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Abstract. A system made of two sliding blocks coupled by been shown that spring-block models can simulate several
a spring is employed to simulate the long-term behaviour offeatures of seismic activityDjeterich 1972 Rundle and

a fault with two asperities. An analytical solution is given Jackson 1977 Cohen 1977 Cao and Akj 1984 1986

for the motion of the system in the case of blocks havingGu et al, 1984 Carlson and Langerl989ab; Carlson et

the same friction. An analysis of the phase space shows thatl., 1994). The discovery that simple models for seismic
orbits can reach a limit cycle only after entering a particular sources may exhibit deterministic chaos has raised interest
subset of the space. There is an infinite number of differenfor its implications in earthquake predictioK€ilis-Borok,

limit cycles, characterized by the difference between thel199Q Keilis-Borok and Kossobokqv199Q Beltrami and
forces applied to the blocks or, as an alternative, by theMareschal1993.

recurrence pattern of block motions. These results suggest Nussbaum and Ruin1987 considered a two-block
that the recurrence pattern of seismic events produced by theodel with spatial symmetry and found periodic behaviour.
equivalent fault system is associated with a particular stres$luang and Turcottg1990a 1992 and McCloskey and
distribution which repeats periodically. Admissible stress Bean(1992 showed that a two-block model without spatial
distributions require a certain degree of inhomogeneity,symmetry yields chaotic behaviourHuang and Turcotte
which depends on the geometry of fault system. Aperiodicity(199089 showed that the chaotic behaviour may reproduce
may derive from stress transfers from neighboring faults. some features of interacting fault systems. Two-block
systems were also consideredd®sySousa Vieir§1995 and

He (2003.

In the present paper we consider a model made of two
coupled blocks, pulled at constant velocity on a rough plane.
Spring-block systems are commonly used as Iow-orderThe model is in_t(_ended to simulate the behaviour of a fault
analogs of seismic sources. A system made of a block pulled¥ith two asperities (or of two coplanar fault segments)
by a spring was first proposed Burridge and Knopoff subject to a constant tectonic strain rate. We assume that
(1967). Due to non linear dependence of friction on the block the blocks are characterized by the same values of static and

velocity, the system is nonlinear and dissipative. dynamic friction. _ _
The simplest friction law that generates the stick-slip 1urcotte(1997) has shown numerically that this system
behaviour characteristic of seismic sources is a piecewis&€2n exhibit limit cycles in the phase space, representing

constant function of slip rate, with friction assuming a static the alternate motion of the blocks. Here we present an
or a dynamic value. More complicated friction laws are analytical solution for the long-term behaviour of the system

obtained from laboratory experiments and have been used ignd analyse the characteristics of limit cycles as functions of

spring-block modelsByerleg 1978 Dieterich 1981 Ruing, the applied forces and the coupling degree. Inferences are
1983 Rice and Tse1986 Erickson et al. 2008. It has drawn about the long-term behaviour of the equivalent fault

system.
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2 Equations of motion 3 Solution

Consider two blocks having equal magssand placed on Inthe planeXY the conditions for the motion of block 1 or 2
a horizontal plane (Fig. 1a). Each block is connected byare represented respectively by the lines

a horizontal spring of rigidityK to a driving mechanism 1+a 1

moving at constant velocityin the horizontal direction. The Y=—-X—— @)
blocks are connected to each other by a spring of rigikiity ¢ ¢

We assume that the motion of each block is resisted by g, _ LXJFL ®)
static friction fs and a dynamic frictioryy. 1+ 14+«

We indicate with coordinates x and y the extensions of they 5t we name lines 1 and 2, respectively (Fig. 1b). The two
springs connecting respectively blocks 1 and 2 to the driverjines and the axex and Y form a quadrilateralp, with
Following Turcotte (1997, we introduce nondimensional ertices al0,0).(A.0),(1.1).(0,A) and area
coordinates and time

1
A= 9)
KX K K
X=—, Y:—y, T=."¢ 1) 1+«
fs fs m Hence Q is the set of points corresponding to stationary
We set blocks: it coincides with the unit square when= 0,
K it shrinks progressively ag increases and tends to the
€= ﬁ7 a=—< 2) diagonalY = X for « — oo. The initial state is then a point
fs K Po=(Xo,Y0) € 0.
with 0 < ¢ <1 anda > 0. If f1 and f2 are the forces applied
to the blocks, we introduce nondimensional forces
f £ 3.1 Stationary blocks
Fi==—", F==—" ®3) N i
Is fs With initial conditions
When the blocks are stationary, the equations of motion ofy 0y = x,, v =Yy, X(0) =0, Y(0)=0 (10)

the system are then .
Egs. @) have the solution

X=0, ¥=0 4
’ “) X=Xo+VT, Y=Yo+VT (11)
where dots indicate differentiation with respectfto When

