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Abstract. When the Extended Kalman Filter is applied to
a chaotic system, the rank of the error covariance matri-
ces, after a sufficiently large number of iterations, reduces
to N+

+N0 whereN+ andN0 are the number of positive
and null Lyapunov exponents. This is due to the collapse
into the unstable and neutral tangent subspace of the solution
of the full Extended Kalman Filter. Therefore the solution is
the same as the solution obtained by confining the assimila-
tion to the space spanned by the Lyapunov vectors with non-
negative Lyapunov exponents. Theoretical arguments and
numerical verification are provided to show that the asymp-
totic state and covariance estimates of the full EKF and of
its reduced form, with assimilation in the unstable and neu-
tral subspace (EKF-AUS) are the same. The consequences
of these findings on applications of Kalman type Filters to
chaotic models are discussed.

1 Introduction

This work is motivated by the problem of data assimilation
in meteorology and oceanography. Atmospheric and oceanic
observations are noisy and very scattered in space and time.
Dynamical models describing the evolution of the state of
the atmosphere and the ocean are chaotic and, moreover,
the number of degrees of freedom is huge (> 108). In the
Earth sciences, the classical problem of estimating the state
from noisy and incomplete observations and the approximate
knowledge of the equations governing the system’s evolution
is known as data assimilation.

Data assimilation methods can be classified in two cat-
egories: sequential and variational, the most notable in
the two classes being Kalman Filters and four-dimensional
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variational assimilation (4DVar), respectively (Ghil and
Malanotte-Rizzoli (1991); Kalnay (2003) and references
therein). 4DVar is an advanced technique that seeks the
model trajectory that best fits the observations distributed
within a given time interval with the dynamical constraint of
the model equations (Talagrand and Courtier, 1987). The op-
timal control theory (Le Dimet and Talagrand, 1986) allows
the minimization of the 4D-Var cost function to be made with
respect to the state at the beginning of the interval. The solu-
tion of the minimization problem is obtained by forward inte-
gration of the model and backward integration of the adjoint
of the tangent linear propagator that yields the expression of
the cost function gradient.

The Kalman Filter was originally developed for linear sys-
tems. Based on information about the error covariance of the
data and model forecast, the KF provides the optimal linear
estimate of the state of the system. A straightforward way of
extending the linear results to the nonlinear case is given by
the Extended Kalman Filter (EKF) (Jazwinski, 1970; Miller
et al., 1994): in the EKF the error covariance is propagated
in time according to linearized model dynamics. In the fore-
cast step the nonlinear model is integrated, starting from the
previous analysis to obtain the background state, and the tan-
gent linear equations propagate the analysis error covariance
to obtain an estimate of the background error covariance.
When observations become available they are assimilated in
the analysis step that combines the background and the ob-
servations with the appropriate weights. The error covariance
associated with the state estimate at the analysis step is also
updated.

The problem of reducing the cost of the EKF that is pro-
hibitive in many realistic circumstances has been addressed
by a number of authors. In geophysical science literature
reduced-rank approximations of the full EKF (Fukumori,
2002; Ghil and Malanotte-Rizzoli, 1991; Tippett et al., 2000;
Todling and Cohn, 1994) confine the forecast error covari-
ance matrix to a subspace of lower dimension by means of
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Singular Value Decomposition (SVD), Eigenvalue Decom-
position (EVD) or projection on the leading Empirical Or-
thogonal Functions (Pham et al., 1998). A Monte Carlo
approach, referred to as Ensemble Kalman Filter (EnKF)
(Evensen, 1994), provides ensemble representations for the
probability distribution of the state estimate. The EnKF
has also proven effective in reducing the computational cost
associated with the full EKF. In the EnKF, the ensemble-
predicted error statistics are estimated from the ensemble
perturbations. In the forecast step their evolution is computed
as difference between nonlinear integrations of the model, a
procedure similar to the breeding method (Toth and Kalnay,
1993, 1997). For sufficiently small analysis errors, this pro-
cedure would give the same result as using the tangent linear
propagator.

