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Abstract. Rank-Ordered Multifractal Analysis (ROMA), a
technique capable of deciphering the multifractal character-
istics of intermittent fluctuations, was originally applied to
the results of a magnetohydrodynamic (MHD) simulation.
Application of ROMA to measured fluctuations in the auro-
ral zone, due to the dominant physical effects changing from
kinetic to MHD as the scale increases, requires an additional
level of rank-ordering in order to divide the domain of scales
into regimes. An algorithm for the additional step in this
double rank-ordering technique is discussed, and is demon-
strated in the application to the electric field fluctuations in
the auroral zone as an example. As a result of the double
rank-ordering, ROMA is able to take into account the nonlin-
ear crossover behavior characterized by the multiple regimes
of time scales by providing a scaling variable and a scaling
function that are global to all the time scales.

1 Introduction

Electromagnetic field fluctuations in space plasmas are of-
ten observed to be intermittent. Such has been the case, for
instance, for the measured fields in the solar wind, magne-
tospheric cusp, plasma sheet and the auroral zone (Burlaga,
1991; Bruno et al., 2001; Weygand et al., 2005; Tam et al.,
2005; Echim et al., 2007). The origin of intermittent fluc-
tuations in magnetized plasmas was interpreted as the result
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of the sporadic mixing and/or nonlinear interactions of local-
ized coherent structures (Chang et al., 2004; and references
contained therein). An example of such structures, in the so-
lar wind for instance, was suggested to be in the form of field-
aligned magnetic flux tubes of various sizes, convected by
the flow (Bruno et al., 2001). In the case of the auroral zone,
coherent structures probably include nearly two-dimensional
oblique potential structures, such as those generated in sim-
ulations based on the reduced MHD formulation of the iner-
tial Alfv én fluid equations (Seyler, 1990), along with other
small-scale kinetic coherent structures. In general, coherent
structures in space may also be in other forms such as dou-
ble layers, ion holes, electron holes, current filaments, etc.
Intermittent fluctuations of electromagnetic fields are gener-
ated when those structures interact stochastically. Such sig-
natures of the interactions are Doppler shifted when detected
in frames moving relative to the plasma. Spatial fluctuations
and spatial scales of intermittent turbulence appear as tem-
poral when recorded in time-series measurements by space-
craft. Hence, time series of intermittent fluctuations observed
in space plasmas contain information about the interactions
of the structures. The multifractal behavior associated with
the intermittent nature of the fluctuations, in particular, is re-
lated to the different fractal dimensions of those interactions
at various scales. Thus, the ability to analyze multifractal
behavior is essential for the understanding of multiscale in-
teractions in the turbulent medium.

A recently developed technique, known as Rank-Ordered
Multifractal Analysis (ROMA), has demonstrated its capa-
bilities to decipher the multifractal characteristics in a tem-
poral or spatial fluctuating medium. The technique was
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first proposed by Chang and Wu (2008), who applied it to
the spatial fluctuations extracted from the results of a two-
dimensional magnetohydrodynamic (MHD) simulation. The
method was later applied to time series measured in the so-
lar wind environment (Chang et al., 2008) as well as other
solar-terrestrial environments (Chang et al., 2010). At the
spatial and temporal scales considered in those studies, the
fluctuations were primarily governed by the physics of MHD.
Recently, an extension of the ROMA technique has been
applied to electric field fluctuations observed in the auro-
ral zone (Tam et al., 2010). Unlike the cases of the previ-
ous ROMA studies, the observed fluctuations in the auroral
zone carried the signatures of both MHD and kinetic effects,
with the former effect dominating at large scales, the latter
effect at small scales, and a crossover behavior at scales in
between. In other words, the different governing physics
divides the scales into different regimes. The extension of
the ROMA method, using a double rank-ordering technique,
was designed to obtain global scaling properties over all the
regimes of temporal or spatial scales.

In Sect. 2, we review the ROMA technique applicable to
an individual regime of temporal or spatial scales. Our dis-
cussion will focus on the similarities and differences between
this technique and the traditional structure function analysis
along with the one-parameter scaling of monofractals, and
explain why ROMA has certain advantages over the tradi-
tional method when analyzing multifractal fluctuations. In
Sect. 3, we shall discuss in detail how ROMA can be system-
atically extended to analyze fluctuations featuring crossover
behavior in the domain of temporal or spatial scales. We shall
demonstrate the extension of the ROMA technique in Sect. 4
by applying it to measured electric field fluctuations in the
auroral zone.

