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Abstract. Internal solitary waves are widely observed in
both the oceans and large lakes. They can be described by
a variety of mathematical theories, covering the full spec-
trum from first order asymptotic theory (i.e. Korteweg-de
Vries, or KdV, theory), through higher order extensions
of weakly nonlinear-weakly nonhydrostatic theory, to fully
nonlinear-weakly nonhydrostatic theories and finally exact
theory based on the Dubreil-Jacotin-Long (DJL) equation
that is formally equivalent to the full set of Euler equations.
We discuss how spectral and pseudospectral methods allow
for the computation of novel phenomena in both approximate
and exact theories. In particular we construct markedly dif-
ferent density profiles for which the coefficients in the KdV
theory are very nearly identical. These two density profiles
yield qualitatively different behaviour for both exact, or fully
nonlinear, waves computed using the DJL equation and in
dynamic simulations of the time dependent Euler equations.
For exact, DJL, theory we compute exact solitary waves with
two-scales, or so-called double-humped waves.

1 Introduction

Internal solitary-like waves (henceforth ISWs) are a com-
monly observed feature of many natural bodies of water in-
cluding both the deep and coastal oceans as well as large
lakes (Bogucki et al., 1997; Hosegood and van Haren, 2004;
Bogucki et al., 2005; Carter et al., 2005; Moum and Smyth,
2006; Moum et al., 2007). Being both nonhydrostatic and
finite amplitude, naturally occurring ISWs cannot be accu-
rately represented by hydrostatic numerical models (includ-
ing all models presently used for global ocean dynamics
and climate simulations) or linear wave theories. ISWs can

Correspondence to:M. Dunphy
(mdunphy@math.uwaterloo.ca)

be described mathematically by both weakly nonlinear (see
the reviews by Grimshaw, 1997 and Helfrich and Melville,
2006) and exact theories (Turkington et al., 1991). While
observed waves often lie outside its formal domain of appli-
cability, weakly nonlinear theory is commonly used to inter-
pret field measurements (Moum and Smyth, 2006; Trevor-
row, 1998). ISWs induce currents throughout the water col-
umn and hence have implications for physical processes such
as small scale mixing and sediment resuspension, as well as
chemical and biological transport. Hence, the understand-
ing of their roles in physical processes, and the knowledge
of appropriate mathematical models for a given process, are
important first steps in constructing suitable parametrizations
of the effects of these waves in larger scale models.

The various eigenvalue and boundary value problems in
the theoretical description of ISWs, as well as the integral ex-
pressions used to obtain the coefficients in model wave equa-
tions describing their horizontal propagation, can be com-
puted by a variety of techniques. In this article we describe
the spectral and pseudo-spectral approaches, which yield
highly accurate results at moderate grid resolutions. More-
over this approach can be used to rapidly search parameter
space and thus test various hypotheses. We illustrate how the
accuracy of the spectral approach can yield results that are
essentially impossible to compute using low-order (e.g. finite
difference methods) for both approximate and exact theory.
Spectral methods have been used to solve the nonlinear wave
equations of weakly nonlinear theory for ISWs in the past
(e.g. Grimshaw and Smyth, 1986), building on the seminal
work of Fornberg and Whitham (1978).

For leading order (i.e. KdV) weakly nonlinear theory
we demonstrate that two markedly different density profiles
yield coefficients that are essentially identical, as far as the
KdV theory is concerned. We demonstrate that in these
cases, exact solitary waves have a qualitatively different up-
per bound for the two stratifications, with only one of the
two yielding wave overturning with the possible formation of
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trapped cores. We subsequently confirm that the fully non-
linear theory result is consistent with time dependent simu-
lations of wave formation over isolated topography. In the
Appendix we discuss the relation of the fully nonlinear the-
ory to the weakly nonlinear theory with quadratic nonlinear-
ity that leads to the Gardner equation (reviewed in Helfrich
and Melville, 2006 and Grimshaw et al., 2007).

For fully nonlinear theory, we extend the results of Lamb
and Wan (1998) to explicitly construct exact solitary waves
with multiple length scales, or so-called double-humped soli-
tary waves. Double-humped solitary waves have been con-
sidered from an asymptotic point of view in the recent ar-
ticle by Makarenko et al. (2009) as well as in the Russian
language literature (Borisov and Derzho, 1990 and several
papers discussed in Makarenko et al., 2009). In the context
of multi-layer (as opposed to continuously stratified) fluids
double-humped waves are similar to limiting solitary waves
with overhangs (see Rusas and Grue, 2002 and the references
therein), though we are not aware of an analogue for contin-
uously stratified fluids (possibly because most DJL theory
makes the Boussinesq approximation and hence restricts the
magnitude of the density change). For both case studies we
discuss why spectral methods are vital to carry out the pre-
sented computations.