The various flavors of the Ensemble Kalman Filter (EnKF)
testify the importance of this problem for real world ap-
plications (seeBlum et al., 2008; Kalnay, 2003 and refer-
ences therein). These include several ad-hoc refinements as
perturbing observations, covariance localization, additive or
multiplicative inflation. In particular, covariance localization
is beneficial to prevent filter divergence when the number of
ensemble members is small (for a review seeEvensen, 2003).
In all these studies, how many members of the ensemble are
needed is empirically estimated on a case to case basis.

Ott et al. (2004) estimate the local dimensionality (E-
dimension) from the perturbations of the Local Ensemble
Kalman Filter and the number of members of the ensem-
ble necessary to represent the forecast error covariance in
different geographical regions (tropics, extra-tropics, polar
regions).

We consider the application of the EKF to a chaotic sys-
tem and we concentrate on issues related to the dimension
of its unstable subspace.So et al.(1994) addressed a similar
problem in control theory; in reconstructing the state vec-
tor of a chaotic system from the time series of an observed
scalar, they showed that the control vector lies in the unsta-
ble space. The Assimilation in the Unstable Subspace (AUS),
developed by Trevisan and co-authors, consists in confining
the analysis update to the subspace spanned by the leading
unstable directions (Trevisan and Uboldi, 2004). Applica-
tions to atmospheric and oceanic models (Uboldi and Tre-
visan, 2006; Carrassi et al., 2008b) showed that even dealing
with high-dimensional systems, an efficient error control can
be obtained by monitoring only a limited number of unstable
directions. The forecast error in these directions was esti-
mated with empirical techniques. More recently,Trevisan et
al. (2010) formulated a reduced subspace 4-dimensional as-
similation algorithm, 4DVar-AUS (Four-dimensional Varia-
tional Assimilation in the Unstable Subspace). The key result
of this study is the existence of an optimal subspace dimen-
sion for the assimilation that is approximately equal to the
unstable and neutral subspace dimension.

The methodology of the present paper goes back to the
roots of the filtering theory, the EKF, to address questions re-
garding the number of degrees of freedom that describe the
filter error evolution in a chaotic system of given unstable
manifold dimension. In this work we first show how it is
possible to define a mathematically rigorous algorithm with
the following properties: the solution of the Kalman filter
equations is reproduced when all degrees of freedom are con-
sidered; with assimilation increments limited to a subspace
of the tangent space, a reduced order algorithm is obtained
where the estimated errors are confined to the most unstable
subspace of the system. We will discuss the equivalence of
the full EKF with its reduced form (EKF-AUS) with assim-
ilation in the unstable and neutral space, i.e. the span of the
first N+

+N0 Lyapunov vectors, whereN+ andN0 are the
number of positive and null Lyapunov exponents. Then we
compare numerical solutions obtained with the full EKF and
the reduced algorithm EKF-AUS. Throughout the paper, the
unified notation of (Ide et al., 1997) is used.

The results of this paper are based on the hypothesis that
observations are accurate enough to ensure small analysis er-
rors so that the errors evolution is correctly described by the
tangent linear operator. In practice these are the same hy-
pothesis of validity of the standard EKF algorithm. This hy-
pothesis is crucial for all the considerations we will make
regarding the Lyapunov exponents and vectors, since they
are well-defined along the true trajectory while here we ex-
tend their properties to the pseudo-trajectory determined by
the forecast-analysis cycle. This is reasonable if the pseudo-
trajectory remains close enough to the true trajectory.

