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Abstract. A review of non-diffusive transport in fluids In the paradigmatic case of the Brownian random walk, the
and plasmas is presented. In the fluid context, non-Gaussian statistics of the individual particle displacements,
diffusive chaotic transport by Rossby waves in zonal flowsand the lack of correlations and memory effects (Markovian
is studied following a Lagrangian approach. In the plasmaassumption), lead to a Gaussian PDF of the net particle
physics context the problem of interest is test particledisplacement, and to the linear in time scaling for the mean,
transport in pressure-gradient-driven plasma turbulenceM ~ r, and the variancey? ~¢. Based on these scaling,
In both systems the probability density function (PDF) the transport coefficients are definedvas: lim,_..o M (¢)/t
of particle displacements is strongly non-Gaussian andand y = lim,_...02(t)/¢t. The signatures of non-diffusive
the statistical moments exhibit super-diffusive anomalousbehavior in Lagrangian particle transport include non-
scaling. Fractional diffusion models are proposed andGaussian PDFs of particle displacements and anomalous
tested in the quantitative description of the non-diffusive scaling of the moments of the fortd ~ ¢ ando? ~ ¥, with
Lagrangian statistics of the fluid and plasma problems. Also§ # 1 and/ory # 1. Wheny > 1 (y < 1) transport is super-
fractional diffusion operators are used to construct non-localdiffusive (sub-diffusive), see for exampBouchaud(1990.
transport models exhibiting up-hill transport, multivalued In either case, the diffusion model cannot be applied because
flux-gradient relations, fast pulse propagation phenomenathe effective diffusivityy is eitheroo or zero.
and “tunneling” of perturbations across transport barriers. The study of non-diffusive Lagrangian particle transport
presented here focuses on two systems of interest to
geophysical fluid dynamics and plasma physics. In the geo-
1 Introduction physical context we consider transport in quasigeostrophic
zonal flows. Quasigeostrophic flows are 2-D, rapidly
The widely used advection-diffusion equation rests on therotating flows in which there is a gradient in the Coriolis
validity of the Fourier-Fick’s prescription which in the case force. These flows are relevant in the study of mesoscale
of transport of a single scalaff’, in a one-dimensional dynamics in the atmosphere and the oceans, see for example
domain states thatg = —x0,T + VT, where g is the Pedlosky (1987. Zonal shear flows occur naturally in
flux, x is the diffusivity, andV the advection velocity. nature; two well-known examples are the Gulf Stream
From the statistical mechanics point of view, this model and the polar night jet above Antarctica. Barotropic
assumes an underlying Markovian, Gaussian, uncorrelategerturbations of these flows give rise to low frequency
stochastic process. However, despite the relative success afstabilities known as Rossby waves that have a key influence
the diffusion model, there are cases in which this model failson the dynamics and transport. Followirtgl-Castillo-
to describe transport, and an alternative description must bélegrete and Morrisor{1993, del-Castillo-Negret¢1998
used. The goal of this paper is to review some recent resultsve study chaotic transport by Rossby waves in zonal
on non-diffusive transport of particular interest to fluids and shear flows. In the plasma physics context we consider
plasmas. We focus on non-diffusive Lagrangian particlenon-diffusive transport in pressure-gradient-driven plasma
transport and non-local transport of passive scalar fields.  turbulence. This system is of relevance to the understanding
of magnetically confined fusion plasmas. In this case, the
Lagrangian particle dynamics corresponds to the motion of
Correspondence to: test particles in the presence of an external fixed magnetic
D. del-Castillo-Negrete field and a fluctuating turbulent electrostatic potential. In the
BY fluid and the plasma physics problems, we present numerical
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evidence of non-diffusive transport. In particular, in both 2 Non-diffusive chaotic transport by Rossby waves

cases, the PDFs of particle displacements are strongly non- in zonal flows

Gaussian and the variance exhibits anomalous scaling of the

super-diffusive type. In this section we study non-diffusive chaotic transport by
As mentioned before, when the statistical moments exhibitRossby waves in zonal shear flows. Since the flow is 2-D

anomalous scaling, the advection-diffusion model can notand incompressible, the flow velocity can be written as

be applied and alternative models must be used. Inv=(—3,¥,d,¥) whereW(x,y,r) is the streamfunction. In

this paper we review the use of fractional derivatives tothis case, the Lagrangian trajectories of individual tracers,

construct such alternative models. Fractional derivatives ar@r /dt =V, are obtained from the solution of the Hamiltonian

integro-differential operators that generalize the concept ofsystem,

derivatives of ordem, to fractional orders §amko et al.

1993 Podlubny 1999. Although the origins of fractional d_x = _ﬂ d_y - ﬂ (1)

calculus go back to the origins of regular calculus, the ¢! dy dr  x

use of fractiqnal derivatives in the mathematical _mOdeI_ingwherelIJ plays the role of the Hamiltonian and the- (x, y)

of transport is relative recent. We present a brief review

of this formalism in connection with the continuous time

random walk (CTRW) model. The CTRW generalizes

the Brownian random walk by incorporating non-Gaussian

jump PDFs and non-Markovian waiting time PD®sntroll

and Weisq1965; Montroll and Shlesingef1984); Metzler

and Klafter(2000. Following this, we construct effective

macroscopic fractional diffusion models of the PDFs of

particle displacementslel-Castillo-Negrete et al(2004

spatial coordinates play the role of canonically conjugate
phase space coordinates. Hamiltonian systems of the form
in Eq. (1) are always integrable whe#r does not depend

on time. However, whenV depends explicitly on time,
the system can be non-integrable and individual trajectories
can be chaotic, see for examplabor (1989. The main
goal of the study of chaotic transport is to understand the
global transport properties of tracers in this case, see for