: . whereV is the nondimensional velocity
the blocks are moving, the equations are

. v Km

X+(A+a)X =e+aY (5) V= 7 v (12)
S

Y+A+a)Y =e+aX (6) Egs. (1) are the parametric equations of the line

The system having two degrees of freedom, the phase spacYe= X+p (13)

is a 4-manifoldS. The evolution of the system is described where
by the orbit of the representative point$n

For the largest part of time the system is stationary.” =Yo—Xo (14)
Therefore it is natural to assume as initial condition a stateAny segment of lineX3) contained inQ is a set of states in
with X =Y = 0. This implies that the representative point which both blocks are stationary. Sincged#Q, p can vary
belongs to the plan¥Y. We shall study the projection of the within the range | A, A]. Line (13) will intersect line 1 or 2
orbit in this plane. In view of the seismological application, depending on the sign ¢f.

we assumeX >0, Y > 0. SinceX andY vary in the range According to (4), p expresses the difference between
[0, 1], the projection ofS is the unit square with vertices at the initial displacements of blocks. A more interesting
(0,0), (1,0), (1,1), (0,2). interpretation ofp is based on the forces applied to blocks.
From the equations of motion,
Fi=—X—-a(X-Y), Fo=-Y—a(Y—-X) (15)

In the state Xo, Yo) the difference between them can be
written thanks to 14) as

AF =(142a)p (16)

Hencep is a measure of the difference between the forces
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acting on the two blocks. Ifs close to the diagonal = X (a)
(hence p| is small), the blocks are subject to forces of similar
strengths. If B is far from the diagonal and close to line 1
or 2, one of the blocks is subject to a much greater force
than the other. If Ris in the vicinity of point (1,1), both
blocks are close to the onset conditions and the motion of
one of them will easily produce the motion of the other.
Speaking about faults, we can say that the magnituge of
is a measure of the inhomogeneity of the applied stress. The
inhomogeneity has two causes: the difference between the
amounts of slip of the two asperities (the tepnm (16)) and
the effect of coupling (the terme). This means that the f (B)

stress on the fault is fairly homogeneous wheristlose to 86 /L
the diagonal, while it is inhomogeneous wheni®close to ' s
line 1 or 2. In the first case the effect of tectonic loading is 1 r
prevailing, in the second case the effect of a dislocation on 0.6 — '
the other is important. v ol
0.4 — Q f -

3.2 Moving blocks /4
We solve the equations of motion in the case when only one 0.3 —
block slips at a time. The motion of block 1 is given 5 (
with initial conditions

- 0 o 1 e
X@O=xX, X©0=0 17 0 02 O_Id 06 08 1

X

andY equal to a constarit given by (7):

X—= (18)

The solution is

_ U
X(T):X—E[l—cos(«/l—i—aT)] (19)
X(T):—%«/l—i—asin(«/l—i—a T) (20)
where

1-—¢
U=21+a (21)

Equations 19) and @0) are the parametric equations of an
ellipse with minor axisU and major axisy/1+aU. The
block stops at time

v
To= i (22)  Fig. 1. (a)The two-block system(b) projection of the phase space

in the planeXY and the quadrilatera (o« = 1); (c) noteworthy
when the representative point(i& — U, ¥). This shows that ~ Subsets oD: By, Bp, Ly, Lo, and the set C of limit cycles < 0.7).
U is the final displacement of the block. Analogously, the
motion of block 2 is given by&) with initial conditions

The solution is

Y(O) =Y, Y(0)=0 (23)

andX equal to a constarX given by @): Y(T)=Y — % [1— cos(v 1+a T)] (25)

gottey 1 (24) Y(T):—%«/1+asin<x/1+th> (26)
o o
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The block stops again af = Tp when the representative
pointis (X, Y —U). It can be seen that the valuesXandY
vary in the range+{1, 0]. HenceS is a hypercube with unit
edge. The conditionX >0,Y >0 imply e > 1/2.

4 Limit cycles

There are two regions in the phase space from which the orbit

of the system enters immediately a limit cycle. They are
defined as follows. Let us calliLthe subset oD enclosed
between the lines

Y=X-a, Y=X-b (27)
and Ly the subset enclosed between the lines
Y=X+a, Y=X+b (28)
where

o 1+«
a 14+ 2« U, 1+ 2 (29)

Let P; be the intersection point of lined.8) with line 1 or 2
and B the arrest point of block 1 or 2, respectively. Subsets
L, and Ly have the following properties:

1. if PoeLy, then R belongs to line 1 and&= L;
2. if Ppe Ly, then R belongs to line 2 andR= L 1.