If the observations are so few and noisy that the analysis
errors are large, the theoretical results of this paper do not
apply directly. However, a straightforward generalization of
the EKF-AUS algorithm to account for the nonlinear error
behavior is possible, as discussed in the conclusions. Due to
nonlinear error dynamics, the perturbations will not remain
exactly in the unstable and neutral subspace and it may be
necessary to use a larger subspace. Indeed the results ob-
tained with the 4DVar-AUS algorithm (Trevisan et al., 2010)
showed that, when observation errors are large enough that
nonlinearity becomes important, the dimension of the sub-
space where errors live also increases; in such case a larger
number of perturbations is needed.

2 The extended Kalman Filter and its reduction to the
unstable space

2.1 The extended Kalman Filter

In the extended Kalman filter, the state evolves according to
the full nonlinear equations and the tangent linear operator is
used to predict the approximate error statistics. The estimate
of the state, referred to as the analysisxa , is obtained by com-
bining a forecast statexf with the possibly incomplete and
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noisy p-dimensional observationsy0
k =H(xk)+ εo

k given at
discrete timestk > t0, k ∈ {1,2,...}. The observation errorεo

k

is assumed to be Gaussian with zero mean and knownp×p

covariance matrixR. H is the observation operator. The es-
timate update is given by the analysis equation:

xa
k = xf

k −K kH(xf
k )+K kyo

k, (1)

wherexf
k is the forecastobtained by integrating the model

equations from a previous analysis time:

xf
k =M(xa

k−1), (2)

M being the nonlinear evolution operator.K k is the gain
matrixat timetk given by:

K k = Pf
k HT

(
HPf

k HT
+R

)−1
, (3)

whereH is the Jacobian ofH. The analysis error covariance
update equation is given by:

Pa
k = (I −K kH)Pf

k , (4)

andPf
k , the forecast error covariance, is given by:

Pf
k = M kPa

k−1MT
k , (5)

whereM is the linearized evolution operator associated with
M. We have assumed that there is no model error.

2.2 The algorithm EKF-AUS

We introduce an algorithm that belongs to the family of
square-root implementations of the EKF (Thornton and Bier-
man, 1976; Tippett et al., 2003). A reduced version is then
obtained from the full rank algorithm. We perform the assim-
ilation in a manifold of dimensionm. Whenm is equal to the
numbern of degrees of freedom of the system, the algorithm
solves the standard EKF equations.

We consider a chaotic system with a numberN+ of pos-
itive Lyapunov exponents andN0 of null Lyapunov expo-
nents. Whenm = N+

+N0 the reduced form, with Assimi-
lation in the Unstable Subspace (EKF-AUS) is obtained.

At time t = tk−1, let then×m matrix Xa be one of the
square roots ofPa , namelyPa

= XaXaT and let the columns
of Xa

= [δxa
1,δxa

2,...,δxa
m] be orthogonal. At timet = t0,

the vectorsδxa
i , i = 1,2,...,m are arbitrary independent ini-

tial perturbations. (Here and in the following we drop the
time-step subscript from the equations since, unless other-
wise stated, all terms refer to the same time stepk).

In the standard EKF algorithm, the number of perturba-
tions is equal to the total number of degrees of freedom of
the system,m = n. In the reduced order algorithm referred to
as EKF-AUS the number of perturbations is equal to the di-
mension of the unstable and neutral manifold:m = N+

+N0

2.2.1 The forecast step

In the forecast step, the tangent linear operatorM acts on the
perturbationsXa defined at (analysis) timet = tk−1 (other
terms in this and the following equations refer to time step
t = tk):

Xf
= MX a (6)

whereXf
= [δxf

1 ,δxf

2 ,...,δxf
m]. Then×n forecast error co-

variance matrix:

Pf
= Xf Xf T (7)

can be cast in the form:

Pf
= Ef 0f Ef T (8)

where them columns ofEf are obtained by a Gram-Schmidt
orthonormalization of the columns ofXf . The m×m (in
general non-diagonal) symmetric matrix0f defined as:

0f
= Ef T Xf Xf T Ef (9)

represents the forecast error covariance matrix, confined to
the subspaceSm of the evolved perturbations. In the standard
EKF algorithm (m = n), Ef is n×n and its columns span the
full space. In the reduced form algorithm,Ef is n×m and
its columns span anm-dimensional subspaceSm of the entire
phase space.

