1= Xo(t*/%i+1)
in Regime 2 using the scaling exponentY1), as shown in

Fig. 8 for r = 160 ms, the mapped PDF does not coIIapseBUt based on Eq. (17), the fluctuations would share the
into the scaling functiorP,1 (Y1) of Regime 1. This discrep- same value o1 with fluctuations of magnitud@E| =
ancy between the mapped PDF fo= 160 ms and those for  Xo(t* /%i+1) "**"** at the time scalé,1, which also be-
the time scales in Regime 1 justifies the necessity of our aptongs to the-th regime and thus corresponds to:

proach to rank order the time scales by regime.

—si(Yi) ) (17)

—si+1(Yi+1) ) (18)

Y; = Xo(t*/Fiy1) ) (54 /7)Y, (19)
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Fig. 9. (Top) The rank-ordered spectsa (solid black),so (dot-
ted red),s3 (dot-dashed blue), ang, (dashed green) as functions
of Ygiobar (Bottom) Global scaling functio®s1 (Ygiopa) Obtained
from the PDFs at all the time scales of the four regimes.

Equations (18) and (19) imply a recursion relation for the
scaling variables:

si(Yi)

Yip1=Yi(Ti41/%) (20)
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Applying Eg. (20) to the four time regimes, we find a global
scaling variabl&giopal across the four regimes:

Regime 1

/fl)*-n(h) —y
/7 Regime 2

1
—s52(Y2) (fZ fl)*fl(yl) A (‘Ez/fl)ﬂl(yl)

(24)

Yglobal= —s1(Y1)

7) 72" (3,/71) Regime 3
ISE| T/,L:4)*Y4(Y4) (fA 173) —s3(Y3) (f3/t~2)*A2(Y2) (fz/fl)*Yl(Yl)
= Ya(2a/53) "% (52/) 27 (52/7) M"Y Regime 4

Associated withYgona, Ps1 is the scaling function that is
global to all four regimes:

_ Yglobal

Ps1 (Yglobal)’ (25)
Equation (24) allows us to expressfor i =1,2,3,4 as a
function of Ygiopa, @s shown in the top panel of Fig. 9. From
the figure, we can clearly see that except for highly unsta-
ble turbulence, the fluctuations exhibit a generally decreas-
ing trend ofs; at givenYgopal asi increases from 1 to 4.
The fluctuations become increasingly anti-persistent as the
regimes cross over from kinetic to MHD. Based on the frac-
tal exponents;, P(|§E|,t) of all the time scales of the four
regimes can be mapped to collapse into one profile, namely
the global scaling functio®s1 (Ygiobal) @s shown in the bot-
tom panel of Fig. 9.

5 Summary

We have discussed how the original ROMA technique was
able to decipher the multifractal properties of temporal and
spatial fluctuations by building on the ideas of traditional
structure function analysis and one-parameter scaling for
monofractals. Extending the idea of ROMA a step fur-
ther by introducing an additional level of rank-ordering, we
have shown that the technique is applicable to fluctuations
that feature crossover behavior due to different governing
physics over the domain of time scales. Using the elec-
tric field fluctuations in the auroral zone as an example, we
have discussed an algorithm that enables us to separate the
time scales into regimes, each of which shown to follow its

To derive the relationship among the scaled PDFs, let us con@Wn power-law scaling. Those scaling behaviors are essen-

sider the time scale = 7; .1, which belongs to both thieth
and the {+1)-th regimes. The PDF at this time scale can

tial for the description of the crossover behavior over all the
regimes. And a global scaling variable and a global scal-

be scaled by the power law of either regime according toing function that characterize the transition over the regimes

Eq. (16):
PUSEL T = (5i41/7) " P (18E1 (B4a/7) " ")s (20)
P(I8E|,Ti+1) = Psi+1) (IBE]). (22)

Equations (21) and (22) together lead to the following recur-
sion relation for the scaled PDFs:

Puisn (BED = (71 /7)) P (1 (F40/7) ). (23)

www.nonlin-processes-geophys.net/18/405/2011/

can be obtained based on the scaling exponents of the in-
dividual regimes. The value of the global scaling variable
Ygiobal Changes within and across the time scales of different
regimes, and would serve as useful guidelines for theoreti-
cal studies of physical processes or effects that span multiple
regimes.
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