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Abstract. We show that the slow magnetosonic (SM) pertur-
bations generated in the vicinity of the magnetopause, due to
the excitation of the Kelvin-Helmholtz (K.-H.) instability in
the case of a supersonic flow velocity, are transformed into
fast magnetosonic (FM) waves which can propagate into the
magnetosheath. Under the conditions discussed in this paper,
the FM wave has negative energy in the stationary (magneto-
spheric) coordinate frame. Due to this the outgoing FM wave
increases the growth rate of the K.-H. instability excited at
the magnetopause. Within the linear theory, we investigate
the influence of the excited FM wave on the growth rate of
the K.-H. instability. Simultaneously we predict the trans-
formation of the SM mode into kinetic Alfv́en (KA) mode.
Thus, in general, two types of waves with different polariza-
tions (the KA wave and the FM wave) should appear in the
magnetosheath due to the excitation of the K.-H. instability.
At the same time, the SM perturbations are only present in
the localized region where the K.-H. instability is excited.
To correctly describe the excitation of waves, we use two-
fluid (for electrons and ions) magnetohydrodynamics. This
approach is more general than the ideal magnetohydrody-
namics and allows us to take into account the effects asso-
ciated with the finite Larmor radius of ions. Also it can be
used to investigate the K.-H. instability in a multi-component
plasma, or in the case where the frequency of perturbations is
of the order of the gyrofrequency of oxygen ions which may
occur, for example, at the magnetosheath of Mars.
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1 Introduction

One of the challenging problems in planetary physics is how
the energy of the solar wind contributes to plasma processes
inside the bow shock, in particular, in the magnetosphere.
This problem is very important not only for the Earth, but
also for the planets without global magnetic fields, like Mars
and Venus. Experimentally it was established that for all
these planets there is a boundary layer that separates the
shocked solar wind plasma from the magnetospheric (iono-
spheric) plasma. This layer has a finite thickness across
which the retardation (up to zero velocity) of the bulk plasma
flow takes place.

The shear of the velocity can cause the K.-H. instability.
This instability is widely known. It was investigated analyti-
cally and numerically in many publications (see, e.g.,Chan-
drasekhar, 1961; Southwood, 1968; Ohsawa et al., 1976;
Miura and Prichett, 1982; Pu and Kivelson, 1983; Choud-
hury and Lovelace, 1984; Miura, 1992; Fujita et al., 1996)
discussing the generation of the LF perturbations at the mag-
netospheric boundary of Earth, Mars and Venus. For ex-
ample, the K.-H. instability was called upon to explain the
generation of the Pc-5 pulsations in the Earth’s magneto-
sphere by surface oscillations at the magnetopause (Glass-
meier, 1993; Sarafopoulos et al., 2001). Experimental data
confirm that surface low-frequency oscillations at the Earth’s
magnetopause and Alfvén Pc-5 waves in the Earth’s magne-
tosphere often appear simultaneously.

According to previous investigations in compressible
plasma when the magnetopause is modelled by a tangential
discontinuity there are two critical velocities for the K.-H.
instability: the lowervc,1 and the upper onevc,2 (see, e.g.
Pu and Kivelson, 1983). If the fluid velocity in the magne-
tosheathV0 is smaller thanvc,1 or higher thanvc,2, there is
no K.-H. instability at all. The existence of the upper critical
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velocity vc,2 is often explained by the excitation of the fast
FM wave when the flow velocity is high enoughV0 > vc,2
(see, e.g.Mann et al., 1999). At the same time it is clear
that when the FM wave is excited the boundary condition
at the upper (magnetosheath) side should be changed. The
boundary condition in the form of an attenuated wave be-
comes incorrect. It should be substituted by the condition
corresponding to the wave leaking into the magnetosheath.
Due to this the conclusion concerning the existence of the
second critical velocity does not look very convincing. In
2-D simulations of the K.-H. instability,Lai and Lyu(2006)
attracted attention to the excitation of the FM wave propa-
gating into the magnetosheath for supersonic flow velocity.
But the influence of such excitation on the growth rate of the
K.-H. instability was not investigated.

In the papers which describe the flow interaction as a
smooth layer of finite thickness, there is a statement that only
one (the lower) critical valuevc1 is present (see, e.g.Miura,
1992). In this paper, due to the applied boundary conditions,
no perturbations exist in the magnetosheath beyond the up-
per boundary and it is quite natural that the instability ex-
ists no matter how large the flow velocity is (Choudhury and
Lovelace, 1984; Miura, 1992).

While in the earlier papers, different aspects of the linear
stage of the K.-H. instability were discussed, later papers fo-
cused on the nonlinear stage of this instability. Large scale
dynamics were analysed numerically in 2-D and 3-D simula-
tions based on MHD equations (see, e.g.Takagi et al., 2006;
Fujimoto et al., 2006). These simulations have shown that
for developed vortices a coupling with smaller (ion and elec-
tron) scales takes place. This in turn results in the penetra-
tion of solar wind plasma through the boundary layer (Fuji-
moto et al., 2006). The existence of the K.-H. vortices at the
Earth’s plasmapause was confirmed experimentally (see, e.g.
Hasegawa et al., 2004b,a, 2006, 2009).

In our publication, we would like to attract attention to
one consequence of the excitation of the K.-H. instability at
the planets plasmapause that was not analysed before. While
previously the investigations were concentrated on the influ-
ence of the K.-H. instability on the magnetospheric plasma,
we discuss the excitation of waves in the magnetosheath due
to the K.-H. instability. We will show that for supersonic
plasma flow in the magnetosheath the K.-H. instability at the
magnetopause results in excitation of FM waves that under
some conditions propagate into the magnetosheath. In such
a case, the growth rate of the instability changes significantly
due to the negative energy of the FM wave in the magneto-
spheric reference frame. The outgoing FM wave causes an
increase of the growth rate. The physics behind this is that
the leakage of FM wave with negative energy from the region
where the K.-H. instability is excited causes the increase of
energy in the system. The manifestation of these results de-
pends on several parameters, namely the flow velocityV0,
the plasma pressure, the width of the layer, where the veloc-
ity changes, etc. Note, that the role of waves with negative

energy in relation with the K.-H. instability was mentioned
in several publications (see, e.g.Mann et al., 1999; Taroyan
and Erd́elyi, 2002) but the influence of the outgoing FM wave
with negative energy on the growth rate of the K.-H. instabil-
ity of the SM waves was not discussed.

Our approach is based on two-fluid magnetohydrodynam-
ics (for electron and ions) which can be easily generalized
for a multi-component plasma (e.g., two sorts of ions – oxy-
gen and hydrogen). Previously a two-fluid approach with the
aim to discuss the K.-H. instability was used byDobrowolny
(1972, 1977) in the local approximation. In such an approx-
imation the frequency and the growth rate of perturbations
change with coordinates and, thus, does not provide the cor-
rect description of the instability.

We would like to mention that, with slight modification,
our approach can also be used to describe the peculiarities of
the instability and the wave propagation for the case when
the frequency is of the order of the Larmor frequency of oxy-
gen ions. For a better understanding of the physical mech-
anism, it is reasonable to start with an analytical approach.
For this purpose the most simple 2-D geometry with straight
magnetic field lines is used in this paper.