2 ROMA and structure function analysis: similarities
and differences

The traditional structure function analysis combined with
the idea of single-parameter scaling is useful for describing
monofractal behavior. However, as we shall discuss below,
the analysis becomes inadequate in the case of multifractals.
The ROMA technique remedies such inadequacy. ROMA
and the structure function analysis share the same initial steps
in their applications to a time (or spatial) series. Given a time
series of a quantityX, both methods begin with the calcula-
tion of the increment of the quantity over a prescribed time
scaleτ : δX ≡ X(t+τ)−X(t). One can then obtain the PDFs
of the absolute value ofδX at scaleτ , P(|δX|,τ ), with the
normalization condition:

∞∫
0

P (|δX|,τ ) d |δX| = 1. (1)

For the traditional analysis, one calculates the structure func-
tions of time scaleτ and moment orderq > 0 as:

Sq(τ ) ≡
〈
|δX(τ)|q

〉
=

∞∫
0

|δX|
qP (|δX|,τ ) d |δX|, (2)

where〈...〉 denotes averaging overt . One then finds the frac-
tal dimensionζq of the moment orderq by looking for the
scaling behavior

Sq(τ ) ∼ τ ζq . (3)

For the special case whereζq is proportional toq, i.e.

ζq = qζ1, (4)

all the fractal properties of the fluctuations can be character-
ized by a single numberζ1, meaning that the fluctuations are
monofractal. One may then scale the PDFs for differentτ ’s
with one scaling functionPs and one power-law scaling pa-
rameters = constant as follows (Chang et al., 1973; Hnat et
al., 2002):

P(|δX|,τ ) =
(
τ
/
τ0

)−s
Ps

(
|δX|(τ

/
τ0)

−s
)
, (5)

where τ0 is a reference time scale. Equation (5) im-
plies a scale-invariant functional relation between
P(|δX|,τ )

(
τ
/
τ0

)s and

Y = |δX|(τ
/
τ0)

−s, (6)

By substituting Eqs. (5) and (6) into Eq. (2), one can show
that

Sq(τ ) =
(
τ
/
τ0

)qs

∞∫
0

Y qPs (Y ) dY ∼ τ qs, (7)

which, from Eq. (3), gives

s = ζq

/
q. (8)

With the monofractal condition, Eq. (4),s takes on the con-
stant valueζ1. For fluctuations that exhibit multifractal be-
havior, Eq. (4) is no longer true ands cannot be a constant,
thus invalidating the scaling relation Eq. (5).

For multifractal fluctuations, however, there may still be
portions of the PDFs for differentτ ’s where Eq. (5) is valid
with a constant scaling exponents, in which case such por-
tions of the PDFs would share the same fractal behavior. The
basic idea of ROMA is to rank order the domain of the PDFs
such that each rank can be scaled according to Eq. (5). In the
original application of the ROMA technique (Chang and Wu,
2008), the rank-ordering parameter was therefore chosen as

Y = |δX|(τ/τ0)
−s(Y ). (9)

A scaling exponents was then determined for each rank. The
function s(Y ) can thus be considered as a spectrum of the
scaling exponent varying over the different ranks. As a result
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of this rank-ordering, the PDFs for differentτ ’s can be scaled
with the scaling functionPs(Y ) and the power-law scaling
exponents(Y ) as follows:

P(|δX|,τ )=
(
τ
/
τ0

)−s(Y )
Ps (Y ). (10)

The methods of solving fors(Y ) andPs(Y ) were detailed in
the literature (Chang and Wu, 2008; Tam et al., 2010; Wu
and Chang, 2011) and will not be repeated here.

3 ROMA with double rank-ordering

3.1 Motivation

For the application of ROMA to the electric field fluctuations
observed by the SIERRA sounding rocket in the auroral zone
(Fig. 1 of Tam et al., 2010), however, there are reasons to be-
lieve that the rank-ordering scheme based on Eq. (9) alone is
not adequate enough to cover all the time scalesτ . As dis-
cussed in Section 1, the time series of the electric field fluc-
tuations measured by the rocket could be interpreted as spa-
tial fluctuations, given that the rocket was moving relative to
the turbulent plasma. With the assumptions that a significant
fraction of the fluctuations were electrostatic and transverse
(Chang, 2001), and that the horizontal speedU of the rocket
was much larger than that of the movements of the turbulent
fluctuations and the geomagnetic field was essentially verti-
cal, the time scalesτ in the study and in the discussion be-
low may be viewed approximately as spatial scales1 ≈ Uτ ,
whereU ≈1.5 km s−1. With structures ranging in size from
kinetic to MHD scales in the auroral zone, the measured fluc-
tuations included a mixture of the effects due to the different
governing physics. From the physical point of view, there is
no particular reason why fluctuations due to the MHD and
kinetic effects, and a mixture of the two should be character-
izable by the same scaling exponent.