X X . exampleOttino (1989. Problems of particular interest to
2009. A comparison is presented between the analyticalyeqnysical flows include the study of the formation and

solutions of the fractional models and the numerical reSUItSdestruction of transport barriersiel-Castillo-Negrete and
obtained from the Lagrangian statistics for the fluid and Morrison, 1993, and the study of the Lagrangian statistics

plasma problems mentioned above. . (del-Castillo-Negrete1998. Here we focus on the second
The use of fractional derivatives in transport modeling is problem.

closely related to the problem of nonlocal transport. By To construct a model for the streamfunctidnix, y, ) we

nonlocal we mean that the flux of the transported scalar a}ave to consider the dynamics of the system. In the case

a point depends on the gradient of the scalar throughoubf quasigeostrophic flowsy (x, y,7) is obtained from the
the entire domain. The generic mathematical Strucwrepotential vorticity conservatior{la;W

of the nonlocal flux isq = —x [K(x — y)3,Tdy, where
the function/C measures the degree of nonlocality. The ag
“width” of this function depends on the strength of the non- 5, * (v-V)q =0, @
locality, and in the limit whenC is a Dirac delta function,
the flux reduces to the local Fourier-Fick's prescription. Where according to thg-plane approximationy = V2w +
Motivated by the successful use of fractional derivativesfy. We have adopted a right-handed Cartesian coordinate
to model non-diffusive Lagrangian transport, we discussSystem withz pointing in the direction of the rotation of the
the use of these operators to construct non-local modesystem and in the direction of the Coriolis force gradient.
of passive scalar transport. Followinigl-Castillo-Negrete ~ That is, y points in the “northward” direction and is a
(2006; del-Castillo-Negrete et al(2008, we present periodic coordinate in the “eastward” direction.
numerical results illustrating important non-local transport To simplify the solution of the non-linear Eq2)( we
phenomenology including: up-hill transport, multivalued assume a streamfunction of the form
flux-gradient relations, fast pulse propagation phenomena,
and “tunneling” of perturbations across transport barriers. ¥ = Wo(x,y) +W1(x,y,1), 3

The rest of this paper is organized as follows. Section 2

discusses non-diffusive chaotic transport by Rossby waves ithere Wo, is the superposition of a zonal shear flow with

zonal flows. Non-diffusive turbulence transport in plasmasdepend.ence()(y) = tanhy, and a regular neutral mode in its
is studied in Sect. 3. Section 4 presents a brief review of°0-MovIng reference frame,

fractional diffusion. The applications of fractional diffusion _

to model the PDFs of particle displacements in the Rossby%_ In(coshy) +exfa(y) costhex) +e1y. @)
waves and the plasma problems are discussed in Sect. Fhe function¥; is a time dependent perturbation of the form
Non-local transport is studied in Sect. 6, and Sect. 7 presents

the conclusions. W1 =ea¢p1(y)CcOYk1x — wt), (5)
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where €1 and ¢; are free parameters determining the
amplitude of the linear Rossby waves, ani the frequency
of the perturbation. The eigenfunctign,

¢1 = [1+tanhy] T=V/2[1 — tanhy] +v/2, (6)

is obtained from the solution of the linear eigenvalue problem
of the quasigeostrophic equation arid,(c1) are obtained
from the corresponding dispersion relation for neutral (zero
growth rate) modegdgl-Castillo-Negretel998.

Whenez = 0 the streamfunction is time independent and
the solution of Eq.1) can be reduced to a quadrature. In this
case the Lagrangian dynamics is integrable and the orbits
of the tracers can be classified in two types: (i) trapped
orbits that encircle the vortices and (ii) untrapped orbits that
move freely in the East-West direction following the zonal
shear flow. These two types of orbits are separated by the
separatrix that joints the hyperbolic stagnation points of the

flow. When €270, the .SySFem ceases to be !ntegrable.Fig_ 1. Chaotic transport by Rossby waves in the quasigeostrophic
In particular, as shown in Fig. 1, the perturbation breaks

: . zonal flow in Egs. ) and @). In the presence of two or more

the separatrix and creates a stochastic layer where tracefosshy waves, the trajectories of passive tracers are typically

alternate chaotically between following the zonal flow and chaotic. In particular, as shown in the figure, tracers alternate in

being trapped inside the vortices. a seemly random way between being trapped in the vortices and
To characterize transport in the chaotic regime we follow moving freely along the “east-west”, x angular direction, following

a statistical approach. The most basic quantity is thethe shear flow flanking the vortices.

probability density function (PDF) of particle displacements.

Transport in the “north-south” direction is trivial since

particle orbits in the y-direction are bounded by the zonal ] o

flows. Therefore, we focus on transport in the “east-west”WhereX =dx — (5x). Equation ) also implies

direction, i.e. along the zonal flow. Given an ensemble of

initial conditions, {(x;, y;)} with i = 1,2, ... N, we compute ~ P*(X.1) =\7/2p* (V/ZXMV> ; (10)

the PDF of particle displacementB(5x,t) wheredx; () =

xi (1) — x;(0). By definition, atz =0 the PDF is a Dirac wherea is a free parameter. According to this relation, up to

delta function,P (x,t = 0) = §(5x). Ast increases, the PDF @ scale factor, the limit distributio?*, is invariant under the

widens and might drift to one side or the other. Note that,SPace-time renormalization operatiok,) — (A7/2X,Az).