2 Basic equations

We introduce a system of coordinates in which the plasma
moves along the magnetopause (z-axis) with velocityvp. Pa-
rameters of the medium (plasma density, electron and ion
temperatures, magnetic field, flow velocity), in a general
case, slowly vary along the x-axis (across the magnetopause)
and the medium is homogeneous along the y-axis. The layer
in which the velocityvp is changing has a finite thickness 2d.
In the magnetospherex < −d this velocity is equal to zero.
In the magnetosheathx > d the velocityvp reaches a maxi-
mum valueV0 and is constant forx > d. The magnetic field
linesB0 are assumed to be parallel to the flow velocity vec-
tor. This situation is typical for the nightside magnetopause.
A more general case (θ 6= 0) will be discussed in another pub-
lication.

To analyse the excitation of the K.-H. instability in the lin-
ear approximation, we use the continuity equations for elec-
trons and ions, the equations of their motion and the Maxwell
equations. The continuity equations take the form

∂nα

∂t
+∇ ·(N0vα)+∇nαvp = 0 (1)

HereN0 is a non-disturbed plasma density,ne, ni are the per-
turbations of electron and ion densities,vα are the velocities
of perturbations for electrons and ionsα = e,i. The depen-
dence of all perturbations on coordinates and time in general
is expressed in the form∝ f (x)exp[i(ωt −

∫ z
kzdz−kyy)].

To take into account the Doppler shiftkzvp(x) we also intro-
duce another frequencyωd = ω− kzvp(x). Later on in this
paper, we concentrate on the case when the perturbations
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along the y-axis are absentky = 0. It is convenient to express
the electricE and magneticb fields as functions of scalarφ
and vectorA potentials:

E = −∇φ−
iω

c
A (2)

b = ∇ ×A

The linearized equation of motion for electrons can then be
written as

iωdve+

(
ve,x

∂

∂x

)
vp = −

e

m
E−

∇pe

N0m
−ωHe[ve×ez]

−ωHe

[
vp×

b

B0

]
(3)

Here ve is the perturbation of the fluid velocity of elec-
trons,m,e are the mass and the electric charge of electrons,
pe = γ Te ·ne is the perturbed pressure,Te is the background
temperature of electrons,ωHe is the gyrofrequency of elec-
trons,γ is the adiabatic constant,ez is a unit vector along the
z-axis (along the flow velocity). The equations of motion for
ions

iωdvi +

(
vi,x

∂

∂x

)
vp =

e

M
E−

∇pi

N0M
+ωHi [vi ×ez]

+ωHi

[
vp×

b

B0

]
−

1

MN0
∇{π} (4)

contain the tensor of collisionless viscosity{π} that should
be taken into account to present correctly the kinetic Alfvén
(KA) wave, M is the mass of the ion,ωHi is the gyrofre-
quency of the ion. The values for the components of the
tensor{π} can be found inMikhailovskii and Onishchenko
(1995).

From the Maxwell equation for the perturbed magnetic
field it follows

∇ ·(∇ ·A)−1A =
4π

c
eN0(vi −ve) (5)

The transverse and the longitudinal velocities of electrons ex-
pressed in terms of the electric potentials in the lowest ap-
proximation with respect toωd/ωHe take the form

ve,x = −i
eωd

mcωHe
Ay (6)

ve,y = +i
eωd

mωHec
Ax +

e

mωHe

∂φ

∂x
−

γ

mN0ωHe

∂Ten

∂x

ve,z = −i
e

ωdm

∂φ

∂z
+ i

γ

N0ωdm

∂Tene

∂z
+ i

ve,x

ωdωHe
Ay

∂vp

∂x

In the equations for ions, we have retained in the denominator
the frequencyωd. This is important for the excitation of the
Alfv én waves with frequenciesωd ≤ ωHi .

vi,x = −i
ωHi

ω2
Hi −ω2

d

eωd

Mc
Ay

−i
ωd

ω2
Hi −ω2

d

(
i
eωd

Mc
Ax +

e

M

∂φ

∂x
+

γ

MN0

∂Tini

∂x

)

vi,y =
ωHi

ω2
Hi −ω2

d

(
i
eωd

Mc
Ax +

e

M

∂φ

∂x
+

γ

MN0

∂Tini

∂x

)
+

1

ω2
Hi −ω2

d

eω2
d

Mc
Ay

vi,z = −i
e

ωdM

∂φ

∂z
+ i

γ

ωdMN0

∂Tini

∂z
+ i

vi,x

ωdωHi
Ay

∂vp

∂x
(7)

The terms with the collisionless viscosity are omitted in
Eq. (7). However, they will be taken into account later to
obtain the correct expression for the KA wave The veloci-
ties (6), (7) should be substituted into the Maxwell Eq. (5)
and the continuity equations. The resulting system of equa-
tions, together with the equation of quasi-neutralityne = ni ,
allow us to discuss the formation of the LF magnetosonic
perturbations at the magnetopause.

3 LF plasma perturbations at the magnetopause

In this section, we neglect the effects associated with the
finite Larmor radius of ions. Due to this we omit the ten-
sor {π} in the equation of motion for ions. It is assumed
that small monochromatic perturbations exist along the z-
axis∝ exp[i(ωt −

∫ z
kzdz)].

Below, we consider the case when the frequencyωd at
the magnetopause and in the magnetosheath is much smaller
than the gyrofrequency of oxygen ionsω2

d � ω2
Hi . This case

is usually discussed in the literature. We would like to derive
a differential equation describing LF magnetosonic perturba-
tions in the presence of a nonhomogeneous flow velocity of
plasmavp(x).

After the substitution of the velocities for electrons and
ions (6), (7) into the Maxwell equation for theAy component
of the vector potential we find(

∂2

∂x2
−k2

z +
ω2

d

c2
A

)
Ay = −

4πe

cωHi

∂v2
sn

∂x
(8)

HerecA is the Alfvén velocitycA =

√
B2

0
4πMN0

, vS is the sound

speedvS=

√
γ

Ti+Te
M

.
The substitution of the velocities (6)–(7) into the continu-

ity equations and elimination of the longitudinal electric field
gives the following result

(ω2
d −k2

zv2
s)n =

eω2
d

cM

∂

∂x

(
N0

ωHi
Ay

)
(9)

From the system of Eqs. (8)–(9) we find the equation for the
potentialAy(

∂2

∂x2
−k2

z +
ω2

d

c2
A

)
Ay +

4πe2

MωHi

1

c2

∂

∂x

v2
Sω2

d

ω2
d −k2

zv2
S

∂

∂x

(
N0

ωHi
Ay

)
= 0 (10)
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The characteristic scales along the x-axis of the plasma den-
sity LN =

∂N0
N0∂x

, the magnetic fieldLB =
∂B0
B0∂x

and the fluid

velocity Lv =
2dcA
V0

should be larger than the Larmor radius
of ionsρHi to use magnetohydrodynamics. Also, we suppose
that quadratic combinations of the inverse scales are small
enough(LiLj )