To support the above argument, let us approach the prob-
lem from another perspective by examining Fig. 1, plots of
Sq(τ ) vs. τ in logarithmic scales (referred to as the log-log
plots hereafter) generated from the electric field fluctuations
in the auroral zone for a number of moment orderq at time
scales ranging from 5 to 1280 ms. At the smaller time scales,
the plot for any givenq appears as a straight line, implying
a power-law relationship betweenSq(τ ) andτ . Whenτ in-
creases to about 160 ms, some of the results start to deviate
from the straight lines, particularly those for moment order
q ≤ 2, indicating that the above power-law relationship starts
to break down. Asτ further increases to 320 ms and beyond,
it is clear from all the plots that the relation betweenSq(τ )

andτ is totally different from the power-law relationship ex-
hibited at the small scales. Based on Eq. (3), we can interpret
the fractal dimensionζq as the slope of the plot logSq(τ ) vs.
logτ . The local slope atτ thus corresponds to the fractal di-
mension at that time scale. As the local slopes of the plots in
Fig. 1 change withτ and become drastically different at the

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

τ (ms)

S
q (

τ)

 

 
q = 0.5
q = 1
q = 1.5
q = 2
q = 2.5
q = 3
q = 3.5
q = 4
q = 4.5
q = 5

Fig. 1. Plots ofSq (τ ) vs. τ generated from measured electric field
fluctuations in the auroral zone at selected moment orderq.

two ends of the time-scale range, we expect the fractal be-
havior of the fluctuations to change significantly across the
range as well.

The changing fractal behavior with the time scale mo-
tivated us to introduce another level of rank-ordering for
ROMA, which involvesτ (Tam et al., 2010). The domain
of time scale is to be divided into regimes, each of which to
be further examined with the original rank-ordering scheme
of ROMA (see Sect. 2) to find a spectrum of the scaling
exponents(Y ). Hence,τ is the first parameter to be rank-
ordered in this double rank-ordering ROMA scheme; each
rank at this level corresponds to a regime of time scales. The
rank-ordering is based on how well the data points in the log-
log plots can be fitted with straight lines. Time scales that
are fitted well together belong to the same regime. In other
words, the time scales within each regime is characterized by
a power-law relationship betweenSq(τ ) andτ .

3.2 Rank-ordering algorithm on time scales

To discuss the rank-ordering procedure involvingτ in more
detail, let us use the notationτi with i = 1,···,9 to represent
respectively the nine time scales in our study, which range
from 5 to 1280 ms and whose PDFs of|δE| with E denoting
the measured electric field fluctuations are shown in Fig. 2.
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Fig. 2. P(|δE|,τ ) at nine different time scales varying fromτ = 5
to 1280 ms. The unit of|δE| is mV m−1.

We assume that each regime of time scales is continuous and
covers at least two of theτi ’s. The regimes are also as-
sumed to be contiguous, with the non-power law crossover
ranges between adjacent regimes being very narrow such
that the changes across regimes are essentially characterized
by abruptly changing but piecewise continuous power-laws.
The boundary between two adjacent regimes is taken to be at
one of theτi ’s, which is a common time scale that belongs
to both regimes. The rank-ordering procedure is based on
applications of an algorithm that determines the upper limit
of a regime, provided that the lower limit of the regime is
given. The algorithm utilizes the idea that linear fitting of
three of more data points in the log-log plots is more accu-
rate for the case where theτi ’s at those points are all from
the same regime than in the scenario where they belong to
different regimes. This idea is illustrated in Fig. 3, whose
two panels show the log-log plot forq = 2.5 along with a
few fitted straight lines for subsets of the data points. One
can see, in particular, that the data points fromτ1 to τ5, cor-
responding to time scales from 5 to 80 ms, line up close to
a straight line, while the data points atτ7 (τ = 320 ms) or
larger clearly deviate from that line. Now if we try to fit a
straight line through a subset of the first five data points, as
we do for three of the subsets to result in the three straight
lines in the top panel, we can see that the discrepancy be-
tween the fitted values and the actual values of logSq at the
τi ’s that belong to the subset is small. In contrast, the cor-
responding discrepancy becomes larger, as shown in the bot-
tom panel, when the fitting includes also the data point at
τ7, a point that clearly does not line up with those at smaller
τi ’s. The contrast between the two scenarios suggests that
the discrepancy discussed above can be utilized to determine
whether a specificτi shares the same regime with other time
scales. To explain how this idea is applied to our algorithm to
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Fig. 3. Linear fitting of the log-log plot ofSq (τ ) vs. τ at q = 2.5
based on subsets of data points that correspond to the following time
scales: (Top) solid red line: (20, 40 and 80 ms); dashed blue line:
(10, 20 and 80 ms); dot-dashed magenta line: (5, 10 and 80 ms).
(Bottom) The data point at 320 ms is added to the subsets of the top
panel, represented by the corresponding line styles.