althoughéx is a periodic function in the annular domain That is, the PDF at a later time can be obtained from a

shown in Fig. 1, to compute the statistics we tréatas  rescaling of the PDF at an early time.

variable defined on the-co, o) domain. In the diffusive caseP* is a Gaussiany =1, and Eq. §)
To study the self-similar evolution of the PDF we corresponds to the similarity solution of the advection-
introduce the scaling variable diffusion equation. However, in the numerical results shown
in Fig. 2, transport is non-diffusive because# 1 and
= (8x — (5x))1 772, @) the scaling function is not a Gaussian. In particular, the

tails of the PDFs exhibit a decay significantly slower than
Figure 2 shows the rescaled PDF/2P, as function of ~Gaussian and a strong asymmetry. Becayse, 1, it is
n. The observation that the rescaled PDFs collapse fo€oncluded that “East-West”, azimuthal chaotic transport by
successive times leads support to the assumption that, at larggossby waves in zonal flows is super-diffusive. For further

times, P converges to a self-similar distribution of the form details on the statistics and a dynamical explanation of the
dependence of the asymmetry of the PDF on the perturbation

P,y =172 (), @) freque_ncya) seedeI—CastiIIo—_NegreteélQQa. This reference

also discusses the comparison of the model presented here
where f is a scaling function, ang is the scaling exponent. With experimental results on transport in rapidly rotating
The scaling in Eq.8) implies the following scaling of the fluids (Solomon et a].1993.

moments It is interesting to mention that there is a very close
analogy between the dynamics of Rossby waves in rapidly
(X" ~ "7 /2, (9) rotating neutral fluids in the quasigeostrophic approximation
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T T T T T 3 Non-diffusive turbulent transport in plasmas

In the example discussed in the previous section, transport
resulted from chaotic advection. That is, from the chaotic
dynamics of the deterministic equations describing the
particle orbits. In particular, the streamfunctioh is

a deterministic differentiable function. In the case of
. turbulent transport the situation is different since the flow

] velocity advecting the tracers is a nondeterministic, random
function. Nevertheless, turbulent systems can also exhibit
non-diffusive transport of passive tracers. In this section we
present an example in the context of plasma physics.

As in the previous section, we follow a Lagrangian
approach and consider the statistics of a large ensemble
of tracer particles. In the plasma, the particle motion
responds to the combined effect of a turbulent electric field,
E=—V®, and a fixed external magnetic fielBg. The
equation of motion of the tracers are obtained from Newton’s
law with the Lorentz force. However, in the guiding
center approximation, see for examplieholson(1983, the
equations can be simplified as the first order system

dr 1 _ .
— =—V® x By, 11
i = B2 x Bo (11)

107

fi2p

107

wherer = (x,y) denotes the position of the particle in the
2-D plane perpendicular to the magnetic field. This system
, , has also a Hamiltonian structure with the potentidl,
-15 -1 -05 0 05 playing the role_ of Hamiltonian. _ o
1 The fluctuating plasma electrostatic potentiab, is
obtained from the solution of the turbulence model. Here,
Fig. 2. Rescaled probability distribution function (PDF)/2P, of ~ following del-Castillo-Negrete et al(2004 2003, we
passive tracers displacements(s) = x(r) —x(¢ = 0), as function ~ consider pressure-gradient-driven turbulence in cylindrical
of the similarity variabley = (5x — (8x))/t¥/2 with y =1.9. The =~ geometry. The underlying instability of this type of
dynamics corresponds to the quasigeostrophic model in Bys. ( turbulence is the resistive interchange mode, driven by
and @). The plot shows the PDF at= 800, 900 and 1000. the pressure gradient. This instability is the analogue of
Consistent with the self-similar scaling in E@)(the PDFs at  the Rayleigh-Taylor instability responsible for the gravity-
successive times collapse. The_ anomalougly large dlsplacemen[§ri\,en overturning of high density fluid laying above a low
induced by the zonal flow (see Fig. 1) result in the strong departuredensity fluid. In magnetically confined plasmas, the role
of then < 0 tail from the Gaussian fit (dashed line). The value 1 Lo L . ’
- e of gravity is played by the magnetic field lines curvature.
indicates super-diffusive transport. .
The turbulence modelarreras, et 411987 is based on an
electrostatic approximation of the reduced resistive magneto
hydrodynamic equations,

and drift-waves in magnetized plasmas, see for example, - 1 .~ Bo 110p .
Petviashvili and Pokhotelo{1992, Horton and Hasegawa EVL d=— Vie+

(1994, Horton and Ichikawa(1996. In this analogy,

the role of the rapid rotation is played by the strong d 3(p)19d

magnetic field, the fluid streamfunction corresponds to the—p = ———+XLVfﬁ+x”Vfﬁ, (13)
electrostatic potential, the fluid vorticity to the plasma or r 06

density, and the grgdient in the Coriolis_ force correspond_swhereé is the electrostatic potentiafj the pressure, and
to the plasma density background gradient. Based on thig ;; — 3. + V. V. The instability driver is the flux-surface

analogy, as discussed hiel-_CastiIIo-Negrete(ZOOQa the averaged pressure gradieftp)/or, determined according
results presented here are directly applicable to the study of,

non-diffusive chaotic transport by drift waves in magnetized

ap) 10 j~ . 19 ( 9(p)
plasmas. WL = VB = D= — ) 14
ot +r8rr< ’p> So+ Do\ r (14)

nmingRo
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The tildes indicate fluctuating quantities (in space and
time), and the angular bracket$), denote flux surface
averaging over a cylinder at a fixed radius. The equilibrium
density isng, the ion mass isnj, the averaged radius
of curvature of the magnetic field lines ig, and the
resistivity isn. The sub indices 1" and “||” denote the
direction perpendicular and parallel to the magnetic field,
respectively. The functiofig represents a source of particles
and heat which we model using a parabolic profifg,=
So[1—(r/a)?]. Figure 3 shows a snapshot in time of

the fluctuating electrostatic potentidl obtained form the
solution of Egs. 12)—(14).

