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Abstract. We propose an alternative approach for the em-of phase space (or state space) reconstruction introduced
bedding space reconstruction method for short time serieshy Packard et al(1980 and mathematically stated as the
An m-dimensional embedding space is reconstructed with @mbedding theorem byakens(1981), and also later by

set of time delays including the relevant time scales characSauer et al(1991). The embedding theorem states that
terizing the dynamical properties of the system. By usingthe dynamics of a physical system recorded in a time se-
a maximal predictability criterion @-dimensional subspace ries s(t1),s(#2),...,s (t)..,s (t,) can be fully captured or

is selected with its associated set of time delays, in whichembedded in ther-dimensional phase space defined by
a local nonlinear blind forecasting prediction performs the X () =[s (t),s (tx +70) 5 .evv.... ,8 (. + (m — 1)10)], wheretg

best reconstruction of a particular event of a time series. Anis atime delay. If the attractor is of dimensigp, then, given
locally unfoldedd-dimensional embedding space is then ob- any time delayrg, an embedding dimension > 2d4 +1 is
tained. The efficiency of the methodology, which is mathe-required. Under that condition nearly all delay reconstruc-
matically consistent with the fundamental definitions of the tions are one to one and faithful, appropriately diffeomorphic
local nonlinear long time-scale predictability, was tested withto the original phase space. That is, under certain generic
a chaotic time series of the Lorenz system. When applied ta&onditions the state space reconstruction is equivalent to the
the Southern Oscillation Index (SOI) (observational data as-original phase space. This equivalence ensures that differen-
sociated with the El Nio-Southern Oscillation phenomena tial information is preserved and allows for both qualitative
(ENSO)) an optimal set of embedding parameters exists, thatnd quantitative analysis. However, these theorems are exis-
allows constructing the main characteristics of the EidNi  tence proofsAbarbanel et a].1993 and they do not directly
1982-1983 and 1997-1998 events, directly from measureexplain how to get a suitable time delay or embedding di-
ments up to 3 to 4 years in advance. mension from a finite time serieBécora et al2007). Imple-
mentation of the reconstruction method requires that the time
delay and the dimension be determined by using heuristic
and/or statistical criteria (for reviewsbarbanel et a).1993
Schreiber1999 see als&ellucci et al, 2003 Letellier et al,
2008. Itis important to stress that the embedding dimension
required by the embedding theorem is a sufficient condition
tem is an important problem in many disciplines of sci- and could be larger than the_ necessary embeddi_ng dimension
ence, such as economics, dynamical systems and weath rbafba”‘?' et aJ..1993. To find the necessary minimal em-
forecasting. It is indeed a defiant problem if the only in- edd'f‘g dimensioRecora etal1995 2007 proposed an ql—
formation available from the system comes from time se.ternative approach that reduced the problems of choosing all

ries of some univariate experimental data. Numerous tooI§mbeOlOIIng parameters to one. This problem is addressable

1 Introduction

Predictability is a fundamental physical property of deter-
ministic systems. Predicting the time evolution of a sys-

have been developed precisely for this purpose (see, e y using a single statistical test formulated directly from the

Kantz and Schreibe2005. An important tool is the method econstruction theorems, a continuity test. This is a global
test in the sense that it uses information on the whole attrac-

tor. For the Lorenz system they found that three dimensions
Correspondence ta. F. Astudillo (for = [0, 10, 470] With 7o = 14) are required to unfold the
BY (hastudil@udec.cl) Lorenz attractor efficiently. This is indeed much better than
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the 16 components required with the fixed time delay em-eters, then to an observational time series, a benchmark in
bedding methodologyRecora et al.2007). Let's note that  climatic science, the Southern Oscillation Index (SOI), the
varying time delays for the Lorenz attractor were addressednain index describing the temporal evolution of the Ehb
also byGarcia and Almeid#2005, indicating that different ~ Southern Oscillation (ENSO) phenomena. In Sect. 2 we de-
time delays are more efficient than the conventional use of acribe the methodology and in Sect. 3 we show its theoretical
fixed time delay. Variable embedding lag vectors have beerbasis, while in Sects. 4 and 5 we present the results for both
also used in some global modelling strategies (seedudd  the Lorenz system and SOl that are later discussed in Sect. 6.
and Mees1998.