The proof is immediate since a displacem&nirings the
points belonging to the minor base of the trapezoidhto
the major base of the trapezoig knd vice versa. Hence,
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Table 1. Coordinates of the singular points of a limit cycle.

(@ PRels
X1=1+ap,
Xo=14ap-U,
X3=1-1+a)(p+U),
X4=1-14+a)(p+U),
(b) PoelLa2
X1=1-1+a)p,
Xo=1-(1+a)p,
X3=14+a(p—U),
X4=1+ap—(1+a)U,

Y1=1+(1+a)p
Yo=1+1+a)p
Y3=1—a(p+U)
Yp=1-ap—(1+a)U

Yi=1-ap
Yo=1—ap—-U
Y3=1+14+a)(p—-U)
Ya=1+1+a)(p—-U)

4. There is an infinite noncountable number of cyalgs
with p € [—b, —a]. The union of allC), is a setC C Q.

5. Each cycle represents the alternate motion of blocks.

If Po ¢ L, orbits are in general more complicated: their
projection may be not entirely contained @ and may be
the union of rectilinear and curvilinear segments. Blocks
can move simultaneously. It is evident from Fig. 1c that
this occurs when ¢ belongs to the regions jBor By,
corresponding to-a < p <0 and O< p < a, respectively.

In fact, when B € B1, the segment describing the motion of
block 1 intercepts line 2 and triggers the motion of block 2.
Analogously, when f< By, the motion of block 2 intercepts

when the representative point of the system enters the regiofi€ 1 and triggers the motion of block 1. Such orbits reach a

L=L; ULy, it remains there forever, jumping an infinite
number of times from Lto L, and vice versa (Fig. 1c).

Consider a point {’< L1. The orbit of the system in the
planeXY is initially a segment of lineX3) which intersects
line 1 at R = (X3,Y1). The orbit is then a segment of line
Y = Y3 until the arrest point £= (X>, Y2) of block 1. Then
the orbit is a segment of line

Y=X+p+U (30)

which intersects line 2 at poinsP= (X3, Y3). Finally, itis a
segment of lineX = X3 until the arrest point P= (X4, Y4)
of block 2. It is easy to prove thaymelongs to line 13).

Therefore the system has entered a limit cycle. The same

conclusion is reached ifg&= L,. We conclude that:

1. The projectionC), of alimit cycle in the plan&Y is the
union of four rectilinear segments and has four singular
points. Their coordinates are given in Table 1.

. All points Py € L with the same value op converge to
the same cycl€,.

. Points B € L1 characterized by converge to the same
cycle as points f< Lo characterized by + U: hence
Cr=Cpiv.
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limit cycle only when they enter L. We do not consider them
in the present paper.

5 Recurrence periods

From the coordinates of singular points, it is easy to calculate
the time intervals elapsing between the motions of blocks.
We consider the case < 0, including all possible limit
cycles. The interval between the motions of block 1 and
block 2 is

1+20) p+alU
= 3F20p+al (31)
74
and that between the motions of blocks 2 and 1 is
1+2 1
_ A+ W)P;‘( +a)U (32)

As p increases in the range-p, —a], T12 decreases, while
T»1 increases. The two intervals are equal wipea —U /2.

If we neglect the duration of block motions, the interval
elapsing between two consecutive motions of the same block
is

U
AT =T+ To1= v (33)

www.nonlin-processes-geophys.net/17/777/2010/
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which is independent op and therefore is the same for all

. Table 2. Intensity of forcesF; and F» at the singular points of a
cycles. If we define

limit cycle.
T12
"= T (34) Point  Fy Fs
i P1 -1 —1—(1+2a)p
we can write P> ~1+1+a)U ~1-(1+a)p—a(p+U)
A+a)yr+o P3 =1+ (1420 (p+U) -1
P="Arzmarn’ B9 Py —ltap+A+@(p+U)  -1+A+)U

This shows that a limit cycle can be characterizedrby
instead ofp. Thanks to {6) and @5), the difference between

forces when the system enters a limit cycle is 6 Discussion and conclusions

1
(A4 a)r+ta U

AF =
1+r

(36) Fault surfaces are characterized by an inhomogeneous
distribution of friction. Such a distribution is commonly
This pattern repeats periodically in the cycle and characterrepresented in the framework of an asperity model, which
izes it. The intensities of forces at singular points are givendistinguishes between high- and low-friction patches on the
in Table 2. fault (Lay et al, 1982. In addition, friction is governed by a

In conclusion, in any limit cycle the recurrence peric@ constitutive equation implying that friction may change with
of motions of each block is the same for both blocks, for time during fault slip and even when the fault is at rest.
given values ok anda. However the period$y, and 721 We simplify this picture by considering a system having
elapsing between the motion of one block and that of theg finite number of degrees of freedom, which includes
other depend on the shape of the cycle, which in turn dependge essential properties of real faults but avoids the many
on the distribution of forces on the blocks. complications associated with them. This allows us to

