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Abstract. Seismicity has power law in space, time and mag-
nitude distributions and same is expressed by the fractal di-
mensionD, Omori’s exponentp andb-value. The spatio-
temporal patterns of epicenters have heterogeneous charac-
teristics. As the crust gets self-organised into critical state,
the spatio-temporal clustering of epicenters emerges to het-
erogeneous nature of seismicity. To understand the hetero-
geneous characteristics of seismicity in a region, multifractal
studies hold promise to characterise the dynamics of region.
Multifractal study is done on seismicity data of the North-
Western Himalaya region which mainly involve seismogenic
region of 1905 Kangra great earthquake in the North-Western
Himalaya region. The seismicity data obtained from USGS
catalogue for time period 1973–2009 has been analysed for
the region which includes the October 2005 Muzafrabad-
Kashmir earthquake (Mw = 7.6). Significant changes have
been observed in generalised dimensionDq , Dq spectra and
b-value. The significant temporal changes in generalised
dimensionDq , b-value andDq − q spectra prior to occur-
rence of Muzaffrabad-Kashmir earthquake relates to distri-
bution of epicenters in the region. The decrease in genera-
lised dimension andb-value observed in our study show the
relationship with the clustering of seismicity as is expected
in self-organised criticality behaviour of earthquake occur-
rences. Such study may become important in understanding
the preparation zone of large and great size earthquake in
various tectonic regions.
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1 Introduction

Fracture exhibits a fractal structure over a wide range of frac-
ture scale, i.e. from the scales of micro fracture to mega
faults (Aki, 1981; All̀egre et al., 1982; Brown and Scholz,
1985; Turcotte, 1986a, b; Scholz and Aviles, 1986; Hi-
rata, 1987). Recent studies have shown that many natural
phenomena such as the spatial distribution of earthquakes
(Telesca et al., 2003a, b, 2004), fluid turbulence are heteroge-
neous fractals (Mandelbrot, 1989). For heterogeneous frac-
tals, a unique fractal dimension is not sufficient to charac-
terise them and it differs by the method used to calculate it.
Such fractal are called multifractals and they are characte-
rised by generalisedDq or the f (α) spectrum (Hentschel
and Procraccia, 1983; Halsey et al., 1986). A wide vari-
ety of heterogeneous phenomena such as diffusion – limited
aggregation, dendritic crystallization, dielectric breakdown,
various fingering and river-flow, are multifractals and mul-
tifractal analysis must be used to characterise those com-
plex phenomena (Stanley and Meakin, 1988). If the spatio-
temporal distribution of earthquakes is multifractal, the frac-
tal property of earthquakes in different areas and different
time spans must be compared using whole spectrum ofDq

or f (α) (Hirabayashi et al., 1992). Several studies have been
made to investigate the temporal variation of heterogeneity
in seismicity using multifractal analysis in various seismic
regions (Hirata and Imoto, 1991; Hirabayashi et al., 1992; Li
et al., 1994; Dimitriu et al., 2000; Teotia et al., 1997; Telesca
et al., 2005; Teotia and Kumar, 2007). Recently it has been
recognised that the parameters which describe seismicity in
a region show a spatial and temporal evolution which may be
associated with the process of generation of large size/great
size earthquakes i.e. evolving of fracture from micro frac-
ture to mega fault (Telesca et al., 2003a, b). The change in
seismicity pattern of earthquakes is reflected in generalised
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dimensionDq andDq spectra of the seismicity. Therefore,
the study of temporal variationDq andDq spectra may be
used to study the changes in the seismicity structure before
the occurrence of large earthquake, which may prove to be
useful in understanding the preparation zone of large to great
size earthquakes. Accordingly (Hirata and Imoto, 1991) have
performed multifractal analysis of micro earthquake data of
Kanto region using correlation integral method. Hirabayashi
et al. (1992) have done multifractal analysis of seismicity
in regions of Japan, California and Greece using various
methods such as fixed mass and fixed radius methods. Li
et al. (1994) have performed the multifractal analysis of spa-
tial distribution of earthquakes of Tanshan region (Ml > 1.8)
using extended Grassberger-Procraccia method of dimen-
sion Dq estimation. Teotia et al. (1997), Teotia and Ku-
mar (2007), Teotia (2000), Sunmonu et al. (2001) have stud-
ied the multifractal characteristics of seismicity of the Hi-
malaya region and Sumatra region (mb ≥ 4.5). The 8 October
2005, Muzaffrabad-Kashmir earthquake (Mw = 7.6) killed
more than 80 000 people and was the deadliest in the history
of the Indian subcontinent. The earthquake occurred on a
rupture plane 75 km long and 35 km wide with strike of 331◦