Having computedd, the next step is to integrate Ed.1j
to obtain the orbits of the tracers. The initial condition
consists of 25¢ 10° particles with random initial positions
in 6 and z, and radial positionr =0.5¢. By definition,

atr =0, the PDF,P, of radial particle displacements,= g 3 Flyctuating electrostatic potentid at a fixed time obtained
[r(#) —r(0)]/a, is a Dirac delta function. As time advances from the numerical integration of the plasma turbulence model in
the P(x,?), spreads and develop slowly decaying, “fat” Eqgs. (2)—(14). The dark (light) coherent patches denote rotating
tails. Figure 4 shows the long-time behavior of the PDF as(counter rotating)E x B eddies. The trapping effects of these
function of the similarity variablec/:”. The strong non- eddies along with intermittent large radial displacements caused by
Gaussianity ofP is evident. Like in the previous fluid avalanche-like plasma relaxation events, give rise to non-diffusive
example case, transport is super-diffusive becausel /2. transport and to the non-Gaussian PDF in Fig.dél{Castillo-
Evidence of non-diffusive transport has also been observed'edrete et a.2004 2009.

in other plasma systems including gyrokinetic simulations of

ion temperature gradient (ITG) turbulencgafichez et gl. 107 1 I | |
2008. . t=0(2
= =04
. o o 107 * =06 -
4  Fractional diffusion models of non-diffusive transport s t=0388 E
One of the main goals of transport modeling is to construct 10! i =
effective macroscopic transport equations that reproduce A ;
experimentally or numerically observed phenomena. For A & [
example, in the fluid and the plasma transport problems = 10" -
discussed in the previous two sections, the goal is to . ;
construct a transport equation that describes the observed - 4V, :
spatio-temporal evolution of the PDFP, of particle 104, PR * o AE
displacements.
When transport is diffusive, a simple solution to this ;
problem is provided by the advection-diffusion equation 107 = T T T
-0.2 0.1 0 0.1 0.2
9 P+Va,P=209(x0:P), (15)
| | o | X/
where the advection velocity and diffusivity are obtained Fig. 4. Rescaled probability distribution functions (PDFS),

from the asymptotic behavior the statistical moments

2
GO) i B0

V= Ilim ,
t—oo f t—>oco 2t

t¥ P, of passive tracers radial displacementst), as function
of the similarity variable,x/¢V with v =2/3. The dynamics
correspond to the pressure-gradient-driven plasma turbulence
model in Egs. 12)—(14). The plot shows the PDF at=0.2, 0.4, 0.6

: (16)

of the particle’s displacements, However, this approach
fails in the case of non-diffusive transport. In particular,
according to the scaling in Eq9Y when there is super-
diffusion, x — oo. Moreover, as it is well-known, the
Green'’s function of Eq.15) in an unbounded domain, is

and 0.88. Like in the fluid dynamic case in Fig. 2, the collapse of
the PDFs at successive times indicates a self-similar scaling of the
form in Eqg. @). In this case, the non-diffusive transport manifest
in the slowly decaying non-Gaussian tails of the PDF. The value
v > 1/2 indicates super-diffusive transpode(-Castillo-Negrete et

al,, 2004 2005.

a translated Gaussian and this significantly limits the range

www.nonlin-processes-geophys.net/17/795/2010/
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of PDFs that this model can describe. In particular, PDFswhere the relation between the waiting time PDF and the
with y # 1 scaling and/or with slowly decaying tails, like memory function isp = svr/(1— ).

those obtained in the examples discussed before (Figs. 2
and 4), cannot be modeled using a simple advection-dif'fusioq0
equation.

From the statistical mechanics point of view, the
advection-diffusion model assumes an underlying Marko-
vian, Gaussian stochastic process with a drift, i.e.
biased Brownian random walk, see for exampleul and

Baschnage(1999. However, the description of transport of a macroscopic transport equation from E80)( valid

in the presence of coherent structures requires the USE the time asymptotics(— 0) long-wavelength  — 0)

of rando_m walk models that.incorpgrate more general“continuum“ limit (Saichev and Zaslavskyl997 Metzler
SFOChaS“C [rocesses. In parycular, in the fde_ problgmand Klafter 200Q Scalas et al.2004). A key aspect of this
@scussed in Sect. .2’ the trapping effect of the vortices IV€Eimit is that only the asymptotic behavior, i.e., the tails of the
rise to non-Markovian effects, and the zonal shear flows give andy PDFs matter. This is a significant advantage over the

rse t_o non-Gaussu_m partlcle_ displacements. In the plas_m se of the kinetic master equation that requires the detailed
physics problem discussed in Sect. 3, the non—Markowarknowled(‘:]e of these functions

effects are due to the trapping in electrostatic eddies, and the As expected, in the Markovian-Gaussian case
non-Gaussian particle displacements result from avalanche- ’
like radial relaxation events.