−1
� k2

z and that the scale of plasma concen-
tration is the largestLB/LN � 1, Lv/LN � 1. In such an
approximation, we arrive at the following equation

∂

∂x

ω2
d(v

2
S+c2

A)−k2
zv2

Sc2
A

c2
A(ω2

d −k2
zv2

s)

∂Ay

∂x
+

(
ω2

d

c2
A

−k2
z

)
Ay = 0 (11)

This equation describes two modes – the slow and the fast
magnetosonic waves in a weakly inhomogeneous plasma. In
the geometric optics approximation Eq. (11) reduces to

k2
x =

(ω2
d −k2

zc2
A)(ω2

d −k2
zv2

S)

ω2
d(c

2
A +v2

S)−k2
zv2

Sc2
A

(12)

This well-known equation is used in different papers while
discussing the K.-H. instability (e.g.Southwood, 1968; Pu
and Kivelson, 1983). It should be mentioned that Eq. (11)
contains several particular points where

ω2
d(x) = k2

zc2
A, ω2

d(x) = k2
zv2

S, ω2
d(x) =

k2
zc2

Av2
S

c2
A +v2

S

(13)

In the vicinity of these points the approximation of the geo-
metric optics is not valid. So, a more accurate investigation
is required.

We suppose that the speedvp(x) changes monotonously
with x fromvp = 0 in the magnetosphere (x <−d) tovp = V0
in the magnetosheath (x > d). It follows from relations (13)
that in general there are six particular pointsx±

1 ,x±

2 ,x±

3 for
which

kzvp(x
±

1 ) = ω±
kzvS(x±

1 )cA(x±

1 )√
v2

S(x±

1 )+c2
A(x±

1 )

, (14)

kzvp(x
±

2 ) = ω±kzcA(x±

2 ), kzvp(x
±

3 ) = ω±kzvS(x±

3 )

At the first two particular pointsx±

1 the SM wave propagates
perpendicular to the direction of flow. Indeed, according to
Eq. (12) atx = x±

1 the absolute value of the wave numberkx

tends to infinity, that isk2
x � k2

z . The relation

ω2
d =

k2
zv2

Sc2
A

v2
S+c2

A

coincides with the dispersion relation for the SM wave in the
transverse casek2

x � k2
z . The other particular pointsx±

2 and
x±

3 correspond to the SM and FM waves in the case when
kx ≈ 0. It is convenient to introduce a parameterβ = v2

S/c2
A,

which is equal to the ratio of the thermal pressure to the
magnetic pressure. For a positive sign on the right-hand
sides of Eqs. (14) the particular points are distributed along
the x-axis in the following mannerx+

1 < x+

2 < x+

3 . At the

flank-side magnetopause, wherex+

1 < x < x+

2 , the plasma is
transparent for propagation. According to the analysis pre-
sented above, the SM wave can be present in this region.
Its amplitude decreases outwards forx > x

(+)
2 andx < x

(+)
1 .

Hence, this SM wave can be approximately considered as a
surface wave. For negative signs another relation holds de-
pending on the magnitude of the parameterβ. If β at the
inner side of the magnetopauseβsp is also larger than unity,
the particular points are distributed in the following manner:
x−

3 < x−

2 < x−

1 . In this case, the SM wave can be excited
in the regionx−

2 < x < x−

1 . Note, that in the general case
there is a link between the SM waves existing in two dif-
ferent regions:x+

1 < x < x+

2 and x−

2 < x < x−

1 . This link
can be very small (the waves are practically independent)
if the wave attenuation in the regionx−

1 < x < x+

1 is large
enough. The attenuation depends on the parameters of the
medium and the excited wavelength. Ifβsp is less than unity
(which is more typical), we havex−

2 < x−

3 < x−

1 . The SM
wave in this case is localized in the regionx−

3 < x < x−

1 .
Note that the wave propagation, in the form of a FM wave,
is possible in the regionx > x+

3 for the supersonic veloc-
ity V0 when the absolute value of the frequencyωd exceeds
kzvS. In the present paper, we shall discuss separately two
cases. First, we consider the case when the FM waves are
not excited in the magnetosheath (ω2

d < k2
zv2

S) and the sur-
face waves are present at the magnetopause (the usual K.-
H. instability). Secondly, we analyse the situation when the
FM wave is excited at the magnetopause. Due to this the K.-
H. instability becomes more complicated and involves, under
some conditions (see Sect. 6), the propagation of FM waves
into the magnetosheath.

4 Kelvin-Helmholtz instability at the nightside
magnetopause

It is convenient to introduce the dimensionless frequency
fd =

ωd
kzcA

, the velocityu =
vp

kzcA
and the dimensionless co-

ordinateρ = kzx. Let us assume that parameterβ is a con-
stant quantity and large enough(β > 1) and at the same time
the flow velocity is not too high. Then in the vicinity of the
magnetopause (if we neglect the excitation of the KA wave)
a common surface wave is formed. This means that the am-
plitude of the magnetosonic perturbation tends towards zero
with increasing distance from the magnetopause. In other
words, no FM wave is excited in the magnetosheath and in
the magnetosphere due to perturbations at the magnetopause.
In Eq. (11), there are no singularities becauseω2

d < k2
zv2

S ev-
erywhere. Due to this, we may simplify Eq. (11) by assuming
thatω2

d � k2
zv2

S

∂

∂ρ

(
f 2

d −
β

β +1

)
∂Ay

∂ρ
−

β

β +1
(f 2

d −1)Ay = 0 (15)
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Now we multiply Eq. (15) byA∗
y and integrate it with respect

to ρ. Taking into account thatAy → 0 if |ρ| →∞ we find∫
∞

−∞

(
f 2

d −
β

β +1

)
|
∂Ay

∂ρ
|
2dρ

+
β

β +1

∫
∞

−∞

(f 2
d −1)|Ay|

2dρ = 0 (16)

Let us single out the averaged velocity< u>

< u>=

∫
u
(
|
∂Ay
∂ρ

|
2
+

β
β+1|Ay|

2)
)
dρ∫ (

|
∂Ay
∂ρ

|2+
β

β+1|Ay|
2)
)
dρ

(17)

If we introduce the dimensionless frequencyf1 = f − < u >

and the velocityu1 = u− < u >, Eq. (16) near the threshold
of instability can be expressed in the form

f 2
1 + < u2

1 > −
B

A
= 0, (18)

where

A =

∫ (
|
∂Ay

∂ρ
|
2
+

β

β +1
|Ay|

2)

)
dρ (19)

B =
β

β +1

∫ (
|
∂Ay

∂ρ
|
2
+|Ay|

2
)

dρ

It is clear from Eq. (18) that the instability appears if< u2
1 >

exceedsB/A. It means that the square of the character-
istic velocity u1 should be of the order of unity or more.
This condition determines the threshold of instabilityvc,1.
Note that at the threshold of instability the dimensionless
frequency of perturbations isf =< u>. This means that the
frequency in the stationary (magnetospheric) reference frame
is ω = kzcA < u>.

