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Abstract. Zaliapin and Ghil (hereafter, ZG) claim that
the linearity of the climate feedback model in Roe and
Baker (2007) (hereafter, RB) invalidates our derivation of
the well-known skewed shapes of published probability
distributions (pdfs) of climate sensitivity. We show here that
linearity is fully justified. Nonlinearity could be of some
importance only if the focus is on exotic and improbable
events, which appear to be the focus of ZG, instead of the
sensitivity pdfs, which were the focus of RB.

Equation (9) of ZG relates the equilibrium temperature
rise, or climate sensitivity,1T , to the equilibrium radiative
response,1R ∼ −4[W/m2], produced by step-function
radiative forcing:

1R ≡
(f −1)

λ0
1T −a1T 2, (1)

wheref is the total feedback factor,λ0 ≈ 0.3 is a reference
sensitivity,a ≡ −f ′/(2λ0). ZG show that if the coefficient
a is sufficiently large, the relationship between1T andf

tends to linear, and in that case the pdf ofT derived from that
of f would not have the characteristic highT tail that is the
focus of intense interest in climate science (see refs. below,
and note some sign confusion in ZG).

While the ZG statement is trivially correct as an algebraic
exercise, we are interested in the application of Eq. (1)
to climate simulations, where we are not free to pick
arbitrary values of the parameters. We now show that in
order to significantly decrease the skewness in the1T −f

relationshipa would have to take on values outside the range
derived from published climate studies. The fact that the
climate simulations do not yield such large values ofa and
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do yield skewed climate sensitivity pdfs therefore renders the
ZG exercise irrelevant for the study of these simulations.

Since 1R and λ0 are known, the importance of the
nonlinear term in Eq. (1) depends only on the ratioa/(f −1).
Thus to examine the effect of linearizing the equation on
computing sensitivity pdfs, we have analyzed the ranges
of values of f and a relevant for this problem. We
first consider the conceptually possible limiting case that
f → 1. RB explicitly cut off the feedback distribution at
f = 0.85, and in our supplemetary online material (SOM) we
showed that the resulting linear model still gives excellent
reproduction of the many climate sensitivity distributions
found in the literature. Thus extreme feedback behaviors,
though interesting in principle, do not contribute significantly
to climate sensitivity distributions produced by a range of
climate models.

Table 1 shows values of the relevant parameters in Eq. (1),
derived from a number of studies using a range of models
and covering a range of simulations. These, as well as the
sample calculation in the SOM of RB, show that typically
−0.06≤ a ≤ 0.06 (See Table 1, and contrast with ZG, Fig. 2).
However, ifa > 0 its magnitude must be almost an order of
magnitude greater than this in order to significantly impact
the relationship betweenf and 1T , and, hence, diminish
the skewness of the sensitivity pdf. Note that in several of
the reported casesa < 0; the nonlinearity actually increases
the skewness of the distribution.

In order to compare the ZG nonlinear relationships (Eq.1
and the derived sensitivity pdf) with those of RB (for which
a = 0) and with the results of previous published climate
simulations, we must at least ensure that pairs off , 1T

cross (∼ 0.65,∼ 3.5◦C) for all values ofa, since this is the
combination that is typically calculated from pairs of control
and perturbation GCM experiments (with all their internal
nonlinearities of course). ZG’s curve does not even meet
this requirement. Figure1a shows the functional relationship
betweenf and1T , adjusted in this way for the linear model
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Fig. 1. (a)relationship betweenf and1T for extreme range ofa found in models. The curves all go through (f , 1T ) = (∼ 0.65,∼3.5◦C),
as they must in order to match published calculations of model feedbacks which have assumed the1T −f relationship to be linear. That is:
in cases for whicha 6= 0 we adjust the truef so that a linear analysis would produce apparent values (0.65, 3.5◦C). (b) The resulting pdfs of
climate sensitivity for normal distributions in feedbacks (see RB), and theclimateprediction.netresults. Also shown are results fora = 0.1,
the smallest value countenanced by ZG, who also considera = 1 anda = 10.

Table 1. Modelled feedback nonlinearities: (i) Boer and Yu (2003),
(ii) Senior and Mitchell (2000), (iii) Colman et al. (1997), (iv)
Crucifix (2006), (v) Hewitt and Mitchell (1997), (vi) Broccoli and
Manabe (1987), (vii) Wetherald and Manabe (1975), (viii) Colman
and McAveny (2009). These studies use various ways of estimating
climate sensitivity and thus feedbacks as a function of mean state.

Study Model 1T df/dT a

[K−1] [Wm−2 K−2]

i CCCma 4.0◦C −0.0048 0.008
i CCCma 7.0◦C −0.0060 0.010
ii Hadley 3.5◦C 0.038 −0.063
iii BMRC 1 ◦C −0.0025 0.0042
iv CCSM 6◦C −0.036 0.060
iv HADCM3 6 ◦C 0.010 −0.017
iv IPSL 6◦C 0.019 −0.032
iv MIROC 6◦C 0.035 −0.058
v UKMO 4.9◦C −0.012 0.020
vi GFDL 3.6◦C −0.033 0.054
vii GFDL 4.4◦C −0.035 0.059
viii BMRC 20 ◦C −0.012 0.020

(a = 0) and the extreme positive and negative values ofa

from Table 1 and the even larger value (a = 0.1) from ZG.
Figure1b shows the pdf of climate sensitivity distributions
corresponding to each of the1T −f relationships in Fig.1b.
Also shown is theclimateprediction.netdistribution, whose
shape is very similar to many other published sensitivity pdfs
cited earlier.

These figures show that the linear approximation is
fully appropriate for understanding the main features of
the calculated distribution and is the best fit to the
climateprediction.netresults. The pdf calculated from ZG’s
curve is the worst fit. Thus in their analysis ZG use
unrealistic (high) values ofa and their model is inconsistent
with all the climate simulations. It is both misleading
and counterproductive to claim that complex models are
necessary in order to understand all climate phenomena.
In particular, nonlinear terms in the relationship linking
equilibrium temperature rise to step-function forcing are
irrelevant to climate sensitivity distributions. The trivial fact
that the climate system is nonlinear does not preclude the use
or value of linear analyses.

We have focussed here on ZG’s discussion of Eq. (1).
However, it is useful to point out several nontrivial
mathematical and physical errors in ZG. Among these are
the following: they misunderstand and misuse the quantity
1R, crucial to interpretation of Eq. (1); they have modified
and confused Fig. 1, RB; they present their climate model
as realistic evidence for the possibility of bifurcation when
according to that model the current global temperature is
300 K – atT = 288 K the model would put us in an unstable
regime.

Finally, there is little support in the literature for “tipping
points” or bistable behavior being of practical concern on
a global scale, and over the range of reasonable future
climates we can contemplate, as shown by a host of climate
models, including the very crude early model of Wetherald
and Manabe (1975), cited by ZG in support of their point
(see Table 1 below). Using more complete models, Voigt and
Marotzke (2009), Colman and McAveny (2009), and many
others have demonstrated this.
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