The Continuous Time Random Walk (CTRW) model v =p ;M= V2ro
(Montroll and Weiss1965 Montroll and Shlesingerl984
Metzler and Klafter 2000 provides an elegant powerful Where() =1/ is the characteristic waiting time amdf =
framework to incorporate this type of effects. The CTRW (x°) is the characteristic mean square jump, the fluid limit of
generalizes the Brownian walk in two ways. First, contrary the master equation EcRQ) leads to the standard diffusion
to the Brownian random walk where particles are assumed t&duation in £5). However, the situation is quite different in
jump at discrete fixed time intervals, the CTRW model allows the case of algebraic decaying PDFs of the form
the possibility of incorporating a waiting time probability Yt B et 22)
distribution, ¥(¢). In addition, the CTRW model allows ’ ’
the possibility of using non-Gaussian jump distribution where for simplicity we have assumed thais symmetric.
functions,n(x), with divergent moments to account for long In this case, for < g < 1, (r) diverges, and there is no
displacements known astly flights. Giveny andn, the  characteristic waiting time.  Similarity, fow < 2, (x2)
probability of finding a tracer at position and timet is  diverges, indicating a lack of characteristic transport scale.

The Montroll-Weiss master Eq1{) can be used directly
model non-diffusive transport, see for examplan
Milligen et al. (2004); Spizzo et al.(2009. However,
this description carries in a sense too much information
concerning the details of the underlying stochastic process
Ahat might be irrelevant in the long-time, large-scale
description of transport. This motivates the derivation

e M e X220 , (21)

determined by the Montroll-Weiss master equation The use of this type of algebraic decaying PDFs is motivated
t o0 by the significant probability of very large trapping events
o P = / dl’d)(t—t/)/ dx’' and very large spatial displacements, as it is the case in the
0 % examples discussed in Sects. 2 and 3. From the asymptotic
[n(x =2 P 1)) —n(x —x)P(x,1))], (17) behavior in Eq.22) it follows that for smalls andk,
The spatial integral on the right-hand-side represents the)(s)~1—sf+..., fHk)~1—k|*+... (23)

gain-loss balance foP at x. In particular, the first term o ) )
inside the square bracket gives the increasePofiue to ~ Substituting Eq.Z3) into Eq. €0) we get to leading order

particles moving tax while the second term describes the 55 p-1 w2
decrease of due to particles moving away from. The 5 P(k.s)—s""=—x|k["P(k.s). (24)

time integral accounts for memory effects weighted by theq gptain the macroscopic transport equation we need to

functiong (). In Fourier-Laplace variables, invert the Fourier-Laplace transforms in EG4). This can
. ®ikx be formally done by writing
Fll=ito= [ e, (18)
. §Df P =y D% P, (25)

L[P] =¢(s) :/o e S (ndt, (19)  where the operators in EQR%) are defined according to
Eq. (17) takes the form L‘,[Bpf P] =sPP(x,s)—sP715(x), (26)
2 1—9(s) 1
P(k,s)= _ . 20 _ 5

= e @0 7oy p| =~ Piken). (27)

Nonlin. Processes Geophys., 17, 7864 2010 www.nonlin-processes-geophys.net/17/795/2010/
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for 0 < B8 < 1. Equations Z6) and @7) are the natural The solution of the initial value problem of EQR8&) with
generalizations of the Laplace transform of a time derivative P (x,r =0) = Py(x) is

and the Fourier transform of a spatial derivative. This o

motivates the formal identification of the operag(ﬂf asa P(x,1) =/ Po(x"G(x —x',t)dx’, (33)
“fractional time derivative” for O< 8 < 1, and the operator -

Dy, as a “fractional space derivative” forda <2. As  where the Green’s function (propagat6i)s the solution of
expected, fore or g integers, the regular derivatives are the initial value problemG (x,r = 0) = §(x) with §(x) the
recovered. Dirac delta function. Using Eqs26) and 7), the Fourier-
The previous discussion assumed a symmetric jumpLaplace transform of Eq2@) leads to the solution
stochastic processy(x) = n(—x). It can be shown that in

the general case the transport equation is é _ sP~ (34)
B sP—A®k)’
oDy P=yx[l—oD+r,D%]P, (28) where
where the operators on the right hand side are the left and o
right Riemann-Liouville fractional derivatives of order A_X[l(_'k) +r(k) ] (35)
(Samko et a.1993 Podlubny 1999 for  # 1. Introducing the Mittag-Leffler function, see for
. 1 gm [ ) examplePodlubny(1999,
aDyf=——= ————a—dy, (29)
C(m—oa) dx™ J, (x—y)xtl-m o0 o sh-1
Ep)=) ———, L[EsctP)]= . (38
m m b — I'(Bn+1) sP—c
e C(m—a) 9x™ J, (y—x)etl-m " the inversion of the Fourier-Laplace transform in E84)(
wherem is a positive integer such that —1<a <m. In gives
this general formulation, the asymmetry of the underlying G (x,r) =t#/* K (), (37)
stochastic process manifests on the paramétangr, N
1 .
a-o) 1+6) K= [ EglAGNak. (38)
R I Ly (31) 21 ) oo
2cosarn/2) 2cosan/2)
. . . . where
that control the relative weight of the left and right fractional
derivatives, Whe_rle—l <0 <1. In the s_ymmetric case, n=x<xl/ﬂz)_ﬁ/a (39)
0 =0, D\ = sc0ma72 [ —oc D% + » D%, ] which corresponds

= 2cogra/2) L=< : :
to the operator defined in Fourier space in Eg7)( In is the similarity variable.