2.2.2 The analysis step

Using the definition ofPf of Eq. (8) the Kalman gain expres-
sion becomes:

K = Ef 0f (HEf )T
[
(HEf )0f (HEf )T +R

]−1
(10)

and the usual analysis error covariance update, Eq. (4) reads:

Pa
= (I −KH )Ef 0f Ef T

= Ef 0f Ef T
+

−Ef 0f (HEf )T
[
(HEf )0f (HEf )T +R

]−1
HEf 0f Ef T

= Ef
{
0f

−0f Ef T HT
[
(HEf )0f (HEf )T +R

]−1

×HEf 0f
}
Ef T

≡ Ef 0a′

Ef T

(11)

The analysis error covariance matrixPa can be written as:

Pa
= Ef 0a′

Ef T
= Ef U0aUT Ef T

≡ Ea0aEaT ,
(12)

where the columns of the(m×m) orthogonal invertible ma-
trix U are the eigenvectors of the symmetric matrix0a′

=

U0aUT (to numerically obtain the eigenvalues and the eigen-
vectors of0a′

we use the power iterations method (Golub et
al., 1996)) and0a = diag[γ 2

i ] is diagonal. Therefore, them
columns ofEa

= [ea
1,e

a
2,...,e

a
m] obtained by

Ea
= Ef U (13)
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span the same subspaceSm as the columns ofEf . Con-
sequently, the analysis step preserves the subspaceSm, an
important point in the subsequent discussion (see Sec. 2.3)
on the comparison of our scheme with theBenettin et al.
(1980) algorithm. The square root ofPa , written asPa

=

Ea0aEaT
≡ XaXaT , provides a set of orthogonal vectors:

Xa
= Ea(0a)1/2. (14)

The columns of

Xa
= [γ1ea

1,γ2ea
2,...,γmea

m] = [δxa
1,δxa

2,....,δxa
m] (15)

are the new set of perturbation vectors defined after the anal-
ysis step at timetk that enter the forecast step (6) at the next
time steptk+1. Their amplitude is consistent with the analy-
sis error covariance in the subspaceSm

Notice that, as in other Kalman square root filters, with
the introduction ofEa andEf , forming the full forecast and
analysis error covariance matrices can be avoided. The anal-
ysis equation is the usual Eq. (1) with K given by (10).
When m = n, K is the usual Kalman gain. In EKF-AUS
(m = N+

+N0) the analysis increment is confined to the sub-
spaceSm spanned by them columns ofEf in view of the
form of K .

2.2.3 Numerical Implementation

In the numerical implementation of the algorithm one can
start with a number of perturbationsm that is at least as large
asN+

+N0. If an independent estimate ofN+
+N0 is not

available one can start with an initial guess form that is an
overestimate ofN+

+N0. We now summarize the different
steps of the EKF-AUS algorithm as they are performed in the
numerical implementation:

1. we evolve the state vectorxa
k−1 with the full nonlinear

model equations and then×m matrix Xa
k−1 using the

tangent linear operatorM k, as in Eq. (6), obtainingXf
k

at time stepk

2. we orthonormalize them columns ofXf
k obtaining the

columns ofEf

3. we calculate them×m covariance matrix0f through
Eq. (9)

4. we perform the analysis on the state vector as in Eq. (1)
with K given by Eq. (10)

5. we calculatem × m covariance matrix0a′

that after
Eq. (11) can be written as

0a′

= 0f
−0f Ef T HT

×
[
(HEf )0f (HEf )T +R

]−1
HEf 0f .

(16)

(notice that the matrix to be inverted has the dimension
p of the number of observations)

6. we diagonalize them×m matrix 0a′

. We put the nor-
malized eigenvectors of0a′

in the orthogonalm × m

matrix U and then we obtainEa
= Ef U. Both Ef and

Ea aren×m.