and a dip angle of 29◦. The epicenter of the event was located
north of Muzaffrabad (34.493◦ N and 73.629◦ E) in Kashmir
Himalaya (USGS1). The fractal nature of earthquake occur-
rence of the Northwest Himalayan region is also reported by
Roy and Mandal (2009). However this study deals with the
multifractal analysis of seismicity of region which resulted
in Muzaffrabad-Kashmir earthquake of (Mw = 7.6) to un-
derstand the intrinsic nature of seismicity controlling multi-
fractal characteristics i.e. generalised dimensionDq andDq

spectra in the region.

2 Methodology

For the analysis of seismicity of the North-Western Hi-
malaya, the earthquake data set of USGS for the grid (36◦ N,
72◦ E), (30◦ N, 72◦ E), (28◦ N, 85◦ E), (35◦ N, 85◦ E) was
analysed. The tectonic map along with grid is shown in
Fig. 1. The most of the seismic activity is controlled by two
lineaments i.e. Main Central Thrust (MCT) and Main Bound-
ary Fault (MBF). The time window for analysis was chosen
to be 1973–2009. To gain an unbiased and homogeneous
data set, we restricted the USGS data by setting a lower limit
of magnitude for period 1973–2009. The magnitude of com-
pleteness is shown in the frequency magnitude plot and it is
found to be complete for magnitude threshold inmb ≥ 4.5
(see Fig. 2a). The distribution of earthquakes occurring in
the selected region for time period (1973–2009) is shown in
Fig. 2b.

1http://neic.usgs.gov/mneis/epic

The available methods for calculatingDq are the box
counting method, the fixed-radius method and the fixed-mass
method (Greenside et al., 1982; Grassberger et al., 1988;
Baddi and Broggi, 1988). These methods work well pro-
vided the numbers of data points are very large. The ex-
tended Grassberger and Procaccia method (Grassberger and
Procaccia, 1983) was used to calculate the generalised di-
mensionDq andDq spectrum. This method has been applied
by many authors on earthquake data of different regions for
estimation of generalised dimensionDq even for small data
points. It is described as:

logCq(r) = Dq log(r)(r → 0) (1)
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wherer is the scaling radius,N is the total number of data
points within a search region in a certain time interval (also
called the sample volume):Xi is the epicentral location
(given in latitude and longitude) of thei-th event,Xj is the
epicenter (given in latitude and longitude) of thej -th event,
Cq(r) is theq-th integral andH(.) is the Heaviside step func-
tion.

For estimatingDq spectra as a function of time, a time se-
ries of earthquake epicenters has to be formed and divided
into subseries (subsets). Let set{Xi,Mi}, i = 1,M be a com-
plete set of earthquakes occurring in time period analysed,
andMi the magnitude of an earthquake occurring at timeti .
Thus the earthquake constitutes a time series of N elements.
The time series consists of 902 events in the region. We con-
sider this time series as the original data set for multifractal
analysis of this region. In this study the original data set for
the North-Western Himalaya is divided into 27 subsets (i.e.
S1–S27). Each subset in the region consists of 100 events
with an overlap 70 events. The shift of 30 events has been
used in the analysis. The same number of events in each sub-
set will avoid any non stationarity effect in data set. There is
no limitation of number of events in the formation of subsets
and shift used to move from one subset to another subset.
For studying the spatio-temporal variation of fractal dimen-
sions, i.e. generalised dimensions (Dq ) and the number of
events i.e. 100 is large enough to provide the reliable esti-
mate of fractal dimensions. The correlation integral is cal-
culated using Eq. (2) for the epicentral distributionXi of the
subset. The distancer between subset is calculated by using
spherical triangle (Bullen and Bolt, 1985; Hirata, 1989). For
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 Fig. 1. The tectonic map (modified from Yin, 2006; Yin et al., 2010) and study area shown in grid.
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Fig. 2. (a) Frequency magnitude plot for USGS data during period from 1973 to 2009 for selected region;(b) seismicity of the selected
region formb ≥ 4.5.
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K vs. logr for subset S10.

epicentral distribution having a fractal structure, the follow-
ing power law relationship is obtained in the scaling region

Cq(r) ∼ rDq .