Let us now make some estimates. Suppose that the veloc-
ity vp(x) changes withx according to

vp(x) = 0.5V0

[
1+ tanh

(x

d

)]
(20)

From this equation, we find the typical gradient of the flow
velocity along the x-axisdvp/dx ≈ 0.5V0/d. If only this flow
velocity changes at the magnetopause and the other parame-
ters (temperature, plasma density, magnetic field) are con-
stant quantities, then due to the symmetry< u >= 0.5V0.
The integrals (19) in Eq. (18) can be calculated if we choose
a specific distribution of the potentialAy and its derivative as
functions of the x-coordinate. For this purpose, we need to
match the solutions in the vicinities of the particular points
with the solution in the geometric optics approximation valid
far away from these points.

To estimate< u2
1 > we apply the geometric optics approx-

imation and calculate the input of the regionx ≥ x+

2 . For
the case 2cA < V0 < 2vS , assuming that the regionx ≥ x+

2
provides the main contribution, we find

< u2
1 > ≈

V 2
0

4c2
A

, kzd < 1

< u2
1 > ≈

V 2
0

4c2
A

1.25

k2
zd2

, kzd > 1 (21)

Now let us discuss another case when the flow velocity is
supersonic (V0 > 2vS). This situation is typical for the flanks
of the Earth’s magnetosheath and the magnetosheath of Mars
or Venus. In this case, our main Eq. (11) contains a singu-
larity at the pointx+

3 whereωd(x) = −kzvS. This means that
the FM wave is excited at this point and we do not have a
pure surface wave. Note that previously the excitation of the
kinetic Alfvén wave at the singular point was discussed by
Hasegawa and Chen(1976). Ohsawa et al.(1976) mentioned
that such an excitation influences the growth rate of the K.-H.
instability. But a detailed analysis was not presented.

We shall use a somewhat different approach than was uti-
lized in the papers cited above and start with Eq. (11). Let
us integrate this equation within a finite range of coordi-
natesρmin < ρ < ρmax. For the upper boundary, we take the
point ρmax= kzx

+

3 and for the lower boundaryρmin = kzx
−

3
if βsp> 1 andρmin = kzx

−

2 if βsp< 1. Assuming once again
thatLv/LN ≈ 0, we arrive at the equation that determines the
instability∫ ρmax

ρmin

(β +1)f 2
d −β

f 2
d −β

|
∂Ay

∂ρ
|
2dρ

−

∫ ρmax

ρmin

(f 2
d −1)|Ay|

2dρ− (22)

−
(β +1)f 2

d −β

f 2
d −β

A∗
y
∂Ay

∂ρ
|ρmax

+
(β +1)f 2

d −β

f 2
d −β

A∗
y
∂Ay

∂ρ
|ρmin = 0

The third term in Eq. (22) describes the influence of the out-
going FM wave on the instability. Similarly the fourth term
describes the influence of the magnetosonic wave (in the case
if it is exited) propagating from the magnetopause into the
magnetosphere. It is seen that the denominator in the first,
the third and the fourth term in Eq. (22) tends to zero if
ρmax→ kzx

+

3 andρmin → kzx
−

3 . But at the same time the
numerator also tends to zero. For the pointx+

3 this can be
verified if we substitute the solution (A14) obtained in the
Appendix into Eq. (22). For the lower boundary this can be
shown similarly.

In this paper, we shall discuss only the matching of so-
lutions at the upper boundary because we are interested in
the problem how the FM wave propagating into the magne-
tosheath influences the instability. If only the flow velocity is
changed across the magnetopause the input to Eq. (22) from
the lower (magnetospheric) boundary due to the symmetry
is similar as from the upper boundary. If other parameters
are also changed across the magnetopause, the input of the
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magnetospheric boundary should be taken into account in an
explicit form. It means that in a general case the K.-H. insta-
bility at the magnetopause is influenced simultaneously by
both boundaries (the upper and the lower).

Let us assume now thatV0 > 2vS. Our aim is to investi-
gate how the outgoing FM wave influences the growth rate of
the K.-H. instability. It is convenient to introduce two Mach
numbers, the Alfv́enic oneMA =

V0
cA

and the sonic Mach

numberMS =
V0
vs

. As the fluid velocityV0 is supposed to
be supersonic, we shall assume thatMA � 1 andMS> 2.

In this section, we neglect the excitation of the kinetic
Alfv én wave (which is treated in Sect. 5). Also to simplify
our calculations, we assume that all parameters except the
flow velocity do not change across the magnetopause. Tak-
ing into account Eq. (22) it is convenient to introduce the
following quantities

I1 ≈
V 2

0

c2
A

∫ √
βskzLv

kzLv

(
−

β+1

f 2
d −β

|
∂Ay

∂ρ
|
2
+|Ay|

2

)
tanh2

(
ρ

kzd

)
dρ,

I2 ≈

∫ √
βkzLv

kzLv

(
−

β

f 2
d −β

|
∂Ay

∂ρ
|
2
+|Ay|

2

)
dρ,

I3 = −
(β +1)f 2

d −β

f 2
d −βs

A∗
y
∂Ay

∂ρ
|ρmax (23)

I4 =
(β +1)f 2

d −β

f 2
d −βs

A∗
y
∂Ay

∂ρ
|ρmin

Neglecting the excitation of the FM wave, we find, with the
help of Eq. (23), the condition for the K.-H. instability takes
the form

I1−I2−
2

3
kzLv|C0|

2 > 0 (24)

This condition means that the instability appears if the flow
velocity exceeds the critical value. (The first termI1 ex-
ceeds the contribution of the two other terms). The third term
2
3kzLv|C0|

2 in Eq. (24) corresponds to the input of the region
0< x < x+

1 .
When the FM wave is excited, the termI3 gives a finite

contribution to the growth rate of the instability. It can be
verified that in the case where only the flow velocity changes
across the magnetopause the contribution of the real parts
of the termsI3 and I4 compensate each other. The imag-
inary parts give the same contributionIm(I3) to Eq. (22).
But in the general case the contribution of the termsI3 and
I4 to Eq. (22) is different. For example, ifkz(x

+

1 −x−

1 ) � 1
there is practically no connection between the lower (magne-
tospheric) and the upper parts of the magnetopause. In such
a case, the termI4 almost does not influence the K.-H. in-
stability excited at the upper part of the magnetopause. It
means that in general two different regionsx+

1 < x < x+

2 and
x−

2 < x < x−

1 can give rise to two K.-H. instabilities (at the
outer boundary of the magnetopause and at the inner bound-
ary). For small-scale perturbationskz(x

+

1 −x−

1 ) � 1 when

the connection between two regions is very small only the
instability at the inner boundary is connected with processes
in the magnetosphere. At the same time, the instability at
the outer boundary can be the source of the LF waves in the
magnetosheath.