the time domain, the fractional derivative operator in time,  Further details of the solution of the initial value problem
gD,ﬁ , introduced in Eq.46) become an integro-differential and useful asymptotic and convergent expansions of the

operator of the form Green'’s function can be found Metzler and Klafte(2000;
1 toa.p Saichev and ZaslavsKiL997); Mainardi et al.(2007).
& Df P= Y dt’, (32) Of particular interest is the asymptotic behavioxirfor a
_ P ,
I'A-p) Jo (t—1) fixedt = 1o,
where O< 8 < 1. For a derivation of fractional diffusion 1 1. \Pla
models that incorporate more general stochastic processe§,(x,0) ~xm WO s (X f to) . (40)
including the physically important case of truncate@vis ) ,
statistics, se€artea and del-Castillo-Negre(2007). For and the smalt and larger scaling at fixed = xo,
a derivation of fractional diffusion models using quasi-linear P _1 \ VB
type renormalization techniques sganchez et a{2006. 7 for 1L (Xf x0>
G(x0,1) ~ (41)

=P for > (thlxg‘)l/ﬂ.
5 Applications of Fractional diffusion models

From these relations it follows that the order of the fractional
The goal of this section is to use the fractional diffusion derivative in spacey, determines the algebraic asymptotic
equation to model the non-diffusive transport of tracersscaling of the propagator in space for a fixed time, and
discussed in Sects. 2 and 3. In particular, we show thathe order of the fractional derivative in timg, determines
the numerically obtained PDFs of the particle displacementshe asymptotic algebraic scaling of the propagator in time
in Figs. 2 and 4 can be obtained as solutions of effectivefor a fixedx. These two properties provide a useful guide
macroscopic fractional diffusion equations. to construct fractional models given the spatio-temporal
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Fig. 5. Comparison between the PDF of particle displaceménts, 10°
in the quasigeostrophic zonal with Rossby waves(solid line), and the 0.2 0.1 0 0.1 02
PDF obtained from the solution of the fractional diffusion model in X

Eq. 28) witha =8=0.9, andd = 1.
Fig. 6. Comparison between the PDF of particle displacements,
in the resistive, pressure-gradient-driven plasma turbulence model
in Egs. 2—-(14) and Fig. 4 (triangles), and the PDF obtained from
the solution of the fractional diffusion model in EQ8) with o =

asymptotic scaling properties of the PDF. Using B) (the ~ 3/4,8=1/2,6 =0, andx = 0.09 (del-Castillo-Negrete et a2004

moments in the fractional model are given by 2009.
<x">:/x"P(x,t)dx~t"ﬁ/°‘/n"1<(n)dn, (42)

o o . compares the solution of the fractional diffusion equation
that implies the anomalous diffusion scaling for these parameters with the PDF obtained from the direct
(2 ~17, y=2B/a. (43) numerical simulation shown in Fig. 4. Details on the explicit

solution of the fractional diffusion equation can be found in
According to Fig. 2, the scaling exponent of the PDF of del-Castillo-Negrete et al2004 2005. As discussed in

particle displacements in chaotic transport by Rossby wave$ect. 3, the Lagrangian study of transport in plasmas was
is y ~1.9. As expected, this value is also consistent with based on the guiding-center equations of motion which are
the scaling of the second moment computed directly froman approximation to the dynamics valid in the limit of zero
the Lagrangian statistic of displacements. Based on this, iLarmor radius. The role of finite Larmor radius effects on
the construction of the fractional model we assume 2, non-diffusive transport, in particular on fractional diffusion
which according to EqA4Q) impliesa = 8. This special case was studied irGustafson et a(20089.
corresponds to the neutral fractional diffusion equation, for
which G in Eq. (37) is (Mainardi et al, 2001): 6 Non-local transport

7t sinfr(a—¢)/2In*
7 14+2n*cogn(a—1¢)/2]+n2
for n > 0 wheren = d8x/t is the similarity variable and =

tan(m¢ /2)/tan(ra/2). The solution forp < 0 is obtained
using the relationK (—n;a,¢) = K(n;a,—¢). Figure 5

In the previous sections we discussed non-diffusive transport
in the context of test particle Lagrangian transport in fluids
and plasmas. One of the main goals was to construct
macroscopic effective transport models to describe the PDF
of particle displacements in chaotic and turbulent flows.

It was shown that fractional diffusion operators provide a

shows a comparison between the fractional diffusion solutionf : : :
; : . _ ramework to describe the spatio-temporal evolution of the
in Egs. @3) and @4) with the PDF obtained in Sect. 2 from PDFs. In particular, the long tails of the PDFs as well

the Lagrangian statistics of the quasigeostrophic transporks the non-Gaussian scaling of the Lagrangian statistics are

problem. well captured by fractional diffusion models. Motivated by

d .In thel case tofbtulrbulen:htransportt '? pres]sure—gr?d|§nt- hese results, in this section we discuss the use of fractional
riven plasma turbuience, the asymptolic scaling analysiS Oy sion models to describe non-diffusive transport of

thedPDlFs OL F{{‘Ert'de d|sr()jl_<';1rcer_nents all_ccordflntgr;] to E48) (t passive scalars, like temperature, density, pressure or the
and @1) and the super-diffusive scaling of the moments ..o ration of a pollutant in flow.

in Eg. @42), indicate thate = 3/4 andg =1/2. Figure 6

G(x,t)= , (44)

Nonlin. Processes Geophys., 17, 7864 2010 www.nonlin-processes-geophys.net/17/795/2010/



D. del-Castillo-Negrete: Non-diffusive, non-local transport in fluids and plasmas 803

The starting point is the conservation law Eq. @7) have been used in the study of parallel electron heat
transport in magnetized plasmase(d et al, 2001), and in
T =—0dxq, (45) the study of transport due to long scale-length fluctuations

(Yoshizawa et aJ. 2003. However, the physics behind
the non-local models discussed here is different, and it is
based on the theory of non-Gaussian stochastic processes.
Motivated by the results discussed in the previous sections,
we model the non-local flux-gradient relation in Ed.7Y
using fractional derivative type operators of the form

whereT denotes the scalar field transported gndenotes
the flux. For simplicity we limit attention to the transport of
a single scalar in a 1-D domain. The conservation 14%) (
has to be complemented with a prescription relagirsmdT .