7. we multiply thei-th column ofEa by the square rootγi

of i-th eigenvalue of0a obtaining the new set of pertur-
bationsXa

k .

2.3 Further discussion on the EKF-AUS algorithm

In summary, the EKF-AUS algorithm is obtained by reduc-
ing the dimension of the subspace,Sm, where the analysis
update,xa

−xf and the estimated analysis and forecast er-
ror covariancePa andPf are confined. It will soon become
clear whym is set equal to the dimension of the unstable and
neutral subspace.

During the forecast step the error evolution is governed by
Eq. (6). Suppose that at a certain time,tk the firstN+

+N0 of
them perturbations are confined to the unstable and neutral
subspace, that is the columns ofEa span the same subspace
as the leadingN+

+N0 Lyapunov vectors. After the fore-
cast step, this subspace is mapped into the unstable subspace
referred to the statexf at timetk+1. The new perturbations
Xf are amplified but they are still confined in the subspace of
the leadingN+

+N0 Lyapunov vectors. These perturbations
will survive throughout the long time assimilation process.
The remainingm−N+

−N0 perturbations, being recurrently
orthogonalized, are deprived of the component along the un-
stable manifold like in theBenettin et al.(1980) algorithm,
while the component along the stable manifold is damped
during the forecast (the validity of this reasoning does not re-
quire the orthogonality of the stable and unstable manifolds).

The main difference between our algorithm and that of
Benettin et al.(1980) is introduced in the analysis step. In
our algorithm, use is made of Eq. (11) to redefine the pertur-
bations. These are confined by construction to the subspace
spanned by the columnsEf and after the analysis step the
span of the columns ofEa and of the columns ofXa will
be the same space spanned by the columns ofEf as shown
in Sect. 2.2.2. For a detailed proof of this fact we refer to
AppendixA.

Another difference from (Benettin et al., 1980) is that in
our case the vectors at the end of the analysis step are or-
thogonal but not orthonormal, so that perturbations that are
damped during the forecast are not artificially “kept alive”
(as it happens with the orthonormalization step ofBenettin
et al., 1980). The(I −KH ) term has a stabilizing effect that
tends to reduce the amplitude of perturbations in view of the
existence of observations (Carrassi et al., 2008). As a conse-
quence, when the amplitude of perturbations is redefined af-
ter the analysis step the decaying modes are further damped
while the unstable modes are kept from diverging.

In conclusion, arbitrary initial perturbation vectors, the
columns ofXa at t = t0, subject to successive forecast and
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analysis steps will, in the long run, be confined to the unsta-
ble and neutral subspace. In view of this reasoning, based on
the linearization of the error dynamics, it is argued that the
EKF and EKF-AUS algorithms will asymptotically produce
the same estimate of error covariances. The numerical results
confirm the validity of these statements.

¿From previous considerations, if we choose an initial
number of perturbationsm >N+

+N0, m−N+
−N0 pertur-

bations will be damped by the assimilation process. On the
contrary, if we choosem < N+

+N0, some unstable direc-
tions will be ignored and, consequently, the filter will even-
tually diverge.

3 Numerical results

We now compare the numerical results obtained with the re-
duced EKF-AUS algorithm with those obtained with the full
EKF, when the EKF algorithm itself is stable and no filter
divergence is observed. Experiments are based on Lorenz96
model (Lorenz, 1996), that has been widely used for testing
data assimilation algorithms. The governing equations are:

d

dt
xj = (xj+1−xj−2)xj−1−xj +F (17)

with j = 1,...,n. The variablesxj represent the values of
a scalar meteorological quantity atn equally spaced geo-
graphic sites on a periodic longitudinal domain. The model
has chaotic behavior for the value of the forcing,F = 8, used
in most studies. The number of variablesn of the model is
varied to obtain different systems with a different number of
degrees of freedom and, consequently, a different number of
positive Lyapunov exponents. Withn = 40,60,80 the sys-
tems have 13,19,25 positive Lyapunov exponents, respec-
tively.