2 Descriptions of ISWs

We consider a nonrotating, incompressible, inviscid fluid un-
der the Boussinesq and rigid lid approximations in a fixed
frame of reference. The origin is found at the ocean surface,
the x-axis runs parallel to the flat ocean surface and the z-
axis points upward (̂k is the upward pointing unit vector).
The governing equations read,

∂u

∂t
+u ·∇u = −∇P −ρgk̂, (1)

∇ ·u = 0, (2)
∂ρ

∂t
+u ·∇ρ = 0, (3)

where we have divided the momentum Eq. (1) by the con-
stant reference densityρ0 and absorbed the constant into the
pressure,P , as is conventional. Throughout, we assume the
ocean bottom is flat, found atz= −H , and that the fluid mo-
tion is two-dimensional with no background current (this is
not necessary, but it does simplify some of the algebra in
what follows). The incompressibility of the fluid implies that
there exists a streamfunction,ψ so that(u,w)= (ψz,−ψx)

where subscripts denote partial derivatives.
If one looks for traveling waves of permanent form and

switches into a frame moving with the unknown wave speed,
the Euler equations can be reduced to a single equation (a
nonlinear, elliptic, eigenvalue problem) for the isopycnal dis-
placement,η(x,z). Denoting the far upstream, or back-
ground density as̄ρ(z) we write the density equation as
ρ = ρ̄(z−η). Some algebra (Turkington et al., 1991) then

yields the Dubreil-Jacotin-Long equation

∇
2η+

N2(z−η)

c2
η = 0, (4)

η = 0 atz= 0,−H (5)

η = 0 asx−→ ∞, (6)

where

N2(z)= −g
dρ̄(z)

dz
, (7)

is the definition of the buoyancy frequency squared (the ref-
erence density,ρ0, has been scaled out) and the propagation
speed,c, is to be determined as part of the solution. Once
η andc are known, the wave-induced velocities can be com-
puted from the relationψ = cη. Unless the background den-
sity profile is linear (i.e.N2(z) is constant), to the best of our
knowledge, there are no explicit solutions of the DJL equa-
tion.

Weakly nonlinear theory (henceforth WNL), following the
original derivation of Benney (1966), albeit in the notation of
Lamb and Yan (1996) (also see this latter article for details of
the derivation), considers an expansion in two small parame-
ters,ε for amplitude andµ for the square of the aspect ratio.
The first order, mode-1 streamfunction is given by

ψ(x,z,t)=B(x,t)φ(z), (8)

where

φzz+
N2(z)

c2
lw

φ = 0, (9)

φ(−H)= φ(0) = 0, (10)

and

Bt = −clwBx+2r10clwBBx+r01Bxxx . (11)

The latter is the well known KdV equation with solitary wave
solutions given by

B(x,t) = −b0sech2
(
x−ct

λ

)
, (12)

c = clw

(
1+

2

3
r10b0

)
, (13)

b0λ
2

= −6
r01

clwr10
. (14)

It can be noted that the solitary wave properties (propagation
speed,c, and half-width,λ) depend not only on the wave
amplitudeb0 and the linear longwave speedclw, but also the
so-called nonlinearity (r10) and dispersion (r01) parameters.
These are given implicitly from the background density pro-
file through the relations

E =

∫ 0

−H

(φ′(z))2dz, (15)

r10 = −
3

4

∫ 0
−H
(φ′(z))3dz

E
, (16)

r01 = −
clw

2

∫ 0
−H
(φ(z))2dz

E
. (17)
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Note that KdV theory does not provide an error bound. Fur-
thermore, it yields an amplitude at which waves break for
any stratification, including those for which solutions of the
DJL equation broaden and reach the limit of a flat centered
solitary wave well below breaking.

3 Numerical methods

The linear eigenvalue problem used for WNL theory is
solved using a Chebyshev discretization and the standard, di-
rect eigenvalue solver in MATLAB (Weideman et al., 2000).
The necessary integrations used to compute Eqs. (16, 17)
are carried out using Clenshaw-Curtis quadrature (Trefethen,
2000).