In the case of diffusive-transport this closure is provided by
the Fourier-Fick’s local prescription

g=—xT+VT aey 9= xWLPE-n DT, (48)
N L , . wherey can depend on and
where x is diffusion coefficient andV is the advection

velocity. Substituting Eq.46) into Eq. @5) leads to the — pep _ 1 fx T/(y)—T/(a)d (49)
advection-diffusion model in Eq16). CTTreC-o) )i =yt

Although the advection-diffusion model has been success- N 1 LT (b)Y —T'(y)
fully applied to a wide variety of transport problems, there xD, T = r2—a) /x O —my 1 dy, (50)

are cases in which this model fails to describe the dynamics.
The examples discussed before showed clear evidence of thishere7’ = 3, T, and! andr are defined in Eqs3(). Note

in the case of the PDF of Lagrangian particle displacementsthat the operatorgD§ and ,D; are not exactly the usual
Here we explore the role of non-diffusive transport of Riemann-Liouville fractional derivative operators introduced
scalars, like temperature, for which a Lagrangian test particlén Egs. 9) and @0). As discussed imlel-Castillo-Negrete
perspective might not be readily available. One of the(2006; del-Castillo-Negrete et al(2008 this difference
main motivations for this study is the understanding of fasthas to do with the important issue that in a finite size
propagation phenomena in magnetically confined plasmasdomainx € (a,b) the Riemann-Liouville operators must be
The basic problem can be understood without entering intaegularized to incorporate general boundary conditions of
the details concerning the plasma system. The top panel iphysical interest.

Fig. 8 shows the basic configuration of interest, whgyés The role of non-locality and asymmetry in transport is
perturbed by a pulse at the edge of the domain. The problenilustrated Fig. 7 that shows the time evolution of a localized
then is to study the relaxation of the system back to thepulse initial condition in the model in Eq#%) and @8) with
steady state. This type of perturbative transport experiments = 1.3 and6 = 0.5. As the top panel shows, due to the
are commonly performed in magnetically confined fusion asymmetry # 0, the peak of the distribution shifts to the
devices where a plasma is suddenly cooled at the edge. It hagght. It can be shown that the peak of the profilg, during
been observed in several experiments that such cold pulsine drift satisfiesqel-Castillo-Negrete20086),

perturbations travel from the edge to the center of the device B Vo BJa

at speeds significantly greater than the typical diffusive time*m(*) = mmx " 17", (51)
scales. Because of this, attempts to model some of thesghere

experiments using the diffusion equation have failed. Here

we discuss the use of non-local transport models as amm=9<&>al/“ tan(%)‘. (52)

alternative to diffusive models to describe these phenomena.
By non-local we mean that, contrary to the Fourier-Fick's As expected, in thé =0 symmetric case and in the=
local prescription in Eq.46), the fluxg at a given point 2 diffusive limit, the drift vanishes. This drift results
depends on the gradient &fthroughout the entire domain. from the existence of “up-hill” transport which is a generic
The generic mathematical structure of these nonlocal modelfeature of non-local transport models. In the Fourier-Fick’s

is prescription the flux dependence on the local gradient is
always “down-hill”, i.e., in the direction opposite to the local
q(x)=—x /’C(x =T (y)dy, (47)  gradient. However, as the vertical lines in the top and middle

panels of Fig. 7 indicate, in this case there is region of “up-
where the kernek’ determines the level of non-locality. In hill” transport in which the flux is in the same direction as
the case whelt = §(x —x’), Eq. @7) reduces to the familiar  the gradient. Moreover, as the bottom panel of Fig. 7 shows,
Fourier-Fick prescription in Eq.46), where for simplicity  in the non-local decay of the pulse, the flux-gradient relation

we assumé&’ =0. is not linear like in the Fourier-Fick’s diffusive case, it is in
Non-local transport is a problem of significant interest in fact multivalued. The multivalued relation betwegrand
plasma physics, see for exam@allen and KissicK1997) —d, T is a generic feature of non-local transport models with

and references therein. Flux-gradient relations of the form inor without asymmetry.
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Fig. 7. Non-local transport of a localized pulse initial condition time

according to the fractional diffusion model in Eqd5( and é8)

with « =1.3, =1, andd = 0.5. The curve plotted with the solid Fig. 8. Non-local fast pulse propagation. As shown in the top
line in panel(a) shows the profile at the final time, and the curves panel, perturbative transport simulations follow the evolution of
plotted with dashed lines show the profiles at earlier times. Thea localized perturbation (dashed line) of an steady state passive
drift of the distribution results from the asymmet#y 0 of the tracer profile (solid line). The bottorp panel shows the time traces
fractional operator. Pangb) shows the leftg;, the right,q,, and  of the normalized tracer perturbatioff =67 /|min[37 (x,0)]|, at

the total non-local fluxg, and panelc) shows the flux-gradient different locations along the x-domain. In the local diffusive case
relation. Contrary to the Fourier-Fick’s linear relatigns —x 9, T, (dashed lines) the normalized propagation speed from the edge,
g and—3, T exhibit a nonlinear, multivalued relation. The top, left x =0.75, to the centerx =0, of the domain isV, =1. In the
gquadrant—a, T < 0 andg > 0 corresponds to up-hill transport that fractional case withw = 1.75 (solid Iines),\?p =6.3, and in the
occurs in the region bounded by the two vertical lines in panels (a)fractional case witlx = 1.25 (dotted Iine),Vp —96.