Predictability is one of the system’s properties that can be
used to obtain a set of parameters for the embedding spacé Methodology
reconstruction methodS{igihara and May199Q Casdagli ) o
et al, 1991 Alparslan et al.1998. It's precisely by using The first sftep of_ our methodo_logy consists in _re_construct-
the prediction power th&egonda et a(2005 developed an NG anm-dimensional embedding space by definingran
approach based on local polynomial regression for ensemdimensional delay phase space vector with componerts
ble forecasting of time series. It was applied to two kinds of (¢ + %), wherer; =[i —1]zo andro is a basic time scale. The
time series: chaotic (Hennon and Lorenz) and observationggmMpbedding dimensiom is chosen such thaf, = (m —1)7o
data (Great Salt Lake and NO3 Index). LaterMeng and IS Iarge_r than the largest of the most relevant time scales char-
Peng(2007) (see als@hao et al, 2009, also using the pre- acterizing the_phenomenon. In case of gnknown pher_10mena
diction power criterion, proposed a new local linear predic- the rele\_/ant time scales can be |dent|f_|ed through different
tion model to obtain optimal embedding parameters. Theylime series methods, for example Fourier spectrum. For the
showed that its prediction performance was superior to thdiMe delayzo we choose the zero autocorrelation time or the
traditional local linear prediction. In addition they also in- 68% decay time of autoc_orrelauon of the_ time ser(eé\bari
dicated (for the Lorenz system) that the optimal parameterd@nel et al.1993 Cellucci et al, 2003. Similar to the uni-
found, change accordingly with the initial conditions used. fied approach to resolve the attractor reconstrucuo_n problem
In line with previous results bRegonda et al(2009, that ~ Proposed byPecora et al(2007), we seek a set of time de-
indicated that the forecasts initiated from several contiguouddys 7, Or equivalently, a set of delay vector components
starting points show a change in the local predictability. ~ *j(*) =s(t+t;) defined in ai-dimensional space, which is

The basic idea in non-linear model prediction relies on us-& Subspace of the:-dimensional reconstructed embedding
ing adequately the information on the temporal evolution of SPace. In this way, we obtain a vector of variable delay times,
orbits which lie on a compact attractor in phase space. EaCMvhlch_|s optimal because it allows a better descrlpupn of the
orbit has near it a whole neighbourhood of points in phase€volution of the system. To determine when the optimal em-
space which also evolve under the dynamics to new point®€dding parameters are obtained, we use the maximal local
(e.g. Abarbanel et a).1993. Using the information about preqllctab|llty criterion. We seek, for the r_econstructlon of a
how neighbours evolve, it is possible to use phase space inRarticular event, to begin at some “starting” (or “present’)
formation to construct a map. The mapping function can beP0int and reconstruct or finish time steps into the “future”.
estimated using local models in which the function approxi- Under.th|s criterion we assume that_, when the whole selected
mation at each time step is done from data sets of the locaVent is optimally reconstructed with a local blind forecast
neighbourhood only in a piecewise manner, or global modeld€chnique, the attractor is optimally unfolded, at least in a
in which the function approximation is done for the whole n€ighbourhood of the “starting” point. The set of time delays
domain @barbanel et a).1993. T, w!th j = 1,....,d <misthe opt|m§I set f_or time delay; of

In this paper we report an alternative methodological ap_ad—dlmensmnal subspace of the-dimensional embedding
proach for the embedding space reconstruction method fopPace.
short time series. We restrict our study to local prediction 10 perform a blind forecasi time steps into the future we
models. Our proposition relies on the use of a maximal pre-Use alinear functionRarmer and Sidorowici987)
dictability criterion to reconstruct an embedding space. This
is performed in the sense that the dynamical evolution of the d
system recorded in the experimental data can be reproduced ; 4 A7) = aijxj () +x; (1), (1)
during a given time span. Under this criterion, we also ob- =
tain an optimal embedding dimension by selecting the op-
timal d-dimensional subspace from a largerdimensional ~ whereA¢ is the time step and the; coefficients are locally
embedding space. The-dimensional embedding space is determined by consideringfuture near neighbours that be-
reconstructed so that the relevant time scales that characteleng to the near orbits (closest orbits). The forecasting time
ize the phenomenon are contained in the set of time delay§ = p At is large enough so that the whole event is included
of the embedding. We apply this methodology first to a time within the forecast time. To this end, it is important to notice
series from the Lorenz system with chaotic regime param-hat in order to evaluate the local topology of the embedding
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1,...,m, andtg some basic time scale. The maximum
time delayz,, has to be larger than the maximal rele-
vant time scale of the phenomenon.