The DJL equation is solved iteratively on the domain
0≤ x ≤L, −H ≤ z≤ 0, following the procedure described
in (Turkington et al., 1991), with the initial guess obtained
from WNL theory andA, the scaled available potential en-
ergy held fixed. The next iteration (given the current iteration
ηk andck) is computed as follows:

1. Solve the Poisson problem

∇
2νk = −λkS(z,ηk), (18)

whereλk =
gH

ck
2 , and

S(z,η)= −
ρ̄′(z−η)η

H
. (19)

2. Computeλk+1 by

λk+1
=

max

[
0,
A−F(ηk)+

∫
D

∫
S(ηk)ηkdxdz∫

D

∫
S(ηk)νkdxdz

]
, (20)

where

F(η)=

∫ ∫
D

f (z,η)dxdz, (21)

and

f (z,η)=

∫ η

0
[ρ̄(z−η)− ρ̄(z−ξ)]dξ. (22)

3. Define the new estimate of isopycnal displacement by
ηk+1 according to

ηk+1
=
λk+1

λk
νk, (23)

and the new estimate of the wave propagation speed ac-
cording to

ck+1
=

√
gH

λk+1
. (24)

This procedure is repeated until convergence criteria are met.
The efficiency and accuracy of the solution procedure is thus
determined by how accurately the multiple Poisson solves
in step 1 can be carried out, and the integrals in step 2 can
be computed. Note that neither the wave amplitude, nor the
wave propagation speed are specified. Instead, the kinetic
energy of the disturbance is minimized under the constraint
that the available potential energy is held fixed.

We have discretized the Laplacian in Eq. (18) using second
order finite differences, as well as Chebyshev pseudospectral
and Fourier spectral methods. For the Chebyshev and finite
difference cases, we have solved the resulting matrix prob-
lem problem employing GMRES with various precondition-
ing strategies. For moderate sized problems an incomplete
LU preconditioner worked well, though this required consid-
erable storage overhead for larger grids. Finite differences
are thus an impractical strategy for problems requiring re-
peated solution with high accuracy. A sine transform based
solver, on the other hand, allows for spectral accuracy even
using moderate grids, and scales well for larger grids as it
does not require any explicit matrix construction. It further
allows for a simple and effective refinement strategy in which
the solution is iterated to convergence and then the grid res-
olution is doubled. The zero-padded Fourier transform of
the coarse solution is employed to initialize the fine solution,
which is subsequently iterated to convergence. Finally, con-
siderable optimization of the FFT algorithm is available, for
example as implemented in MATLAB, allowing the solver to
take advantage of built-in parallelization strategies.

It is possible to test the scalability of the solution of the al-
gorithm in various ways. After some experimentation, we
have settled on using the change in predicted propagation
speed,c, as the number of degrees of freedom is increased.
This is effectively a Cauchy criterion for convergence. Fig-
ure 1 shows a comparison of second order finite difference,
Chebyshev pseudospectral and Fourier sine transform meth-
ods. It can be seen that both the Chebyshev and Fourier
spectral methods reach values of|cN −cN−1|< 10−6 by the
time N reaches 3000. In contrast, the second order finite
difference scheme does not reach this level untilN ≈ 105.
The Chebyshev pseudospectral technique, which requires
full differentiation matrices, stops being competitive with the
Fourier sine transform (which does not require matrices to be
constructed) aroundN = 104 and hence only the Fourier sine
transform is used for largerN . A value of |cN − cN−1|<

10−10 is readily achieved forN > 2×104. The optimized
FFT algorithm also leads to improvements in timing. For ex-
ample, choosing an accuracy level of|cN − cN−1| of 10−7,
the sine based method required 4 s to iterate to convergence,
the Chebyshev method 20 s and the finite-difference method
58 s.
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Fig. 1. The change in the predicted propagation speed as a function of degrees of freedom. Chebyshev pseudospectral method – solid,
Fourier sine transform – dashed, Second order finite difference – dot-dashed.

4 Results

4.1 Weakly nonlinear theory

It has been noted in the literature (Llewellyn Smith and
Young, 2002) that the longwave eigenvalue problem Eq. (9)
can yield nearly identical sets of eigenvalues for different
background density profiles. For example, choosing a sin-
gle pycnocline stratification

ρ̄(z)= 1+0.01tanh

(
z+0.2H

0.1H

)
as the target we find a number of candidate stratifications
with a sum root mean square error less than 2 % for the first
ten mode speeds, with the surface trapped density