All simulations are performed in a perfect model scenario,
that is a trajectory on the attractor of the system is assumed
to represent thetrue state evolution. Observations are cre-
ated by adding uncorrelated random noise with Gaussian dis-
tribution (zero mean, varianceσ 2

0 ) to the true state. The
assimilation experiments with EKF and EKF-AUS use the
same reference trajectory and the same observations. The
performance of the assimilation is measured by the analy-
sis error, the root mean square (rms) of the difference be-
tween thetrue and the estimated state vectors. Observations
are taken at discrete times corresponding to the assimilation
timestk. Results shown refer to the following parameters but
different choices of observational configurations gave quali-
tatively similar results. The time interval between observa-
tions is 0.05 (= 4 time integration steps); every other grid
point is observed and the observation points are shifted by
one at each observation time.

Figure1 shows thermsestimation error for the three sys-
tems (n = 40,60,80) as a function of the observation error
standard deviation,σ0. Values are in the range 0.002≤ σ0 ≤
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Fig. 1. Average root mean square error of the algorithms: EKF (full
circles), EKF-AUS (empty circles) for systems withn = 40,60,80
degrees of freedom, as a function ofσ0, the observation error stan-
dard deviation. The average was performed over 1000 assimilation
steps (50 time units) after a stabilization period of the same length.

0.018 where filter divergence is not observed; for values of
σ0 > 0.02, divergence possibly occurs in both EKF and EKF-
AUS algorithms. Thermserror was averaged over 1000 suc-
cessive assimilation times or 50 time units, after waiting a
transient time of 50 time units for the filter error to stabilize.
The sets of points displayed in the figure refer to EKF and
EKF-AUS, (m = 14,20,26) and show that the average error
is statistically the same. The results show that, in agreement
with the theory, for sufficiently small values ofσ0, error dy-
namics is linear and the estimation error grows linearly with
the observation error. Notice also that the asymptotic aver-
age error is about the same in the three model configurations
with n = 40,60,80. This is because the number of unstable
directions is proportional to the extension of the spatial do-
main and the number of observations that can detect them
increases by the same proportion.

To help interpret the finding that the two algorithms give
statistically equivalent results, we study the behavior of the
error covariance in the EKF. At timet = 0, the EKF is ini-
tialized with an arbitrary estimate ofPa whose rank is the
same as the total number of degrees of freedom. The rank
of Pa is shown in Fig.2 for the caseσ0 = 0.01, as a function
of the number of iterations and for three system configura-
tions, (n = 40,60 and 80). By rank ofPa we mean in prac-
tice the number of eigenvalues that exceed a given threshold
value. In all cases we observe that, changing this value in the
range 10−8–10−11, the asymptotic rank estimate varies by
one unit. To obtain the eigenvalues ofPa we use the power
iterations method (Golub et al., 1996). As shown in Fig.2,
the rank value, initially equal to the total number of degrees
of freedom, decreases until it gradually approaches a value
very near, in each system, to the dimension of its unstable
and neutral subspace.
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Fig. 2. Rank of the analysis error covariance matrixPa in the EKF
algorithm. Forn = 40,60,80, the dimension of the unstable and
neutral space is 14,20,26, respectively.σ0 = 0.01.

The analysis error covariance matrix was explicitly written
in Eq. (12) in terms of the orthonormal basisEa of the anal-
ysis error, the eigenvalues of0a being the error variances
in this subspace; this formulation was useful to interpret the
behavior of the error covariance in the stable and unstable
directions. The estimated errors in the stable directions are
damped during the forecast step and are reduced by the ef-
fect of the(I −KH ) term at analysis step. We conclude that
only errors in the unstable directions, that amplify during the
forecast step, can survive along the sequence of successive
forecast and analysis iterations.