determine the domain of a regime, let us use the example of
Regime 1, which is defined to be the regime of the smallest
time scales in our study. The lower limit of Regime 1 is set
at τ1. The regime must also includeτ2, but may or may not
include more time scales. Hence, the upper limit of Regime 1
is atτn, for somen ≥ 2. Because the regime is continuous by
assumption, for anyi that satisfiesn ≥ i ≥ 1, the time scale
τi must belong to the regime. To find what the value ofn is,
we check consecutiveτi ’s one at a time, starting withτ3 in
the case of Regime 1, examining the average accuracy of the
fitted straight lines in the log-log plots involving that specific
τi , together with all the subsets of at least two smaller time
scales that are in the regime. If the average accuracy is too
low (i.e. the average discrepancy of the fitting, to be defined
below, is larger than an acceptable level), then the upper limit
of the regime would beτi−1. On the contrary, if the average
discrepancy of the fitting is within an acceptable level, then
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the τi being examined would be added to the regime. We
would then move on to use the same procedure to examine
τi+1 and so on, until we find the upper limit of the regime.
Because the upper limit of Regime 1 corresponds to the lower
limit of Regime 2, and so on, the algorithm can be readily ap-
plied to the next adjacent regime, eventually distinguishing
the domain of all the regimes in terms of theτi ’s.

To complete the description of the rank-ordering algorithm
on the time scales, we shall discuss how the average discrep-
ancy involving a particularτi is defined for the purpose of
checking whether the time scale belongs to a certain regime.
First of all, in any given log-log plot ofSq(τ ) vs.τ , there are
nine data points corresponding to the nineτi ’s in our study.
If one chooses a subset of three or more data points to fit a
straight line, the fitted values of logSq may not be exactly the
same as the actual values at the corresponding subset ofτi ’s.
Thus, there is a discrepancy associated with every such fitted
line. For our purpose to examine whether a particularτi be-
longs to a certain regime, we take into consideration all the
possible combinations of data points that includeτi along
with at least two of the smaller time scales that are in the
regime, and calculate an average discrepancy over the fitted
lines of all such combinations at all the moment orderq. In
order to keep track of the data point combinations for presen-
tation purpose, we find it convenient to use the binary form
of nature numbers. The binary digits, reading from the right,
would represent the order of theτi ’s; a “1” in the digit would
indicate that the correspondingτi is included in the combi-
nation and a “0” means that it is not. The solid red line in
the top panel of Fig. 3, for instance, is determined by fitting
data points of the subset of time scales(τ3,τ4,τ5). The line
thus corresponds to the binary number 11100, which is the
natural numberN = 28. Having quantified data point combi-
nations with the labelN , we now proceed with the mathemat-
ical formulations for finding the average discrepancy. Let the
equation of the line fitted for a subset of data points, repre-
sented byN , at moment orderq beyq = aN,qx+bN,q , where
x = logτ and

yq = logSq . (11)

Suppose the number of data points in the subset isnN . Pro-
vided nN ≥ 3, we take the discrepancy associated with the
linear fit line for a data point to be:

(δy)N,q =

√
1

nN

∑
j

[
yj,q −(aN,qxj +bN,q)

]2
, (12)

where the summation is over all of thenN time scales in the
subset, andyj,q = logSq(τj ) is the actual value ofyq at the
time scaleτj . We then obtain the root-mean-square discrep-
ancy over all the moment order for the subset of data points:

(1y)N =

√〈
(δy)2

N,q

〉
q
. (13)
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N < 29 that represents a subset of three or moreτi ’s. (Bottom)
Same as above but forN < 26 only.