ρ̄(z)= 1+0.0601tanh
( z

0.07415H

)
being one extreme example. However, numerical experimen-
tation shows that a near match between longwave speeds is
no guarantee that the weakly nonlinear coefficientsr10 and
r01 match, or in fact, are even close for mode-1 waves. We
have conducted numerical experiments to determine if it is
possible to find qualitatively different density profiles that
yield nearly identical coefficients for weakly nonlinear the-
ory. The experiments involved repeated (on the order of
10 000 simulations) solution of (Eq.9) using a Chebyshev
pseudospectral method (Trefethen, 2000) while varying a set
of parameters in the functional form for the density profile.
The pseudospectral method is ideal for this type of applica-
tion as it yields highly accurate eigenvalues and eigenspectra
with a relatively low (<200) number of grid points. Since we
were interested in the first eigenmode and largest eigenvalue,

only, the well-known issue of spurious roots in spectral dis-
cretizations (Trefethen, 2000) is not pertinent to the present
calculations. Denoting the target set with the superscriptT ,
we have used the error measure

e=

√√√√( r10−rT10

rT10

)2

+

(
r01−rT01

rT01

)2

+

(
clw−cTlw

cTlw

)2

and have been able to find matches between several differ-
ent sets of qualitatively different density profiles (see Fig. 2a
for the example discussed in the following) toe < 0.01, well
below what would be discernible from field measurements.
Both of the density profiles shown have pycnoclines well
away from the mid-depth and hence higher order nonlinear-
ities leading to the Gardner equation are not expected to be
important (Grimshaw, 1997). The spectral accuracy of the
Chebyshev based method is vital to being able to perform the
repeated calculations in a reasonable time (approximately 20
hours on desktop PowerMac). Comparable calculations with
second order finite difference methods would take months.

With the two density profiles shown in Fig. 2, we have
solved the DJL equation to compute two sets of fully non-
linear waves and to ascertain the nature of the upper bound
on wave amplitude. The profile indicated by a dashed line
in Fig. 2a has the wave amplitude bounded above by the
onset of streamline overturning, while the profile indicated
by the solid line in Fig. 2a has a wave amplitude bounded
above by wave broadening to a limiting flat-centered wave
(see Fig. 2b). The single pycnocline stratification (solid line)
is labeled as “target” while the best fit profile, which exhibits
significant stratification near the surface is labeled “fit”. In
Fig. 2b we show the ratio between the maximum wave-
induced horizontal velocity and the wave propagation speed.
The critical value of one, at which streamline overturning, or
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Fig. 2. Left Panel: The scaledN2(z) profiles for the two profiles
that yield nearly identical coefficients in the KdV theory. Right
Panel: The ratio of maximum wave-induced horizontal velocity to
the wave propagation speed as a function of dimensionless isopyc-
nal displacement for the two cases shown in the Left Panel. Waves
break whenu/cexceeds one (the dot-dashed, horizontal line).

wave breaking, sets in, is indicated by a dot–dashed horizon-
tal line. Weakly nonlinear theory with a quadratic coefficient
of nonlinearity is another manner in which the behaviour of
larger amplitude waves may be discussed and this is carried
out in the Appendix.

We subsequently performed time-dependent simulations
of the field Eqs. (1–3) using a variable time-step, second-
order projection technique described in, for example, Stastna
and Lamb (2008), where the strengths and weaknesses of the
model, along with typical resolution tests are described. The
simulations considered forced flow over topography with a
constant velocityu = (U,0) far upstream of the obstacle and
were thus similar to past work on the resonant generation of
ISWs (Stastna and Peltier, 2005). The numerical experiments
were designed to demonstrate that for supercritical inflows
(U = 1.32 clw is used for Fig. 3) significant overturning oc-
curs only for one of the two density profiles, even though
they are nearly identical as far as weakly nonlinear theory is
concerned. For subcritical inflows (U ≤ 1.2 clw) no breaking
occurs, but the resonantly generated, upstream propagating
waves are markedly different for the two cases (not shown).
Figure 3a and 3b show six shaded density contours for the
two cases, with the single pycnocline case in panel a. Both
panels are fort = 250 where we have scaled time by the ad-
vective time scaleH/U . In Fig. 3c and d we show Hovm̈oller
plots leading up to the two states whose snapshots are shown
in panels a and b, respectively. The Hovmöller plot is based
on the wave-induced velocity at the surface, with darker col-
ors indicating large positive values. It can be seen that for

the single pycnocline case the topographically trapped dis-
turbance is essentially steady aftert = 150, while for the case
with a significant near surface stratification breaking sets in
aroundt = 70 and takes the form of billows ejected from the
main wave body.