The numerical results confirm this argument: the rank of
the error covariance matrix of the EKF decreases until it
reaches a value consistent with the expectation that, in the
long run, only the unstable or weekly stable error compo-
nents remain active. At the same time, the reduction of the
rank ofPa in the EKF explains the long-term equivalence in
the performance of EKF and EKF-AUS: the subspace dimen-
sion of the covariance matrices in the two algorithms become
asymptotically the same. Further numerical evidence of va-
lidity of the theory is provided by the spectrum of eigenval-
ues of the error covariance matrices. Fig.3, obtained in the
same numerical settings of Figs.1 and2, shows the eigenval-
ues ofPa for EKF and of0a for EKF-AUS computed at the
final time of Fig.2. The eigenvalues obtained with the two
algorithms, in logarithmic scale in the figure, are the same
within numerical accuracy.

The above results explain why the two algorithms, EKF
and EKF-AUS, after a transient stage start to behave in a
similar fashion and asymptotically give the same numerical
analysis solution.

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0  5  10  15  20  25  30

P
a  E

ig
en

va
lu

e

Eigenvalue no.

AUS n=40
EKF n=40

AUS n=60 
EKF n=60
AUS n=80
EKF n=80

Fig. 3. Eigenvalues of the analysis error covariance matrix at final
time of assimilation with: EKF (full) and EKF-AUS (empty) for
systems withn = 40,60,80. σ0 = 0.01.

4 Conclusions

We considered a system with a chaotic attractor and studied
the consequences of the existence of an unstable manifold on
the evolution of filter solution error. The algorithm we pre-
sented reproduces exactly the EKF equations when all de-
grees of freedom are considered. The idea of confining the
assimilation in the invariant unstable and neutral subspace
is not new and was exploited in a series of papers, including
the formulation of the 4DVar-AUS algorithm (Trevisan et al.,
2010); it was the original purpose of the present work to ap-
ply the same idea to the Kalman Filter. The most important
and new result of the paper, not foreseen by the authors them-
selves, is that the exended Kalman Filter solution collapses
into this invariant subspace so that its solution is not different
from the solution of the reduced form of the algorithm (EKF-
AUS). More specifically, the EKF algorithm and EKF-AUS
algorithm with a number of degrees of freedom equal to the
number of positive and neutral exponents produce the same
asymptotic state and error covariance estimates. In a sense
the EKF solution converges to the EKF-AUS solution, not
viceversa. This happens because the rank of the full EKF
error covariance matrices asymptotically becomes as small
as the dimension of the unstable and neutral manifold of the
original system equations. Theoretical arguments providing
a rationale for this behavior were corroborated by numerical
results.

It is worth discussing at this point why the 4DVar-AUS
algorithm turns out to be superior to standard 4DVar, while
EKF-AUS gives the same results as the standard EKF. The
interpretation is simple. The full EKF performs exactly as
EKF-AUS because the estimated asymptotic error covari-
ances are the same. Standard 4DVar instead looks for the
minimizing solution in the full space; 4DVar-AUS is supe-
rior to 4DVar because it looks for the solution in the unstable
manifold without introducing observation errors in the stable
one.
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The present results were obtained in the framework of the
EKF, but the important message is that we expect to find the
same behavior, namely the collapse of the covariance matri-
ces, in any Kalman type Filter whenever the estimation error
is sufficiently small.

In an ensemble approach, when observations are suffi-
ciently dense and accurate that error dynamics is approxi-
mately linear, we expect the necessary and sufficient number
of ensemble members to be equal to the number of positive
and null Lyapunov exponents,N+

+N0. If the number of
ensemble members is too small or the ensemble members do
not adequately span the subspace of the true error covariance,
in many applications it has been found necessary to apply ad
hoc fixes, such as additive or multiplicative covariance infla-
tion or localization. However, these fixes, by arbitrarily mod-
ifying the perturbations subspace and disrupting their struc-
ture can have detrimental effects on the forecast (Hamill and
Whitaker, 2011). Our algorithm ensures the independence of
the ensemble perturbations and spanning of the unstable and
neutral subspace.