An appropriate scaling region has been estimated before
the computation of generalised dimensionDq . For this we
have used Li et al. (1994) method to determine the scal-
ing region in the western Himalaya. Three point curves for
q = −2.0, 0.0, 2.0 estimated in selected region for two dif-
ferent subsets i.e. subsets 1 and 10 are shown in Fig. 3a
and b. There may be more linear segments in each curve.
It is known that slopes of adjacent points in the graph will
be constant when these points lie on a linear segment. The
graph of logr vs.K for two subsets is shown in Fig. 3c and d.
K is the slope of adjacent points of the graph of logr vs.
logCq(r). The scaling region has been selected for the range
in r for which the variation inK slope is minimum for all
three values ofq. The scaling region has been found to be
consistent irrespective of subsets. Based on this methodK

have been found to be minimum for range of logr (from –
2.0 to 0.7) i.e. first seven points in logCq(r) vs. logr plot
for all three values ofq. The generalised dimensions for all

27 subsets have been estimated by least square fit from first
seven points (Table 1). The errors shown in Table 1 of fractal
dimensions variation in best fit line in different subsets will
be reflected in least square errors.

Theb-value in the Gutenberg-Richter relation (logN(m >

M) = a−bM, whereM is the magnitude andN(m > M) is
the number of events of magnitude larger thanM) was es-
timated for {M i}

100+30j
i=1+30j of 27 subsets generated from the

original data set by changingj from 0 to 26. Magnitude dis-
tribution obeys the Gutenberg-Richter relation, theb-value
may be estimated by the maximum likelihood method, which
gives better estimation of theb-value than the least square
method (Utsu, 1965; Aki, 1965). When the number of events
exceeds about 50, the maximum likelihood method provides
us a stable estimation ofb-value (Utsu, 1965). The number
of events in each subset,N = 100 is also large enough to pro-
vide reliable estimates ofb-value using maximum likelihood
method (Utsu, 1965). The uncertainty is estimated by (Aki,
1965) which is given byσb = b/

√
N , whereN is number of

earthquakes in the subset. The 95% confidence error in the
b-values is 0.08 in our estimatedb-values of 27 subsets.
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Table 1. Showing the subsets description along with time periods and fractal dimension.

Sr. Subset Subset Time period D−2 D2 M ≥ 7.0
no. name event (years) (No. of events)