Let us introduce

sinφ =
ρ

√
βkzLv

, where Lv =
2dcA

V0

In the casekzd > 1 after substitution in Eqs. (23) of the elec-
tric potentialAy found in the Appendix, we arrive at the ap-
proximate contribution of the main terms

I1 = 2|C3|
2exp(P )β3/2LS

∫ π/2

1/
√

β

(cosφ)2(sinφ)2

exp

[
−LS

(
φ+sinφcosφ−

2
√

β

)]
dφ,

I2 = |C3|
2exp(P )β1/2

(
β

β +1
+1

)
LS

∫ π/2

1/
√

β

(cosφ)2

exp

[
−LS

(
φ+sinφcosφ−

2
√

β

)]
dφ,

I3 = 0.92|C3|
2β

((
cos

2π

3

)
− isin

(
2π

3

))
(25)

HereL is a dimensionless parameterL = 2dkz/MS. It fol-
lows from Eqs. (25) that in the limiting casekzd > 1 there
are only two main parametersβ and L that determine the
threshold of instability (if the flow velocity is parallel to the
magnetic field). For finite values ofL, β andkzd the contri-
bution of different terms can be evaluated numerically. Note,
that for estimates we have only used the one exponent expP

in Eq. (25). This is correct if the attenuation is high enough
P ≥ 1. For small values ofL, two exponents (increasing and
decreasing) should be retained in Eq. (25). That is why our
results forL < 1 can be considered only as a rather crude
approximation.

Assume that the threshold of the K.-H. instability is ex-
ceeded even without taking into account the FM wave. Our
aim is to find out how the growth rate is influenced by the
excitation of the FM wave leaking into the magnetosheath.
We suppose that only the flow velocity changes across the
magnetopause. In this case the real parts ofI3 andI4 at the
upper and the lower boundaries of integration compensate
each other and the imaginary partIm(I3) = Im(I4) gives the
contribution to the growth rate. The corresponding growth
rate is given by the real part ofG, where

G ≈
1

Ms

(
3(I1−I2− iIm(I3))−2L

3(I2+L)

)1/2

, (26)

In Fig. 1, the dimensionless growth ratesReG(L) (normal-
ized tocA/2d) for MS = 3, β = 3.5 are presented. The bro-
ken line shows the growth rate calculated without taking into
account the FM wave excitation. The continuous line shows
the growth rate calculated from Eq. (26). One can see that
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Fig. 1. The growth rateG of the K.-H. instability (normalized to
cA/2d) for the the sonic Mach numberMS = 3, plasma pressure
β = 3.5 is presented as a function of the dimensionless parameter
L = 2dkz/MS. The growth rate of instability taking into account
the excitation of the FM wave propagating into the magnetosheath is
given by a continuous line. The growth rate of instability neglecting
the excitation of the FM wave is presented by a broken line.

the excitation of the FM wave propagating into the magne-
tosheath raises very strongly the growth rate of the K.-H.
instability due to the negative energy of the FM wave (see
Sect. 6).

We can estimate the perturbed longitudinal magnetic field
b‖ of the excited FM wave in the magnetosheathx >x+

3 with
respect to the field of the SM wave at the pointx = x+

2 with
the help of the results obtained above:

b‖(x) ≈ exp(−0.5P)b‖(x
+

2 ) (27)

Note, that due to the excitation of the K.-H. instability all
perturbations in the linear approximation grow exponentially
in time.

5 Excitation of the kinetic Alfv én wave

The idea that kinetic Alfv́en (KA) waves are generated due to
the linear transformation of the magnetosonic waves which
in turn appear as a result of the excitation of the K.-H. insta-
bility was introduced many years ago (Ohsawa et al., 1976).
Ohsawa et al.(1976) have derived an equation describing
the KA wave in a low-beta(β � 1) plasma. For high-beta
plasma(β > 1) the corresponding equation was obtained by
Mikhailovskii and Onishchenko(1995). Unfortunately, in
Ohsawa et al.(1976) and Mikhailovskii and Onishchenko
(1995) the transverse electric field (with respect to the back-
ground magnetic fieldB0) was expressed asE⊥ = −∇φ,
whereφ is the electric potential. In this approximation, the
interaction between KA and magnetosonic waves can not be
taken into account appropriately. Indeed only the transverse
electric field of the Alfv́en wave (and not of the magnetosonic

wave) is of a potential typeE⊥ = −∇φ. To discuss the in-
teraction of magnetosonic and Alfvén waves in the general
case, three components of the wave vector (kx,ky,kz) should
be taken into account. As a result a differential equation
that describes two types of resonances (Alfvénic and mag-
netosonic) is obtained (see, e.g.Taroyan and Erd́elyi, 2002).
In our case (ky = 0) the Alfvén resonance disappears. But
still the excitation of Alfv́en waves is possible. This problem
is discussed as follows.

In the 2-D case the Alfv́en wave has a transverseEx com-
ponent while the magnetosonic waves have only anEy trans-
verse electric field component. According toOhsawa et al.
(1976) andMikhailovskii and Onishchenko(1995) the dis-
persion relation for KA waves in the geometric optics ap-
proximation takes the form

ω2
= k2

zc2
A

[
1+k2

xρ2
eff

]
, (28)

where

ρ2
eff = 0.75ρ2

Hi +ρ2
∗, ρHi =

Ti

MωHi
, ρ∗ =

rDc

cA

ρHi is the Larmor radius of ions,rD is the Debye radius.
This equation can be obtained either in kinetics (seeOhsawa
et al., 1976) or in two-fluid magnetohydrodynamics taking
into account the tensor of collisionless viscosity{π} (see
Mikhailovskii and Onishchenko, 1995).

The aim of this section is to obtain a differential equation
describing the excitation of the KA wave in the inhomoge-
neous plasma in which the interaction with the magnetosonic
waves is taken into account.

In the case of a moving plasma, the dispersion relation for
the KA wave is easily obtained from Eq. (28)

ω2
d = k2

zc2
A

[
1+k2

xρ2
eff

]
(29)

It is clear from Eq. (29) that the KA wave exists for the
frequencies|ωd| ≥ kzcA . In contrast to the ordinary Alfv́en
wave the kinetic one has a component of the group veloc-
ity across the magnetic field (due to the termk2

xρ2
eff). It

means that the KA wave, if generated at the magnetopause,
can propagate into the magnetosheath even if the background
magnetic field is parallel to the flow velocity.

We start with the x-component of the Maxwell equation
for the electric field. On the right-hand side of this equation
the electric current generating this field should be expressed
in an explicit form:

∂

∂x
(∇ ·E)−1Ex = −

4πiωd

c2
eN0(vi,x −ve,x) (30)

As the electric currenteN0(vi,x − ve,x) in the magnetized
plasma depends not only onEx, but also on theEy com-
ponent of the electric field, the link between the two types of
waves (Alfv́en and magnetosonic) appears. We suppose that
in the region where the interaction of the Alfvén and the mag-
netosonic waves takes place the variations of the densityN0,
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the temperaturesTi, Te and the magnetic fieldB0 along the
x-axis are much weaker than the dependence of the fluid ve-
locity vp(x) on the x-coordinate. In this approximation, after
some transformations in the vicinity of the Alfvén resonance
regionω2

d ≈ k2
zc2

A , we arrive at the equation

k2
zρ2

eff
∂2Ex

∂x2
+

(
ω2

d

c2
A

−k2
z

)
Ex = Q(x,t), (31)

whereQ(x,t) is the source for the KA wave

Q(x,t)≈ −i
ω3

d

c2
AωHi

Ey (32)

In this source, we have neglected terms on the order ofk2
xρ2

Hi
which are assumed to be small enough. Note, that the source
Q(x,t) grows with time due to the K.-H. instability. In
the linear approximation, the growth is described by expγ t,

whereγ is the growth rate of the K.-H. instability. It follows
from Eqs. (31), (32) that the coupling between KA and mag-
netosonic waves has the order of magnitude∼

ωd
ωHi

. In the
present paper, this parameter is considered as small:ωd

ωHi
� 1.