4.2 Two-scale exact solitary waves

Lamb and Wan (1998) have pointed out that for density strat-
ifications with multiple pycnoclines it is possible to compute
flat-crested waves of elevation and depression, as well as so-
called conjugate flows that correspond to the limiting ver-
tical profiles of isopycnal displacement, propagation speed
and wave-induced horizontal velocity at the wave crest for
either the positive or negative wave polarity. We consider a
two pycnocline stratification

ρ̄(z)= 1 + 0.01tanh

(
z+0.2H

0.1H

)
+ 0.01tanh

(
z+0.75H

0.1H

)
. (25)

For this stratification, two conjugate flows are possible,
with conjugate flow speedsc+ = 1.104clw (c− = 1.164clw)
for the waves of elevation (depression). Both polarities of
ISW are bounded above by the so-called conjugate flow limit,
of broad, flat-crested waves and hence regions of closed
streamlines do not occur. To compute approximations of a
multi-scale solitary wave, we first compute a flat crested ISW
whose propagation speed matches the smaller of the two con-
jugate flow speeds (c+) to eight decimal places. We sub-
sequently compute a wave of depression, making sure that
its propagation speed matches that of the flat-crested wave
to eight decimal places. This wave will not be flat-crested
sincec− > c+. The resulting isopycnal displacement and
wave-induced profiles are then used to construct the two-
scale solitary wave. Note, that by construction, the density
profile Eq. (25) does not specify the density profile far up-
stream. Indeed the upstream profile, as well as a background
shear current profile, is specified implicitly from the wave
solution, via the conjugate flow with speedc+.

In Fig. 4a we show ten isopycnals for a two scale solitary
wave (only the right half of the wave is shown). In Fig. 4b we
show vertical profiles of isopycnal displacement at the wave
crest, or the left boundary of the figure (solid), and at the ver-
tical dashed line in panel (a) (dashed) with respect to the far
upstream density field (far right of the figure). Note that at
the vertical dashed line in the figure, the horizontal, wave-
induced velocity is constant. The double-humped wave was
used as an initial condition in the time-dependent solver and
was found to propagate without changing form in a stable
manner (not shown). This is quite unlikely to be the case
for double-humped waves computed from asymptotic the-
ory, such as those in Makarenko et al. (2009). Moreover,
Makarenko et al. (2009) suggest that their Fig. 7 is similar
to the measurements of Duda et al. (2004). However, the
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Fig. 3. (a)Six shaded isopycnals for the supercritical response over the topography for the case labeled “target” in Fig. 2. The flow is nearly
steady for this case.(b) Six shaded isopycnals for the supercritical response over the topography for the case labeled “fit” in Fig. 1. The flow
is dominated by a breaking region near the surface, and is highly unsteady for this case.(c) Hovmöller plot of the wave-induced horizontal
velocities for the case pictured in(a). Stronger upstream directed velocities are indicated by darker regions.(d) Hovmöller plot of the
wave-induced horizontal velocities for the case pictured in(b). Downstream propagating billows are visible as alternating bands emanating
from aroundx= 0.
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Fig. 4. Two-scale solitary wave(a) Ten isopycnals in black,(b) ver-
tical profile of the isopycnal displacement at the wave crest (solid)
and at the vertical dashed line in panel(a) (dashed).

measurements involve such long time scales that the Earth’s
rotation is almost certain to play a role in the wave shape and
evolution.

Again the spectral accuracy of the solver used for the DJL
equation is absolutely vital. The repeated solution of the DJL
equation necessary to find a wave with a matching propaga-
tion speed would involve prohibitively large grids were low
order finite difference methods used. While results matching
to eight decimal places are used to create Fig. 4, matching to
as high as ten decimal places proved possible in less than two
hours of computation time on a desktop iMac.

5 Conclusions

We have implemented solvers with spectral accuracy for both
the weakly nonlinear and exact theories of internal solitary
waves. While the primary role of these solvers is to pro-
vide spectrally accurate initial conditions for time dependent
problems of ISW propagation and degeneration, we have
used these models to derive two new mathematical results.
First, we have demonstrated that weakly nonlinear, KdV the-
ory for internal solitary waves exhibits a peculiar degeneracy
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in the sense that two very different background density pro-
files can yield nearly identical coefficients in the KdV equa-
tion. This means that weakly nonlinear theory would predict
waves with the same structure and propagation speed. For the
two density profiles constructed, the fully nonlinear solitary
waves, which are exact solutions of the full stratified Euler
equations, have a qualitatively different upper bound on am-
plitude. In particular, breaking and the possible formation of
trapped cores occurs in only one case. This is consistent with
time dependent simulations of wave generation by flow over
topography in which only one of the two stratifications yields
significant wave breaking.