In the Lorenz (1996) model, a good performance of the
filter was obtained without the need of numerical fixes. In
this, as well as in more complex meteorological models, the
stability properties have small phase space variability and
the local exponents associated to a globally unstable (stable)
direction are generally positive (negative). Roughly speak-
ing, the number of (locally) unstable directions varies little
in phase space. Consequently, the eigenvalues of the error
covariance matrix associated with the unstable directions re-
main numerically bounded from zero most of the time. If, on
the contrary, a globally unstable direction becomes locally
very stable for a sufficiently long period of time, the cor-
responding eigenvalue will become zero to numerical pre-
cision. When the local exponent becomes again positive,
the eigenvalue will remain zero and the filter will diverge.
This can explain why additive covariance inflation, that pre-
vents rank reduction was found to be beneficial for the per-
formance of ensemble Kalman Filters.

The present results suggest that the development of data
assimilation schemes should exploit the chaotic properties of
the forecast model. Regarding weather forecasting applica-
tions, we report the results of (Carrassi et al., 2007) where the
authors find that a quasi-geostrophic model with 7 levels and
14784 (= 64×33×7) degrees of freedom has only 24 pos-
itive Lyapunov exponents. This result shows how a model
with such large number of degrees of freedom, making the
direct application of EKF unfeasible, becomes treatable with
EKF-AUS with a number of perturbations of less than 1/600
of the number of the original degrees of freedom. The present
arguments are corroborated by the successful application to
operational forecasting of Ensemble Kalman Filters with a
number of ensemble members that is orders of magnitude
smaller than the number of degrees of freedom of the model.

It is worth noting that the EKF-AUS algorithm does not re-
quire an a-priori knowledge of the spectrum of the Lyapunov

exponents but only a reasonable upper limit forN+
+N0.

Since in the long run only the unstable directions survive, the
algorithm can be useful for another application: it can be ex-
ploited as an alternative, numerically efficient, methodology
to obtain an approximate estimate of the unstable manifold
dimension.

Appendix A

Proof of the equivalence of the span of the columns
of Ef , Ea and Xa

After the forecast step and orthonormalization we obtain the
matrix Ef . As said in the text, the estimate of error co-
variance after the analysis is obtained calculating the non-
diagonal matrix0a′

that represents the error covariance ma-
trix in the subspace spanned by the columns ofEf . After that
the matrix0a′

is diagonalized with a change of basis given
by the orthogonal matrixU. The matrixU is then applied to
Ef in Eq. (12) to obtainEa . The i-th column of the matrix
Ea are then rescaled by the square rootγi of the i-th eigen-
value of0a . To prove that the spanSm of the columns ofEa

is the same as the span of the columns ofEf we first observe
that the subspaceSm is m-dimensional and thus it can be de-
fined byn−m independent linear equations. An orthogonal
basisvj , j ∈ [1,n−m] of the orthogonal complement ofSm

can be used to identify the subspaceSm by means of

vT
j e= 0, ∀j ∈ [1,n−m], (A1)

wheree∈ Sm is the generic vector ofSm. After the anal-
ysis the error matrix has the formPa

= Ef U0a(UEf )T ≡

Ea0aEaT with 0a diagonal. The eigenvectors of this matrix
are the columns ofEa

= Ef U that are linear combinations of
the columns ofEf . These vectors still fulfill the condition
(A1) and, consequently, still spanSm. The next algorithm
step of Eq. (14) only re-scales the columns ofEa obtaining
Xa . Of course, after the rescaling, the columns ofXa still
span the same subspace. We thus prove that the span of the
columns ofEf is the same as that of the columns ofEa and
Xa .
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