Nevertheless assuming that the surface waves are intensive
enough due to the K.-H. instability, the excited KA wave can
also acquire significant amplitude.

In the vicinity of the interaction region, the frequencyω

can be expressed as

ω = kzvp(x)−kzcA

(
1+

1

2
k2

xρ2
eff

)
(33)

This frequency is a constant quantity. As the flow velocity
increases towards the magnetosheath, the correspondingkx
number should also increase in this direction. Note that the
excited KA wave has a negative frequency in the reference
frame moving with the plasma. Its group velocity along the
x-axis is

Vg,x ≈ −kzcAkxρ
2
eff (34)

This means that the x-component of the group velocity is
directed into the magnetosheath only for negative values of
kx.

It is convenient to introduce a new dimensionless variable

τ(x) =
v

1/3
0 (x −x+

2 )

(cAρ2
effd)1/3

(35)

As a result, Eq. (31) can be expressed in the form of an equa-
tion for the Airy function

∂2Ex

∂τ2
+τEx =

(cAd)2/3

k2
z(V0ρeff)2/3

Q (36)

Equation (36) has an oscillating solution forτ > 0 and ex-
ponential (decreasing or increasing) solutions in the region
τ < 0. We are interested in a solution that describes the wave

propagating into the magnetosheath forx > x+

2 and the ex-
ponentially decreasing wave in the regionx < x+

2 . To find
the amplitude of the excited Alfv́en wave, we need to intro-
duce the Green function for Eq. (36) that corresponds to the
outgoing wave forτ > 0 and the attenuated wave forτ < 0

G(τ > 0) =
1

1
τ1/2H

(1)
1/3

(
2

3
τ3/2

)
(37)

G(τ < 0) =
1

1
(−τ1/2)

[
−I1/3

(
−

2

3
τ3/2

)
+I−1/3

(
−

2

3
τ3/2

)]
HereH

(1)
1/3 is the Hankel function of the order 1/3, I1/3 is

a modified Bessel function of the same order,1 is a Wron-
skian. With the help of the Green function (37), we express
the solution of the inhomogeneous Eq. (31) in the form

Ex(τ ) =
d2/3

M
2/3
A k2

zρ
2/3
eff

∫
Q(τ1)G(τ −τ1)dτ1 (38)

This equation allows us to estimate the amplitude of the KA
wave due to the transformation of the slow magnetosonic os-
cillations in the inhomogeneous plasma. Such an estimate is
easily obtained with the help of Eqs. (37)–(38)

Ex

Ey(x
+

2 )
≈

kzcAd2/3

M
2/3
A ρ

2/3
Hi ωHi

(39)

HereEy(x
+

2 ) is the amplitude of the SM wave at the point
x = x+

2 .

6 Propagation of the FM waves in a weakly
inhomogeneous magnetosheath

While discussing the K.-H. instability, it is often assumed
that the background plasma is inhomogeneous only in one
direction (along the x-axis) and the medium along two other
axes is homogeneous. In reality this is not the case. Pa-
rameters of the medium (magnetic field, plasma density and
temperature are changing not only across the magnetosheath,
but also rather weakly along it (towards the tail). To take into
account such changes is important because it allows us to
find out in what parts of the magnetopause the K.-H. insta-
bility can be excited (see, e.g.Takagi et al., 2006) and where
the generated waves can be detected. The aim of this sec-
tion is to derive equations in the geometric optics approxi-
mation which describe the propagation of the FM waves in a
weakly inhomogeneous magnetosheath. We shall investigate
the propagation of the wave packet outside the region of ex-
citation. The collisionless attenuation is assumed to be small
enough.
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According to Eq. (12) the dispersion relation for the FM
wave near the region of its generationωd ≈ −kzvS in a
plasma withβ > 1 can be expressed in the form

ω = kz(vp−vS)−
k2

x

2kz

v3
S

v2
S−c2

A

(40)

With the help of Eq. (40), it becomes clear that in the geomet-
ric optics approximation all perturbations change in space
and in time according to

∝ exp

[
ikz(vp−vS)t − i

k2
x

2kz

v3
S

v2
S −c2

A

t

−i

∫
kx(x1)dx1− i

∫ z

kzdz1

]
(41)

It follows from Eq. (41) that in the system of coordinates
moving with the plasma, the excited FM wave has negative
frequency while in the motionless reference frame it has pos-
itive frequency. This frequency given by Eq. (40) should
be constant in the magnetospheric system of coordinates. It
means that the propagation of the FM wave packet into the
magnetosheath is possible if the difference of the velocities
vp − vS is positive along the trajectory of the wave packet.
Note that in the case if the main plasma parameters change
in both directions (along the x-axis and the z-axis), the k-
numbers (kx, kz) also change in space. To find the wave num-
bers in the inhomogeneous plasma, we introduce the phaseS

along the trajectory in such a way that

kx =
∂S

∂x
, kz =

∂S

∂z
(42)

The phaseS is determined by following equation (compare
with Eq. 40):

v2
S(r)

(
∂S

∂z

)2

+
v4

S(r)

(v2
S(r)−c2

A(r))

(
∂S

∂x

)2

=

(
ω−vp

∂S

∂z

)2

, (43)

while the trajectory of the wave packet starting at the initial
pointx+

3 ,z0 is given by

dz

Vg,z
=

dx

Vg,x
, (44)

whereVg,z andVg,x are the components of the group veloci-
ties

Vg,z =
∂ω

∂kz
= vp−vS

(
1+

k2
x

2k2
z

v2
S

v2
S−c2

A

)

Vg,x =
∂ω

∂kx
= −

kx

kz

v3
S

v2
S−c2

A

(45)

If we know how the velocitiesvS(r), vp(r) andcA(r) depend
on coordinates, the system of Eqs. (42)–(45) can be solved
numerically. Such a solution allows us to find how the ex-
cited wave propagates in the magnetosheath.

We see from the first Eq. (45) that the excited FM wave
in the motionless frame is involved in two types of motion:
It is convected along the z-axis with the flow velocityvp(x)

and at the same time it moves in the opposite direction with
the velocity which is close to the sound speedvS (neglecting
small corrections∝ k2

x/k2
z). So, the resulting speed along the

z-axis is smaller than the flow speedvp. Simultaneously, the
wave packet moves along the x-axis with a group velocity
given by the second Eq. (45). The wave propagates into the
magnetosheath if the correspondingkx number is negative
kx < 0 and the relation (43) is satisfied.