4. Computen;; for each step using the least square method
n+1 by feeding a number of near neighbours of the closest

n : )
n-1@----() orbit (see Figl).

5. Perform a blind forecast time steps into the "future”,
k k+1 k+2 for all subspaces of dimensiehin the m-dimensional
embedding space.

6. For eachi-dimensional subspace, compute the cumula-

Fig. 1. A schematic view illustrating the collection of spatial neigh- tive error at the termination point.

bours and their time evolution in the state space. In the scheme,
corresponds to the starting point or present paint,1 is the near- 7
est neighbour in the same orbit+ 1 correspond to the forecast for

the first step. Thé’s correspond to the forward neighbours of the L2 . .
nearest orbit. To forecast the next steps, the vector containing the mlnatlop point. The n}meer of glements of the optllmal
indices of the close neighbours (small black dots) is incremented by S_Et of t!me delaysd, is the optimal local embedding
one for each step. dimension.

. Select the set of time delays (the optimal set of time
delays) that minimizes the cumulative error at the ter-

Note that the application of this methodology requires the
space, we use information contained only in past trajectoriespecification of the time interval to be analysed for the pre-
of the attractor. In particular, in the present study we usedictability of the event, the time prediction. Under this re-
only the closest orbit. We use the term “blind forecast” in the quirement blind forecasts are computed for a given dimen-
following sense: at the starting point the nearest neighbousion with all possible combinations of time delays.
is selected in the embedding space by computing Euclidean |n all the cases shown here, the first delay was scanned for
distances from the starting point to each older point in thedelay times beginning with the time for which the autocorre-
time series. The nearest neighbour is obtained as the minkation is zero. In this way we avoid the reconstruction of a
mum of the distance to the starting point. The determinationcollapsed attractor. Other ways of choosing the lower limit
of the nearest neighbour also determines the closest orbit. Ifor scanning the first delay can be easily studied. We fo-
our procedure, we do not determine the closest orbit agaitused our study on variations of the basic time scale. In our
for the further steps of the forecast but we follow the closeststudy we reduce the value of the basic time scale of the value
orbit determined in the first step. for which the autocorrelation drops to 68%. As the results

To monitor the accuracy of the reconstructions, we defineshow, for the latter case, the methodology provides a better
the cumulative error between the event and its reconstructiomeproduction of the events. The method presented here may

by be improved by using nonlinear predictors (e.g. polynomial)
) 1/2 and including weights to the nearest neighbours.

1|81 2 It is also important to stress that in our method the pro-

B = oy [;;[xd(tj) s+ )] :| ’ @ cedure starts first with the determination of the local phase

space topology around the last known state when obtaining
whereoy is the standard deviation of the time series apd  the nearest neighbour and the closest orbit. Forecasts of fu-
is the last embedding vector component. We seek the set dfire states are obtained with a linear model following the
time delays that minimizes the cumulative error at the ter-nearest (older) trajectory on the attractor, which in essence
mination point, corresponding to the point when the eventprovides information about the nonlinear characteristics of
finishes. the local dynamics of the physical process.
The implementation of the proposed algorithm is as fol-
lows:
3 Local predictability
1. Select the event to be reconstructed.
To visualize this last point, let us recall some basic defini-
tions on predictability in dynamic systems. Lyapunov ex-
ponents quantify predictability through globally averaged ef-
fective growth rates of uncertainty in the limits of large time
3. Reconstruct am:-dimensional embedding space with and small uncertainty; thus by construction they are of lim-
a set of time delays given by; =[j — 1]rg, with j = ited use. To obtain a quantitative estimate of the accuracy