1. S1 1–100 1972.044–1976.137 1.4790±0.0207(s.d) 0.7429±0.0067(s.d) –
2. S2 31–130 1974.052–1977.745 1.5459±0.0269(s.d) 0.8087±0.0080(s.d) –
3. S3 61–160 1974.556–1979.645 1.7412±0.0385(s.d) 0.9738±0.0094(s.d) –
4. S4 91–190 1975.688–1980.863 1.7830±0.0876(s.d) 1.0728±0.0110(s.d) –
5. S5 121–220 1977.323–1982.784 1.8278±0.1242(s.d) 1.0081±0.0095(s.d) –
6. S6 151–250 1979.525–1983.992 1.7651±0.0389(s.d) 0.9824±0.0089(s.d) –
7. S7 181–280 1980.701–1985.573 1.7062±0.0187(s.d) 1.0439±0.0168(s.d) –
8. S8 211–310 1981.956–1987.921 1.5712±0.0038(s.d) 1.1610±0.0054(s.d) –
9. S9 241–340 1983.708–1990.403 1.5898±0.1266(s.d) 1.1835±0.0039(s.d) –
10. S10 271–370 1985.162–1991.648 1.7108±0.0516(s.d) 1.0779±0.0059(s.d) –
11. S11 301–400 1987.063–1993.586 1.6417±0.0511(s.d) 1.1652±0.0045(s.d) –
12. S12 331–430 1990.036–1996.014 1.6507±0.0555(s.d) 1.1636±0.0046(s.d) –
13. S13 361–460 1991.309–1998.326 1.6790±0.0219(s.d) 1.0593±0.0053(s.d) –
14. S14 391–490 1992.545–2000.096 1.7828±0.0712(s.d) 1.1022±0.0029(s.d) –
15. S15 421–520 1995.544–2001.759 1.7543±0.0373(s.d) 1.0950±0.0028(s.d) –
16. S16 451–550 1998.247–2002.170 1.6841±0.0221(s.d) 0.8221±0.0095(s.d) –
17. S17 481–580 1999.544–2003.833 1.6731±0.0484(s.d) 0.6972±0.0031(s.d) –
18. S18 511–610 2001.145–2004.773 1.6513±0.0716(s.d) 0.5766±0.0018(s.d) –
19. S19 541–640 2001.863–2004.773 1.5511±0.1167(s.d) 0.4192±0.0018(s.d) –
20. S20 571–670 2003.527–2004.773 1.2007±0.0298(s.d) 0.1505±0.0002(s.d) –
21. S21 601–700 2004.773–2004.773 0.0142±0.0000(s.d) 0.0111±0.0000(s.d) 1
22. S22 631–730 2004.773–2004.775 0.1539±0.0056(s.d) 0.0371±0.0003(s.d) 1
24. S24 691–790 2004.773–2004.970 0.8422±0.0707(s.d) 0.1121±0.0020(s.d) 1
25. S25 721–820 2004.775–2006.049 1.3293±0.0491(s.d) 0.1622±0.0010(s.d) –
26. S26 751–850 2004.792–2007.188 1.6297±0.1409(s.d) 0.3845±0.0009(s.d) –
27. S27 781–880 2004.890–2007.902 1.6696±0.1675(s.d) 0.6576±0.0081(s.d) –

3 Results and discussion

Observation of seismicity suggests a relationship between
the distribution of earthquake magnitudes and the distribu-
tion of earthquake epicenters (Hirata, 1989; Henderson et al.,
1994). The fractal dimensionD2 andD−2 for all 27 subsets
are shown in Table 1. Figure 4 shows the spatio-temporal
variation of generalised fractal dimensionDq(q = 2,−2)

along withb-values in all 27 subsets analysed in the study.
It is evident that there is a significant increase in cluster-

ing prior to occurrence of Muzaffrabad-Kashmir earthquake.
The same is evident inDq − q spectra. The flatDq − q

spectra in subset 21 shows the convergence of epicenters to a
point i.e. confinement of seismicity in the zone of preparation
of large size Muzaffrabad-Kashmir earthquake (Mw = 7.6)
leading to very small values of generalised dimension. Sub-
set 21 includes very few epicenters of aftershock events of
Muzaffrabad-Kashmir earthquake of 8 October 2005. The
steep slope inDq spectra also gives better indication for
preparation zone for large size earthquake in the Himalayan
region which is considered to be store house of elastic en-
ergy and have potential to generate moderate, large size and
great size earthquakes. The same has been observed for the
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Fig. 4. The temporal variation of generalised dimensionDq (q = 2,
−2) along with the temporal variation ofb-value. TheDq (q = 2,
−2) andb-values are shown with error bars.

North-Western Himalaya region which shows the steep slope
in Dq spectra from subset S15 (1995.544–2001.759) to sub-
set S20 (2003.527–2004.773) prior to occurrence of large
size (Mw = 7.6) Muzaffrabad-Kashmir earthquake which be-
long to subset S21 (see Fig. 5). Steep slope inDq −q spectra
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relates to clustering in the zone of preparation or nucleation.
Therefore, in the regions having zone of preparation for large
size earthquake eventsM > 7, the completeness of earth-
quake catalogue formb ≥ 4.5 may give substantial indication
in Dq −q spectra as is found in this study and also in other
studies of the Himalayan and Sumatra region (Teotia et al.,
1997; Teotia and Kumar, 2007; Sunmonu et al., 2001).