It is known that the wave energyE in a moving plasma
depends on the reference frame (see e.gMcKenzie, 1970):

E = Ed
ω

ωd
, (46)

whereE andEd are the energies in the stationary (magne-
tospheric) and moving with plasma reference frames. The
energy of the FM waveEd and the frequencyω are positive
while the frequencyωd is negative. This means that the en-
ergyE in the stationary frame is negative. The x-component
of the Poynting fluxP

P= Evg (47)

for the outgoing waveVg,x > 0 is directed from the magne-
tosheath to the magnetopause. Due to this the FM wave prop-
agating into the magnetosheath raises the energy (the growth
rate) of the K.H. instability.

A similar situation takes place for the KA wave propagat-
ing into the magnetosheath. As the energy of the KA wave
in the frame moving with the plasma is positive, its energy
in the stationary (magnetospheric) frame for large flow ve-
locities is negative. The x-component of the Poynting vec-
tor is directed towards the magnetopause while the wave
propagates into the magnetosheath. In this case, the excited
KA wave propagating into the magnetosheath increases the
growth rate of instability in the same manner as the FM wave.
This problem will be discussed in a separate paper.

7 Discussion and conclusions

Low frequency oscillations are commonly detected in the
Earth’s magnetosheath. Usually it is argued that they can
be generated near the bow shock or at the magnetopause.
Several different mechanisms of generation of such oscilla-
tions are discussed in the literature. In the case of a quasi-
parallel bow shock, rather strong oscillations convected from
the solar wind are observed in the magnetosheath (Lin et
al., 1991; Omidi et al., 1994). At the same time it was
confirmed byFreeman and Southwood(1988) that the bow
shock is transparent only for very low frequency perturba-
tions ≤10 mHz. For quasi-perpendicular shocks a signifi-
cant temperature anisotropyT⊥ > T‖ is predicted at the bow
shock (Omidi et al., 1994; Krauss-Varban et al., 1994). This
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anisotropy according to the theoretical investigations causes
the excitation of the mirror mode and the Alfvén ion cy-
clotron (AIC) waves (McKean et al., 1992). Being gener-
ated at the bow shock, such waves are convected by the so-
lar wind flow into the inner part of the magnetosheath. But
the magnetopause is also the source of LF waves. Due to the
shear flow, the K.-H. instability can be excited which leads to
magnetosonic perturbations. In addition, at the dayside mag-
netopause a temperature anisotropyT⊥ > T‖ is expected due
to the magnetic field draping (Anderson and Fuselier, 1993).
This can also result in the excitation of the mirror mode and
AIC waves. It should be mentioned that the SM waves are
often detected in the magnetosheath. At the same time, there
are only a few observations of FM waves being present at the
magnetopause and in the magnetosheath (Nagy et al., 2004;
Song et al., 1994). One reason for this may be that these
waves occur mainly in the higher frequency range of the LF
spectrum, which is not so well investigated.

Somewhat similar LF oscillations are observed in the mag-
netosheath of Mars and Venus (Winningham et al., 2005;
Gunell et al., 2008; Espley et al., 2005; Wolff et al., 1980;
Biernat et al., 1993; Vörös et al., 2008; Nagy et al., 2004).
But the identification of such waves is a rather complicated
task due to the lack of detailed information. For example,
there is no possibility to receive data from two satellites si-
multaneously, like for ISEE 1 and 2, or Cluster to detect the
direction of the waves propagation, their phase speed and so
on. Even the polarization of waves in the magnetosheath of
Mars and Venus is not investigated in detail. That is why
the theoretical analysis that could provide additional infor-
mation for comparison with the experimental data is rather
important.

A mechanism of LF wave excitation in the planetary mag-
netosheath associated with the K.-H. instability was sug-
gested in our paper. We argued that in a highβ magne-
tosheath plasma with the flow velocity significantly exceed-
ing the sound speed the K.-H. instability causes several types
of perturbations simultaneously. First, the SM structure lo-
calized in the region of generation should appear. It takes
the form of the perturbation attenuated towards the magne-
tosheath and moving with the averaged flow velocity in the
direction of the tail. According to our analysis, this SM mode
excites the KA wave in the region where the Doppler-shifted
frequency of perturbation becomes equal to the Alfvén fre-
quency. The latter propagates into the magnetosheath at a
small angle with respect to the non-disturbed magnetic field.

Another type of oscillation, namely FM waves, could also
be detected in a supersonic magnetosheath flow due to the
excitation of the K.-H. instability. The FM waves, in gen-
eral, have a right-handed polarization. In contrast to the SM
waves, plasma perturbations associated with the FM waves in
the geometric optics approximation are in phase with the per-
turbations of the longitudinal component of magnetic field,
see Eq. (9). Indeed, if the background plasma density and
the magnetic field change much more slowly along the x-

axis than the magnetic potentialAy, we may differentiate in
Eq. (9) onlyAy. As a result, we find that if|ωd| exceeds
the local valuekzvS along the trajectory, the perturbations
of plasma and the longitudinal magnetic fieldb‖ = ∂Ay/∂x

are in phase. But if the background plasma density or the
magnetic field also vary rather quickly withx, a finite phase
shift between the perturbations of plasma and the longitudi-
nal magnetic field appears. So, in real situations these two
types of perturbations should not be exactly in phase. The
FM waves in highβ plasma are strongly attenuated due to
resonance absorption by ions while propagating along the
background magnetic field. At the same time the attenu-
ation of these waves propagating at rather large angles to
the magnetic field is small enough. This means that these
waves probably could be detected in the inner part of the
magnetosheath. The detection of the FM waves in the mag-
netosheath in highβ supersonic flow of plasma could be con-
sidered as an important confirmation of the excitation of the
K.-H. instability near the magnetopause.

Appendix A

The required solution of Eq. (11) in the vicinity of the third
particular pointx+

3 can be obtained analytically. Taking into
account that in the vicinity of this pointωd ≈ −kzcA(

√
β +

x−x+

3
Lv

) we receive the following approximate equation

∂

∂ξ

1

(ξ −ξ3)

∂Ay

∂ξ
+ l2Ay = 0, (A1)

whereξ −ξ3 =
x−x+

3
Lv

and

l2 ≈
β −1

β3/2

8k2
zd2c2

A

V 2
0

(A2)

If we introduce a new variableη/l = (ξ − ξ3)
3/2, Eq. (A1)

takes the form

∂2Ay

∂η2
−

1

3η

∂Ay

∂η
+

4

9
Ay = 0 (A3)

This equation has an exact solution in terms of cylindric
functions (Kamke, 1959).

Ay = η2/3Z2/3

(
2

3
η

)
(A4)

whereZ2/3(
2
3η) is a cylindric function of the order 2/3. We

are interested in a solution that corresponds to the propa-
gating wave atη > 0. This solution can be expressed by a
combination of Hankel functions. Explicitly our solution for
x >x+

3 in general takes the form

Ay = (ξ −ξ3)

[
C5H

(1)
2/3

(
2

3
l(ξ −ξ3)

3/2
)

+C6H
(2)
2/3

(
2

3
l(ξ −ξ3)

3/2
)]

(A5)
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HereC5 andC6 are constant quantities that are determined
by matching solutions at the boundary between the mag-
netosheath and the magnetopause. Two terms in the so-
lution (A5) correspond to the waves propagating into the
magnetosheath and from the magnetosheath into the mag-
netopause. Note that despite the resonance atξ = ξ3 in
Eq. (A1), the solution of this equation is a regular function of
ξ in the vicinity of ξ = ξ3.