We would like to relate1y to the discrepancy from the struc-
ture function due to the fitting. The differential form associ-
ated with Eq. (11) suggests the following approximation for
the average fractional difference between the values of the
structure functions and the results of the fitting based on the
data point subset labeledN :(

1S

S

)∣∣∣∣
N

= (ln(10))(1y)N . (14)

The quantity in Eq. (14) constitutes one of the two require-
ments for adding a specific time scaleτi to a specific regime:(
1S

/
S
)∣∣

N
≤ 0.1 for all the data point subsetsN that are rel-

evant to that specific step of examiningτi in the algorithm.
With this criterion, the structure functions for each subset of
τi ’s within a regime deviate from the respective fitted lines
in the log-log plots by less than 10 % on average. If multiple
subsets of data points are relevant, then there is an addition
requirement of

(
1S

/
S
)
τi

≤ 0.05, where
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(
1S

S

)
τi

≡

∑
nN≥3

nN (1S
/
S)

∣∣
N∑

nN≥3
nN

, (15)

is the weighted average of the relevant
(
1S

/
S
)∣∣

N
with the

weighing factor being the number of points used in the lin-
ear fitting of the log-log plots. With the additional require-
ment, our study essentially aims for an average uncertainty
of 5 % or less in the fitting of the log-log plots when we
examine the possibilities of four or moreτi ’s in the same
regime. Such a stricter requirement in uncertainty is imposed
because Eq. (15) involves multiple subsets of data points,
which makes the concept of average uncertainty statistically
more meaningful.

4 Results of ROMA application to the auroral zone
electric field

We have applied the rank-ordering algorithm described in
Sect. 3 to the electric field fluctuations in the auroral zone, as
shown in Fig. 1 of Tam et al. (2010). Below, we discuss how
to determine the domain of Regime 1 as an example. The
top panel of Fig. 4 shows the results of

(
1S

/
S
)∣∣

N
for all

subsets consisting of three or more data points, i.e.nN ≥ 3.
The same results, but limited toN ≤ 64, is shown in the bot-
tom panel. Note that a givenτm is the largest time scale in
a subset of data points if and only if the corresponding la-
bel N is in the range[2m−1,2m

− 1]. Thus, to determine
whetherτm belongs to Regime 1, the results in Fig. 4 with
m−1≤ log2N < m are all that is relevant. We notice from
the top panel of the figure that asN increases,

(
1S

/
S
)∣∣

N
in general becomes significantly larger in each consecutive
range ofN = [2m−1,2m

−1] for m ≥ 7 (log2N ≥ 6), mean-
ing that the approximation of a linear relationship in the log-
log plots becomes increasingly inaccurate when each of the

Fig. 6. Rank-ordered spectra for the scaling exponentssi(Yi) of
the four regimes, withi =1, 2, 3 and 4 corresponding to the regime
number. The extent of the horizontal lines indicates the ranges inYi

over which the scaling exponentsi is obtained.

time scales ofτ7 or larger is added into consideration. In
particular, it is clear thatτ7 does not belong to Regime 1,
because when it is added as the largest time scale for the
fitting (6≤ log2N < 7), the corresponding

(
1S

/
S
)∣∣

N
may

reach as high as 0.2. On the other hand, all the values of(
1S

/
S
)∣∣

N
at log2N < 6 appear to be smaller than 0.1 in

the plot. This is confirmed by the plot in the lower panel
of Fig. 4, which shows

(
1S

/
S
)∣∣

N
only at such a range of

log2N . When it comes to determining the upper limit of
Regime 1, as discussed earlier, the first time scale to ex-
amine isτ3. But for τ3 to be the largest time scale for the
fitting of three or more data points, there is only one possi-
bility, namely the subset(τ1,τ2,τ3) corresponding toN = 7.
Thus, forτ3 to be included in Regime 1, there is only one
criterion:

(
1S

/
S
)∣∣

N=7 ≤ 0.1, which is satisfied as shown in
Fig. 4. The subsequent steps in the algorithm would be to ex-
amineτ4 and, if necessary,τ5 andτ6. There are multiple sub-
sets of data points that would be relevant to the procedure of
checking these time scales. In fact, within a given regime of
time scales, there are 2m−1

−m subsets of three or more data
points where them-th smallestτi is the largest time scale of
the subset. We have shown in Fig. 4 that the criterion based
on

(
1S

/
S
)∣∣

N
does not excludeτ4, τ5 andτ6 from Regime 1.