If we suppose that the displacement of a block correspondsollow the evolution of the system in the phase space and
to the slip of a fault asperity, we can calculate the seismicto investigate its dynamical properties in the long term.
moment releas@/(T) as a function of time. Assume that  The system of two coupled blocks includes the essential

asperity 1 fails af” = 0 and the moment release associatedfeatures of a fault with two asperitie$iuang and Turcotte

with the slip of each asperity &p. The cumulative release
is then

N

M(T)=MoY [H(T —nAT)+H(T —Ti—nAT)] (37)
n=0

whereH(T) is the Heaviside function anil is a very large

integer. In the particular cagg, =0, (37) reduces to

N
M(T):ZMOZH(T—nAT) (38)

n=0
representing a sequence of events with perivd and

seismic moment ®o. In the casel'o = AT/2, (37) can be
written as

M(T) = Moﬁj[H(T—znA—zT) +H<T— (2n+1)A—2T)]
n=0

(39)
which reduces to
2N
AT
M(T):MOmX:;)H(T—m7> (40)

representing a sequence of events with peridl/2 and
momentMp.

www.nonlin-processes-geophys.net/17/777/2010/

(19903 studied the case in which the blocks have different
frictions and found that the system exhibits chaotic behaviour
for certain values of the coupling constant

The analysis of the symmetric model presented in this
paper shows that the system exhibits a rich phenomenology
even in this simpler case. The evolution of the system
depends on a parametep indicating the degree of
inhomogeneity of the applied stress. Only a limited range of
stress distributions allows the system to enter a limit cycle. In
this case the behaviour is periodic, with the alternate motion
of the two blocks, but an infinite variety of cases is possible.
Figure 2 shows three different limit cycles, corresponding
tor =1, 1/5 and 0. Cases with> 1 yield similar cycles
with the roles of the two blocks interchanged. If we set
a=1, it follows A=1/2, a=U/3 andb=2U/3. The
cycles correspond tp/U = —1/2, —7/18 and—1/3. We
take ¢ = 0.7 (Scholz 1990, implying U =0.3. Figure 3
shows the seismic moment releageand the forced, F»
as functions of time for the three cases.

The case in which the block motions are equally spaced
in time (- = 1) corresponds to a fault with two asperities
slipping at equal time intervals and producing earthquakes
with momentMp proportional toU and recurrence period
AT/2. The cases in which one interval is much smaller than
the other £ < 1 orr > 1) correspond to a fault producing a
sequence of two earthquakes (with momefit each) close

Nonlin. Processes Geophys., Y8472@10
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1 (b) r=1/5

0.2

Fig. 2. Three possible limit cycles of the system, for different values

of the ratior (¢ =1,¢ =0.7).
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Fig. 3. Seismic moment release and forcesFy, F» as functions
of time for the cycles shown in Fig. 2.

in time, followed by a long interseismic period, equal to
AT/(r+1) orrAT/(r+1), respectively. The case in which
one of the intervals is close to 0 corresponds to a fault where
the failure of an asperity is followed immediately by that of
the other, producing a single earthquake with momeig 2
and recurrence periodT.
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Due to the dependence gn the shape of limit cycles may change the value gfaccording to 16), thus addressing
depends on the stress distribution. The condition undethe representative point to a different limit cycle with a
which fault slips are close in time takes place for relatively different value of-: this is expressed by the derivatie/dp.
small and relatively large values gf|, while fault slips are In a fault system, the recurrence times of earthquakes
equally spaced in time whejp| assumes an intermediate generated by a specific fault in the periodic, limit-cycle
value. Hence the recurrence pattern of seismic eventsegime are easily longer than the recurrence times of
depends on the stress distribution in the system. A certaiperturbations by neighboring faults. If the fault model
distribution of seismic events in time corresponds to aconsidered here is subject to such perturbations, the fault
stress distribution that repeats periodically: it is the stresswill enter a limit cycle, but will not remain long in it due to
distribution that was present when the system entered thintervening stress perturbations. Therefore periodicity could
limit cycle. not be observed in most cases.

A critical parameter of the system is the coupling constant
a. In order to evaluate which values are appropriate for it,
we compare the spring-block model with a simple model AcknowledgementsiVe thank the editor L. Telesca and two
based on continuum mechanics. We consider a verticalanonymous referees for useful comments and suggestions on the
plane fault embedded in a shear zone of widitind rigidity paper.

1, subject to a constant strain rater@goni and Tallaricp
1992. Two coplanar asperities having the same afleare
placed at distanc& on the fault. In the point-like source
approximation, the shear stress transferred to one asperity by
slip Au of the other asperity can be written as
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