2. Select the “starting” or “present” point and the termina-
tion point that marks the end of the evgntime steps
into the “future”.
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of a particular forecast, the local dynamics of uncertain-Nonlinear finite time lyapunov exponent are given by

ties about that initial condition are more relevadiehmann

et al, 2000. Local quantities provide a more detailed de- ; x - 5.0).7) = 1. 18, %

scription of the dynamics since they probe the motion on ' ' t 180 °

short enough time-scales to distinguish th_e dlf_'ferent .Sta.te%vhere the nonlinear propagatpiXo, §(0), £) is obtained in-

t_hat the system passes through. In such situations, dlStl‘IbLt—egrating Eq. 4) along a fiducial orbitXo(r). Now, 8, (t) =

tions of local Lyapunov exponents, namely the value of the (Xo.8(0).1)8(0) gives the evolution of an initialyeﬁrdr(O)

Lyapunov exponents over finite segments of a trajectory, prog-. >’ 1)o(0) g y S
yap P €9 . J Y. P forward for a timer to §,,(¢). The mean nonlinear finite-time

vide a better probe of the underlying nonuniform attractor. In 7

: . lyapunov exponent is given b
particular, the local Lyapunov exponent can be negative every P P 9 y

when the global Lyapunov exponent is positive (as on a typ-j (§(0),7) = (A(X0,8(0),)) n, (8)
ical chaotic attractor) or vice versa (on strange nonchaotic
attractors) Datta and Ramaswamg003. where< >y denotes the ensemble average.

We follow and reproduce the definitions of linear and non- Numerical results demonstrate superiority of the nonlin-
linear finite time lyapunov exponents given Byng and Li  ear finite time lyapunov exponent in determining the limit of
(2007. By definition, chaotic systems display sensitive de- predictability of chaotic systems in comparison with linear
pendence on initial conditions: two initially close trajecto- one Oing and Li 2007). Local predictability limit gives a
ries can diverge exponentially in the phase space with a ratgeasure of long time-scale local predictability on the atrac-
given by the largest Lyapunov exponent The lyapunov  tor (Ding et al, 2008. It is different from the local diver-

exponents are defined as follows: gence rates or local Lyapunov exponent, which are restricted
Let us consider an n-dimensional continuous-time dynam-o conditions of sufficiently small perturbations and only ap-
ical system plicable to reflect the short time-scale local predictability.

Therefore, the distribution of the local predictability limit

3) does not appear some regions of underlying high predictabil-
ity or low predictability in phase spac&iehmann et aJ.
200Q Ding et al, 2008.

whereX = (x1,x2, ~-~»_xn)T andF is an n-dimensional vec- In order to show the theoretical basis of our methology we
tor field. By performing an infinitesimal dispaceméitt) = yrite Eq. @) as,

X() — Xo(¢) from the fiducial orbitXq(z), the linearized
equations are given by

d
EX(1)=F(X(I)),

X(n+1) =am)X(n)+X#n)=Am)X(n), 9)

4) whereA(n) =a(n) +1, andl the identity matrix. It is impor-

tant to note that the matriaxn) is evaluated at each time step
in our procedure. Let us denote My (0) the nearest neigh-
bour of the nearest orbit (the fiducial orbit) to the present
point, andX(n) the n-steps future neighbour on the fiducial
orbit. Then, we can also write

d
—3=J(X)8+G(X,d),
R (X)d+G(X,d)

whereJ(X) is the Jacobian matrix, ar@d(X, §) are the high
order nonlinear terms of the perturbatichsFor initial in-
finitesimal perturbation Eq.4f is linearized dropping the
nonlinear perturbation term. The linear propagatoXo,?)
is obtained integrating the linearized equations along a fiduxXy(n + 1) = Ag(n)Xo(n), (10)
cial orbitXo(), ands,, (t) = u(Xo,1)8(0) gives the evolution

of any infinitesimal initial erroi(0) forward for a timer to SO that,

d,.(t) (Ziehmann et a).2000. Local or finite time lyapunov

exponent is defined by §(n+1)=Xn+1)—Xon+1), (11)
and,
AXo, )= lim }lnM (5)
’ 15O)—0t |80 S(n+1)=AmXn) —Ag(n)Xon). (12)
The largest lyapunov exponent is defined by: In our methodology we obtain the future of the present orbit
by following the fiducial orbit, so thako(n) = A(n). We can
write
A= lim A(Xo,1), 6
1= MR © St =Amsm). (13)

provides that the lyapunov exponent exisi¥t(and Yorke or,
2008. Because ergodicity the global largest lyapunov expo-
nent do not depends Oty (Oseledecl1968. d(n+1) =n(Xo,8(0),n)8(0). (14)
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Fig. 2. The panelga—d) show the blind forecast (green dots) fgy= 15, and for dimensions froni =4 to d = 7, respectively. The x-
coordinate of the Lorenz system is plotted with black dots. Red dots are the present point and the termination point of the blind forecast,
respectively. The starting point is 5748 and the forecast time is 50 steps.
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respectively. The starting point is 5753 and the forecast time is 50 steps.
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Fig. 4. Cumulative error between the event and its reconstruction.