In Fig. 5, we show the results of
(
1S

/
S
)
τi

for these three
time scales (40, 80 and 160 ms), obtained by applications of
the averaging scheme in Eq. (15) to the 2m−1

−m relevant
subsets in the range ofN = [2m−1,2m

−1] with m = 4, 5 and
6, respectively. As

(
1S

/
S
)
τi

is smaller than 0.05 for onlyτ4

andτ5, but notτ6, the upper limit of Regime 1 would be at
τ5, which corresponds to a time scale of 80 ms.
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Fig. 7. Scaling functionPsi(Yi) obtained from the PDF at each time scale of Regimei, wherei =1, 2, 3 and 4.

For Regime 2, it would then consist of at leastτ5 and
τ6. To check whetherτ7 belongs to Regime 2, there is
only one relevant subset of data points, namely(τ5,τ6,τ7),
corresponding toN = 112. We find that

(
1S

/
S
)∣∣

N=112=

0.125, which is too large forτ7, which corresponds to a time
scale of 320 ms, to be in the regime. Regime 2, therefore,
ranges from 80 to 160 ms. The results for Regime 2 pro-
vide the lower limit of Regime 3 atτ6 = 160 ms. Apply-
ing the same rank-ordering procedure to Regime 3, we find
that

(
1S

/
S
)∣∣

N=224= 0.274, whereN = 224 corresponds to
the subset(τ6,τ7,τ8). The range of Regime 3 is thus de-
termined to be fromτ6 to τ7, that is, from 160 to 320 ms.
Thus,τ7 is the lower limit of Regime 4, which also includes
τ8. At this point, only oneτi in our study remains unac-
counted for, namelyτ9 = 1280 ms. To determine whether
τ9 would belong to Regime 4, we only need to calculate(
1S

/
S
)∣∣

N=448 for the subset(τ7,τ8,τ9). It turns out that(
1S

/
S
)∣∣

N=448= 0.089, small enough forτ9 to be incorpo-
rated into Regime 4. Hence, the auroral zone electric field
fluctuations are rank-ordered into four different regimes in
terms of the time scales from 5 to 1280 ms: Regime 1 from
τ ≈ 5 to 80 ms; Regime 2 fromτ ≈ 80 to 160 ms; Regime 3
from τ ≈ 160 to 320 ms; and Regime 4 forτ & 320 ms.

For each of the regimes, we have applied the original
ROMA technique to rank order the domain of|δE|, the ab-
solute value of the increment of the electric field that plays
the role of |δX| in the discussion of Sect. 2, to study the

multifractal characteristics of each regime separately (Tam
et al., 2010). The reference time scaleτ0 is taken to be the
smallestτi of the regime. Figure 6 shows the results of the
scaling exponentsi(Yi), where the subscripti is added to
“s” and “Y ” (see Eq. 9, for instance) to denote the regime
number. The variation ofsi as a function ofYi can reveal
certain information about the fluctuations at the time scales
of the regime. For example, Tam et al. (2010) has pointed
out the similarity betweensi and the Hurst exponent; thus,
the persistency (anti-persistency) of the fluctuations is indi-
cated bysi of values larger (smaller) than 0.5, following the
classical demarcation for the Hurst exponent. In addition,
how fastsi changes withYi suggests how developed the tur-
bulence is at the time scales of the regime. Based on these
general indications bysi , we can see from the top left panel
of Fig. 6 that the fluctuations are persistent at the time scales
of Regime 1. The persistency may be due to kinetic effects,
which are probably important in this regime of small scales.
At small values ofY1, which correspond to small sizes of
|δE|, the scaling exponents1 increases rapidly, an indica-
tion of possible developing instabilities and turbulence. The
fluctuations seem to settle down to a more stable and devel-
oped turbulent state at largerY1, as the values ofs1 seem
to become more and more slowly varying. Such interpreta-
tions of the turbulent state based on the behavior ofs1(Y1),
in particular, are consistent with the effects of rapidly grow-
ing linear or nonlinear instabilities when the amplitudes of
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the turbulent fluctuations are small (corresponding to small
Y1) but has smaller influence on the nearly stationary statisti-
cal processes (including such effects as nonlinear saturation)
for large turbulent fluctuations (corresponding to largeY1).
For Regime 2,s2 exhibits fluctuations in the range around
0.5 at small values ofY2, as shown in the top right panel of
Fig. 6. Such fluctuating behavior is rather similar to that of
s1 at small values ofY1, except that the values fors2 are con-
siderably lower. Thus, the developing turbulence seems to be
of a mixture of persistent and anti-persistent nature, probably
as a result of effects beyond the kinetic range starting to play
a non-negligible role at the scales of this regime. AsY2 be-
comes larger, the values ofs2 become more stable, indicative
of the turbulence settling down to a more stable and devel-
oped state, similar to the case for Regime 1. The apparent
persistent nature of the fluctuations suggested by the values
of s2 at largeY2 is perhaps due to kinetic effects still being
more dominant than those of larger scales. Regime 3 features
large fluctuations ins3 at smallY3 (lower left panel of Fig. 6).
The significant decrease in the values ofs3 from 0.677 to
0.285, which covers the range ofY3 from 5 to 19, indicates
that the turbulence is highly unstable at the time scales of this
regime at those values ofY3. At largerY3, s3 seems to set-
tle at around 0.5 when the turbulence becomes more stable,
suggesting a mixture of persistent and anti-persistent fluctu-
ations similar to the case of Regime 2. However, the lower
settling value of the scaling exponent in Regime 3 compared
with Regime 2 is probably due to the kinetic effects becom-
ing even less dominant with the increase in time scale. For
Regime 4, as shown in the bottom right panel of Fig. 6, there
is an increase ins4 at small values ofY4. After reaching
a peak value close to 0.5,s4 then decreases monotonically
asY4 increases further. The monotonically decreasing trend
of the rank-ordered spectrum and the anti-persistent nature
of the fluctuations are qualitatively similar to those obtained
for the solar wind (Chang et al., 2008) and MHD numerical
simulations (Chang and Wu, 2008). Thus, it is tempting to
conjecture that in Regime 4, where the time scales are larger
compared with the other regimes, the fluctuations bear the
signatures of MHD turbulence. With the solutionsi(Yi), we
have mapped the PDFs of the time scales in each regime ac-
cording to Eq. (10). As shown in Fig. 7, the PDFs collapse
quite well into the corresponding scaling functionPsi(Yi)