and (b).

with us=0, andos=0.075. For each simulation, the
In the study of the propagation of pulse perturbations,source amplitude was selected so tifat0) =1. The
the first step is the computation of the steady equilibriumsimulations followed the spatio-temporal evolution of the
temperature profilelp(x) in the presence of a source of the perturbed temperatureT (x,t) = T (x,t) — To(x), with

form initial condition
— )2 _ 2

S = Soexp —% , (53)  ST(x,0)=—Aexp —(x—’;") , (54)
20¢ ZGP
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where A = 0.3, up =0.75, andop = 0.03. Details on the 0.1 -
numerical method used to integrate the fractional transport
model can be found imel-Castillo-Negretq2006. The
bottom panel in Fig. 8 shows the time evolution of the = E 0.05
normalized tracer perturbatiod7” = 87 /|min[8T (x,0)]|,
at different locations along the x-domain. We define the 0
0 0.5 1

mean pulse propagation speed as the ratio of the normalized
distance and the time delay, = 1/5z. The time delay is X
defined as the time required for the scalar field at O to

exhibit a drop of sizeST;. That is, 87 (0,8¢t) =38Tc. For

the value of the threshold we choo8&. = —0.0375. We 0.1
considered three case: an= 2 diffusive case, and two
fractional cases withw =1.75 ando = 1.25. The main
conclusion is that non-locality can lead to a considerable
increase of the pulse speed. In particular, the numerical
results show that for the same value pf V, for a = 0
1.25 is about 10times bigger than the diffusive speed.
This idea was used idel-Castillo-Negrete et a(2008 to
model perturbative experiments on cold temperature pulse
propagation in the Join European Torus (JET) magnetically

time

time

0.05

confined controlled fusion device. 0.1
To conclude we present recent results on the role of @

non-locality in the propagation of pulses through transport E 0.05

barriers. The local and non-local diffusivities are assumed to

be of the form 0

—(r—x0)2 X

Xd = Xdo—ge” T, (55)
Fig. 9. Non-local “tunneling” of perturbations across a transport

and barrier.  The figure shows the spgce-time evolution of the
normalized passive tracer pe[turbatiaiﬂ =68T/IMIn[8T (x,0)]|

Xnio X —X¢ Xe with dark blue (red) denotingT =1 (5T =0). The top panel
Xnl = T[tanh(—)+tanh(—)] corresponds to diffusive transport in the absence of transport

N barriers. The middle and bottom panels correspond to diffusive and
- e~ X0 W (56) non-local transport respectively in the presence of a transport barrier
located atx = 0.5.

The tanh profile inyn is introduced to guarantee the

vanishing of the non-local flux in the core region where 7 conclusions

transport is assumed to be dominated by diffusive processes.

The transport barrier is modeled by introducing a dip, We have presented a review of recent results on non-
e~6=x0%/w in the diffusivity profiles. In the calculations diffusive transport in fluids and plasmas. The approach
reported herery0=1, x0=0.5,7 =0.95, xno =1, xc =0.1, was based on the study of the Lagrangian statistics of large
L =0.025, andw = 0.005. In the non-local simulations, ensembles of particles. In general, the stochasticity in the
o =1.25. Figure 9 shows the spatio-temporal evolution of Lagrangian trajectories can result from deterministic chaos
8T. The top panel shows the case of diffusive transport,or from turbulence. The examples discussed encompass both
xnlo =0, in the absence of transport barriers. In this casepossibilities. In the studies of transport by Rossby waves
the pulse spreads throughout the plasma domain in a slowin quasigeostrophic zonal flows, the advection velocity was a
diffusive time scale. As expected, as shown in the middlesmooth deterministic function but the Lagrangian trajectories
panel, in the presence of a transport barrier the diffusiveexhibited Hamiltonian chaos. On the other hand, in the
propagation of the pulse is stopped. However, in the presenck x B transport plasma problem, the advection velocity
of non-local transport the pulse dynamics is fundamentallywas a non-deterministic random function obtained from the
different. As the bottom panel in Fig. 9 shows, in this casesolution of a turbulence model. The main object of study
the pulse can in fact go through the transport barrier. Thiswas the probability density function (PDF) of individual
“tunneling” effect is a unique novel property of non-local particle displacements, also know as the propagator. Both,
transport. the fluid chaotic transport problem and the plasma turbulent
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transport problem, exhibited strongly non-Gaussian spatiowind termination shock Rerri and Zimbardo2009. It
temporal self-similar PDFs. In addition, the Lagrangian would be interesting to explore the application of the ideas
statistics in both cases exhibited super-diffusive scaling, and techniques discussed here to these systems. On the
x2>~1¥ with y > 1. The modeling of these PDFs using other hand, knowing the key role that coherent structures
advection-diffusion equations is out of the question becauselay in non-diffusive behavior, dynamical systems tools used
the effective diffusivity diverges, and the propagators haveto identify Lagrangian coherent structures (LCS) in fluid
non-Gaussian decaying tails. The observed non-Gaussiaturbulence aller and Yuan 200Q Mathur et al, 2007
statistics in the examples discussed has its origin on thend plasma turbulencé@dberg et al.2007 should be of
combination of anomalously large particle displacementsrelevance to the transport studies discussed in the present
known as “Levy flights”, and the trapping effects of coherent paper.
structures like fluid vortices arl x B plasma eddies.

We have shown that the PDFs of particle displacements
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