The b-value varies from 0.94± .09 to 1.8± .18 in the
subsets (S1–S27) for the time period 1973–2009 in the
region. The consistent and significant decreases inDq

and b-value have been observed prior to occurrence of
Muzaffrabad-Kashmir earthquake. We note that the changes
in b-values as well asD2 starts from subset S15 (1995.544–
2001.759) with lowest value in subset S21 (2004.773–
2004.773). The Muzaffrabad-Kashmir large size earthquake
lies in subset 21. The decrease in correlation dimension Dc
is also reported prior to Muzaffrabad earthquake (Roy and
Mandal, 2009) however the completeness of data is not car-
ried out in their study which used merged catalogue of mi-
croseismic data of Wadia Institute of the Himalaya Geology
and USGS catalogue. Therefore, the decrease in correlation
dimension in study by Roy and Mandal (2009) may not en-
tirely be associated with intrinsic nature of seismicity in the

region. However, in our study the completeness of USGS
catalogue is ascertained, therefore, the decrease in generali-
sed dimensionDq andb-value may be completely associated
with the intrinsic nature of seismicity of the northwestern Hi-
malaya.

The consistent decrease in spatial dimension (Ds) may
correspond to introduction of clustering of seismicity in the
region shows the region preparedness for the occurrence of
major size events (De Rubeis et al., 1993). De Rubeis et
al. (1993) have also found the temporal evolution for three
seismic zones of Italy by means of the correlation integral
fractal method and the decrease in fractal dimension prior of
occurrence of major events also supports the results in our
study. The decrease in the fractal dimension with the evolu-
tion of rock fracture was also reported by Hirata et al. (1987).
These studies and our study for the Himalayan region show
similar behaviour in spatio-temporal variation of fractal di-
mension as the seismicity in the region evolves from ex-
tended distribution of epicenters to clustered distribution and
again back to distributed seismicity. This is evident from the
decrease inDq from subset 15 to subset 21 and increase in
Dq from subset 21 to subset 27 (see Fig. 4). De Rubeis et
al. (1993) have also found the same pattern of distributed
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seismicity and increase in fractal dimensionDs from the
minimum value during the major sequence, indicating the
tendency of seismic activity to spread in space. Therefore,
the spatio-temporal evolution of seismicity can be best un-
derstood in the framework of self-organised criticality. The
concept of Self-Organised Criticality (SOC) can be applied
to distribution of seismicity (Bak and Tang, 1988, 1989).
The definition of Self-Organised criticality is that a natural
system is in a marginally stable state when perturbed from
this state, will evolve back to the state of marginal stability.
A simple Cellular-automata model illustrates self-organised
criticality. The results in this study supports the evolution
of epicenters distribution from a random spatial distribution
to an organised fractal structure as is given in modified SOC
model (Ito and Matsuzaki, 1990). Thus the application of
nonlinear geophysics (NG) methods is important for extreme
phenomena and new hazard assessment techniques (Rundle
et al., 2003).

4 Conclusions

The seismicity data of studied region show multifractal
behaviour. Multifractal analysis of seismicity data holds
promise in understanding the zone of preparation which may
result in damaging earthquakes. The spatio-temporal varia-
tion of Dq andDq −q spectra provides some lessons to learn
from nature. This study supports the use of spatio-temporal
variation ofDq at smallq (i.e. q = −2, 2) to detect the seis-
micity change in regional area. The steep slope inDq −q

spectra is detected before the occurrence of Muzaffrabad-
Kashmir earthquake (Mw = 7.6) of 8 October 2005. How-
ever, the steep slope ofDq spectra may not necessarily be
due to increase inDq for negative value ofq and decrease
in Dq for positive values ofq when compared from one sub-
set to consecutive subset in case seismicity is converging to
very localise distribution, i.e. from randomised extended dis-
tribution to self-organised clustered distribution of epicen-
ters. The changes inDq are consistent with the tectonics
of the region which evolves from plane filling of epicenters
to line filling of epicenters, i.e. large size/great size earth-
quake occurrence along Main Central Thrust (MCT) in the
Himalaya region. The same has been observed in this study
which shows significant decrease in generalised dimension,
i.e.D2 andD−2 as seismicity evolves from plane filling dis-
tribution to line filling distribution. Our study supports the
spatio-temporal variation ofb-value,Dq andDq spectra for
assessing the zone of preparation for different size earth-
quakes. The completeness for lower magnitude threshold by
ensuring better monitoring and location capabilities in the
Himalaya region may help in further constraining the results
and will provide better understanding of zone of preparation
for major, large and great size earthquake.
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