of the regime, particularly at values ofYi that are not too
large so that the samples are sufficient for the statistics to be
meaningful. We should note that the scaling exponent of one
regime is generally not applicable to the time scales of other
regimes. For instance, if we map the PDF of a time scale
in Regime 2 using the scaling exponents1(Y1), as shown in
Fig. 8 for τ = 160 ms, the mapped PDF does not collapse
into the scaling functionPs1(Y1) of Regime 1. This discrep-
ancy between the mapped PDF forτ = 160 ms and those for
the time scales in Regime 1 justifies the necessity of our ap-
proach to rank order the time scales by regime.

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Y
1

P
s1

(Y
1)

 

 

τ = 5 ms
τ = 10 ms
τ = 20 ms
τ = 40 ms
τ = 80 ms
τ = 160 ms

Fig. 8. Mapping of the PDF at the time scaleτ = 160 ms using the
scaling exponent of Regime 1. Comparison with the same mapping
for the PDFs at the time scales of Regime 1 shows that the PDF at
160 ms does not collapse to the scaling function of Regime 1.

We have shown that application of ROMA to the four
regimes allows us to find the power-law scaling exponent
si(Yi) and the scaling functionPsi(Yi) for each regimei. The
scaling relation for the PDFs in thei-th regime (i goes from
1 to 4 in our case) is:

Pi(|δE|,τ )=
(
τ
/
τ̃i

)−si (Yi )Psi

(
|δE|

(
τ
/
τ̃i

)−si (Yi )
)
, (16)

whereτ̃i is the smallest time scale of thei-th regime andYi is
the “scaled” parametric scaling variable implicitly provided
by the equation:

Yi = |δE|
(
τ
/
τ̃i

)−si (Yi ) . (17)

The four scaling variables as well as the scaled PDFs for
i = 1,2,3,4 are related due to the assumed piecewise contin-
uous property across the contiguous regimes. To derive the
relationship among the scaling variables, let us consider fluc-
tuations of an arbitrary magnitude|δE| = X0 at an arbitrary
time scaleτ = τ ∗ in the (i+1)-th regime. The fluctuations
correspond to a value ofYi+1, which, according to Eq. (17),
is implicitly given by:

Yi+1 = X0
(
τ ∗

/
τ̃i+1

)−si+1(Yi+1) . (18)

But based on Eq. (17), the fluctuations would share the
same value ofYi+1 with fluctuations of magnitude|δE| =

X0
(
τ ∗

/
τ̃i+1

)−si+1(Yi+1) at the time scalẽτi+1, which also be-
longs to thei-th regime and thus corresponds to:

Yi = X0
(
τ ∗

/
τ̃i+1

)−si+1(Yi+1)
(
τ̃i+1

/
τ̃i

)−si (Yi ) . (19)
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Fig. 9. (Top) The rank-ordered spectras1 (solid black),s2 (dot-
ted red),s3 (dot-dashed blue), ands4 (dashed green) as functions
of Yglobal. (Bottom) Global scaling functionPs1(Yglobal) obtained
from the PDFs at all the time scales of the four regimes.