Now we need to discuss the distribution of the potential
in two regionsx > x+

3 andx+

2 < x < x+

3 in more detail. We
are interested in the case when the FM wave excited at the
point whereωd = −kzvS takes the form of the wave propa-
gating into the magnetosheath. Such a wave near this point is
described by the Hankel function of the first type, see solu-
tion (A5). This Hankel function can be expressed as a com-
bination of Bessel functions

H
(1)
2/3(ξ) =

1

isin(2π
3 )

[
J−2/3(ξ)−J2/3(ξ)exp

(
−i

2π

3

)]
(A6)

Taking into account that the Bessel function for small values
of its argument is

Jν(ξ) =

(
ξ

2

)ν
[

1

0(ν +1)
−

ξ2

40(ν +2)

]
(A7)

we are in a position to match the solutions in the regions
x > x+

3 and x < x+

3 . The required solution describing the
outgoing wave for small positive values of argument follows
from Eqs. (A6), (A7)

Ay = −C5
i

sin(2π/3)

[
(ξ −ξ3)

2 1

0(1/3)

(
l

3

)−2/3

−
exp(−i2π/3)

0(5/3)

(
l

3

)2/3
]

(A8)

After the substitution of the solution (A8) into Eq. (22), we
find the input of the third term in case of the outgoing FM
wave

−
(β +1)f 2

d −β

f 2
d −β

A∗
y
∂Ay

∂ρ
|ρmax

≈ 0.55
β3/2

kzLv

|C5|
2exp

(
−i

2π

3

)
(A9)

The solution obtained above is valid in the vicinity of the
pointx = x+

3 . But to find the integrals in Eq. (22) an approx-
imate solution in the whole regionx+

2 < x < x+

3 is required.
This solution should coincide with the exact solution found
above in the vicinity of the pointx = x+

3 . The solution corre-
sponding to the outgoing wave valid forξ −ξ3 > l−2/3 in an
explicit form is the following:

Ay ≈ C5(ξ −ξ3)
1/4 (β)1/8

21/8(kzLv)1/2

exp

[
i

(
23/2

3

kzLv

β1/4
(ξ −ξ3)

3/2
−

7π

12

)]
(A10)

To find an approximate solution in the regionx+

2 < x < x+

3 ,
we slightly simplify Eq. (11) assumingβ � 1. This new
equation we express in the form which is convenient to find
a solution in the geometric optics approximation

∂

∂x

k2
zc2

A

ω2
d −βk2

zc2
A

∂Ay

∂x
+

k2
z

1+β
Ay = 0 (A11)

Let us introduce a new functionA1 in such a way that

Ay =

(
ω2

d

βk2
zc2

A

−1

)1/2

A1 (A12)

After some calculations, we find a solution of Eq. (A11) that
corresponds to the outgoing wave forx >x+

3 :

Ay = C3

(
ω2

d

βk2
zc2

A

−1

)1/4

exp

[
i

(
kz

∫ x

x+

3

√
ω2

d

βk2
zc2

A

−1dx −
π

4

)]
(A13)

In the vicinity ofx = x+

3 solution (A13) takes the form

Ay = C3
21/4

β1/8
(ξ −ξ3)

1/4

exp

[
i
23/2

3

kzLv

β
1/4
s

(ξ −ξ3)
3/2

− i
π

4

]
(A14)

Comparing two solutions (A8) and (A14), we find that

C5 = C3(kzLv)
1/2 23/8

β1/4
exp(−i

π

3
) (A15)

Note that different phase factors exp(−i7π/12) and
exp(−iπ/4) appear in Eqs. (A10) and (A15) because the ge-
ometric optics approximation does not give a correct phase
factor. The solution in the regionx+

2 < x < x+

3 that corre-
sponds to the solution (A13) in the regionx > x+

3 is the fol-
lowing:

Ay = C3

(
1−

ω2
d

βk2
zc2

A

)1/4

[
−iexp

(
P(x)

2

)
+0.5exp

(
−

P(x)

2

)]
, (A16)

where

P(x) = 2kz

√
β

√
β +1

∫ x+

3

x

√
1−

ω2
d

βk2
zc2

A

dx

Parameter

P = P(x+

2 ) = 2kz

√
β

√
β +1

∫ x+

3

x+

2

√
1−

ω2
d

βk2
zc2

A

dx

≈ 2
√

β(
π

4
−

1
√

β
)
cA2dkz

V0
(A17)
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determines the wave attenuation in the regionx+

2 < x < x+

3 .
With the help of the analysis presented above, we are able

to estimate the input to Eq. (22) of the regionx+

2 < x < x+

3
and the boundaryx = x+

3 . Also the distribution of the poten-
tial Ay in the regionx−

1 < x < x+

1 is required. An approxi-
mate solution in the regionx−

1 < x < x+

1 takes the form

Ay =

[
C

(1)
0 exp

(
−kz

√
β

β +1
x

)
+C

(2)
0 exp

(
kz

√
β

β +1
x

)]
,

(A18)

where the coefficientsC(1)
0 andC

(2)
0 are to be determined by

matching the solutions of equations for the potentialAy at the
boundariesx+

1 andx−

1 . This procedure results in the analy-
sis of complicated equations. Indeed, ifx → x+

1 , or x → x−

1
the coefficient before the second derivative in Eq. (11) tends
towards zero and an equation of the fourth order that takes
into account the finite Larmor radius of ions or small dissi-
pation must be analysed. The solutions of such an equation
remain finite at the particular points mentioned and approxi-
mate matching of solutions of the second order equation near
these points can be obtained. This procedure is well known
and can be found elsewhere (see, e.g.,Taroyan and Erd́elyi,
2002, where the results and the corresponding references are
given). In our case whenβ, at the outer part of the magne-
topause, is supposed to be significantly larger than unity two
particular pointsx+

1 andx+

2 where(β +1)ω2
d = βk2

zc2
A and

ω2
d = k2

zc2
A are close to each other and they influence the re-

sult of matching the solutions. This makes the analysis even
more complicated. For a rather crude estimate, we consider
the case when two particular pointsx+

1 andx+

2 coincide. In-
side the intervalx−

1 < x < x+

1 (except for small regions close
to particular pointsx+

1 andx−

1 ) in the case of a symmetric
plasmapause the potentialAy approximately takes the form

Ay ≈ 0.5C0
[
exp(−kzx)+exp(kzx)

]
(A19)

It can be shown that for high flow velocitiesV0, the jump in
the solutionsAy at the particular pointsx+

1 andx−

1 is small
enough (inversely proportional toV0). As a result the con-
nection between solutions forx < x+

1 andx > x+

2 provides
the following result:

|C0| ≈
2exp(0.5P)

exp(−kzx
+

2 )+exp(kzx
+

2 )
|C3| (A20)
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