The search algorithm involved repeated solution of the
eigenvalue problem Eq. (9). Using standard low order fi-
nite difference algorithms, the search with even a moder-
ate matching accuracy would take prohibitively long. Using
Chebyshev pseudospectral methods it is possible to attain six
digit accuracy in the eigenvalue and eigenfunction with tens
of grid points. Hence the matching procedure can be carried
out in a reasonable amount of time even for searches that re-
quire on the order of 104 iterations.

Second, for fully nonlinear ISWs, which are solutions of
the DJL equation, we were able to compute exact double
humped solitary waves, generalizing the asymptotic results
of Makarenko et al. (2009). This procedure involved the
matching of the ISW speed to a preset accuracy (eight digits
in the above, though tests with ten were successfully carried
out). Again, the feasibility of this procedure depended on
getting an accurate solution for grids with moderate resolu-
tion. In the above, this was accomplished using a numer-
ical method that employs the fast sine transform. Double-
humped ISWs involve a delicate balance of wave speeds and
density stratifications with multiple pycnoclines. Moreover,
the solution procedure for such waves (unlike the standard al-
gorithm for internal solitary waves) determines the upstream
density and background current profiles implicitly. Future
work should thus address whether an efficient means of gen-
eration for these exotic mathematical objects occurs in the
ocean.

The utility of spectral methods for internal wave compu-
tations is, of course, not restricted to exact solitary waves.
Indeed, as mentioned above, the primary utility of the above
described methods is in providing initial conditions for time
dependent simulations. We are presently involved in the con-
struction of a pseudospectral model with bottom topography,
which will employ the above described methods for initial-
ization, and both the model and novel results made possible
by it, will be reported on in the near future.

Appendix A

Following the notation of Helfrich and Melville (2006), the
Gardner equation is written as

Bt +clwBx+α1BBx+α2B
2Bx+βBxxx = 0. (A1)

This equation is not the general, full second order extension
of the first order KdV since it neglects both second order
dispersive, and nonlinear-dispersive terms. It is the correct
first order governing equation whenα1 is much smaller than
the dispersive term and, for a single pycnocline stratification,
this occurs when the pycnocline is centered near the mid-
depth. For the degenerate KdV theory example presented in
the main textα1 andβ are the same for both stratifications.
Indeed the “target” stratification is chosen so that a prioriα2
should be neglected in a formal first-order scaling argument.

Nevertheless, an a posteriori check reveals thatα2 is dif-
ferent for the two stratifications (by 52.4 %). Note that as
pointed out in Lamb and Yan (1996) (Eq. 3.17 and the re-
lated discussion) the computation ofα2 requires an arbitrary
multiple of the linear eigenfucntion to be specified (α1,0 in
their notation). We choseα1,0 = 0 though it is far from clear
that this is the best choice.

It is possible that a larger optimization problem in which
both the background density,ρ̄(z) and current,U(z) are var-
ied could yield a situation in whichα1, α2 andβ all match.
An efficient numerical formulation and solution of this prob-
lem remains as an outstanding problem for future research.

The solitary wave solutions of Eq. (A1) yield a flat-crest,
or table top, limit (assuming thatα2 has the appropriate sign).
However, the amplitude of this limiting solution generally
does not match the limiting exact solitary wave (unless the
pycnocline lies near the mid-depth). This is evident from
Fig. 5 in Helfrich and Melville (2006) which compares the
propagation speed and wave half-width for the KdV, Gardner
and fully nonlinear-weakly nonhydrostatic Miyata-Camassa-
Choi (MCC) theory. The target stratification is similar to the
two leftmost panels.

Whether the Gardner theory would yield the same result
as that found via DJL theory in the main text is thus far from
clear. It is true that theα2 coefficient in the Gardner the-
ory is different for the “target” and “match” stratifications,
but whether the maximum wave-induced velocity exceeds
the propagation speed, and the wave breaks (before broad-
ening to the limiting wave occurs) would require the vertical
velocity profile to be worked out. This is a non-trivial task in
the second order theory, as discussed in detail by Lamb and
Yan (1996).

On the other hand the spectral implementation of the DJL
equation solver presented above can answer the same ques-
tion with no ambiguity, and given the efficiency of our im-
plementation, in a manner of minutes.
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