Equations (18) and (19) imply a recursion relation for the
scaling variables:

Yi+1 = Yi

(
τ̃i+1

/
τ̃i

)si (Yi ) . (20)

To derive the relationship among the scaled PDFs, let us con-
sider the time scaleτ = τ̃i+1, which belongs to both thei-th
and the (i+1)-th regimes. The PDF at this time scale can
be scaled by the power law of either regime according to
Eq. (16):

P(|δE|,τ̃i+1) =
(
τ̃i+1

/
τ̃i

)−si (Yi )Psi

(
|δE|

(
τ̃i+1

/
τ̃i

)−si (Yi )
)
; (21)

P(|δE|,τ̃i+1) = Ps(i+1)(|δE|). (22)

Equations (21) and (22) together lead to the following recur-
sion relation for the scaled PDFs:

Ps(i+1)(|δE|) =
(
τ̃i+1

/
τ̃i

)−si (Yi )Psi

(
|δE|

(
τ̃i+1

/
τ̃i

)−si (Yi )
)
. (23)

Applying Eq. (20) to the four time regimes, we find a global
scaling variableYglobal across the four regimes:

Yglobal≡



|δE|
(
τ
/
τ̃1

)−s1(Y1)
= Y1 Regime 1

|δE|
(
τ
/
τ̃2

)−s2(Y2)
(
τ̃2

/
τ̃1

)−s1(Y1)
= Y2

(
τ̃2

/
τ̃1

)−s1(Y1) Regime 2

|δE|
(
τ
/
τ̃3

)−s3(Y3)
(
τ̃3

/
τ̃2

)−s2(Y2)
(
τ̃2

/
τ̃1

)−s1(Y1)

= Y3
(
τ̃3

/
τ̃2

)−s2(Y2)
(
τ̃2

/
τ̃1

)−s1(Y1) Regime 3

|δE|
(
τ
/
τ̃4

)−s4(Y4)
(
τ̃4

/
τ̃3

)−s3(Y3)
(
τ̃3

/
τ̃2

)−s2(Y2)
(
τ̃2

/
τ̃1

)−s1(Y1)

= Y4
(
τ̃4

/
τ̃3

)−s3(Y3)
(
τ̃3

/
τ̃2

)−s2(Y2)
(
τ̃2

/
τ̃1

)−s1(Y1) Regime 4

(24)

Associated withYglobal, Ps1 is the scaling function that is
global to all four regimes:

P(|δE|,τ )=
Yglobal

|δE|
Ps1

(
Yglobal

)
, (25)

Equation (24) allows us to expresssi for i = 1,2,3,4 as a
function ofYglobal, as shown in the top panel of Fig. 9. From
the figure, we can clearly see that except for highly unsta-
ble turbulence, the fluctuations exhibit a generally decreas-
ing trend ofsi at givenYglobal as i increases from 1 to 4.
The fluctuations become increasingly anti-persistent as the
regimes cross over from kinetic to MHD. Based on the frac-
tal exponentssi , P(|δE|,τ ) of all the time scales of the four
regimes can be mapped to collapse into one profile, namely
the global scaling functionPs1

(
Yglobal

)
as shown in the bot-

tom panel of Fig. 9.

5 Summary

We have discussed how the original ROMA technique was
able to decipher the multifractal properties of temporal and
spatial fluctuations by building on the ideas of traditional
structure function analysis and one-parameter scaling for
monofractals. Extending the idea of ROMA a step fur-
ther by introducing an additional level of rank-ordering, we
have shown that the technique is applicable to fluctuations
that feature crossover behavior due to different governing
physics over the domain of time scales. Using the elec-
tric field fluctuations in the auroral zone as an example, we
have discussed an algorithm that enables us to separate the
time scales into regimes, each of which shown to follow its
own power-law scaling. Those scaling behaviors are essen-
tial for the description of the crossover behavior over all the
regimes. And a global scaling variable and a global scal-
ing function that characterize the transition over the regimes
can be obtained based on the scaling exponents of the in-
dividual regimes. The value of the global scaling variable
Yglobal changes within and across the time scales of different
regimes, and would serve as useful guidelines for theoreti-
cal studies of physical processes or effects that span multiple
regimes.
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