In panel(a) are shown the cumulative error for a 50 steps blind Fig. 5. The panels show the SOI. It extends monthly from 1866-to-
forecast starting at point 5748 for dimensiehs 4 tod =7 forthe 5009 ith 1716 data pointp:/www.cgd.ucar.edu/cas/catalog/

Lorenz x-coordinate. In panéb) are shown the cumulative error  ¢jining/soi.htm). In blue and red are shown the strongest EiNi
for a 50 steps blind forecast starting at point 5753 for dlmenslonsl%z_1983 and 1997—1998 events.

d=4tod =7 for the Lorenz x-coordinate.

. . . Regonda et al2005 (see Fig. 3 of his paper) was selected
Because in most of the measured time series the present ang the x coordinate of the Lorenz system for the time se-

the nearest orbit (the fiducial orbit) are not arbirarily close ries. shown in panels (a—d) of Fidsand3 with black dotted
to each other, we identify Eql4) with the nonlinear prop- Iineé P (a-d) g

agated erros,. We conclude that our procedure ressemble By using the Fourier spectrum we determine the temporal

wltth(;ut a?y approximation t?e qreglnltloln (?{f Lhe nbonllnear I';htime scales that drives the phenomena. Therein the largest
nite ime fyapunov exponents. The selected subspace o §tatistica|ly significant time scale is a period of 334 steps.

embe_ddlng sSpace minimizes the cumulative error at the " The zero autocorrelation time for the time seriesgis= 15.
mination point, that is the subspace where, locally, the repro-rus. we choose the largest time delay torhg,= 345. To

du_lc_ﬁd attractor is Iessdur;stable.h. hi h icall determine thes;; coefficients of Eq. (1) we select the near-
e present methodology, which is mathematically con-¢q neighbour of the same orbit to the present point plus 8

S|ste.ntW|t'h the fundamentgl definitions of the local non“n?arforward near neighbours of the closest orbit.
predictability, provides a simple procedure to study nonlin-
ear, long-term local predictability in observational time se-
ries.

We choose two “starting” points to show the performance
of our method; a point near= 0 and a point which is away
from x =0, 5748 and 5753, respectively. In panels (a—d) of
Fig. 2 we show a 50 steps blind forecast (green dots) with
4 Application to the Lorenz System starting point at 5748 withg = 15, and for dimensions from

d=4tod =71, respectively. In panels (a—d) of Fig.we
To test our methodology we use a time series obtained fronghow a 50 steps blind forecast (green dots) with starting point
the well known Lorenz system which is described by the fol- at 5753 forzo = 15, and for dimensions from=4 tod =7.

lowing equationsl{orenz 1963: In Fig. 4 the cumulative error of the event reconstruction
is plotted. In panel (a) we show the cumulative error for a

x=0(y—x) (15) 50 steps blind forecast starting at point 5748 for dimensions

y=—xz+rx—y (16) d =4 tod =7 for the Lorenz x-coordinate. In panel (b) we

i =xy—bz (17) show the cumulative error for a 50 steps blind forecast start-

ing at point 5753 for dimensions= 4 tod = 7 for Lorenz x
The time series was produced using the parametets, coordinate.

16, r = 4592, b =4 and initial condition(xg, yo,z0) as Itis clear that our method is able to reproduce the x coordi-
(1.,0.,0.) to generate a time series of 6000 observations.nate time series for the Lorenz system in both cases and for
With these parameters the Lorenz system show chaotic beseveral cycles for dimensiafi= 7 with a cumulative error
haviour. The standard fourth-order Runge-Kutta method isslightly higher than 10% at step 50 in both cases.
used to solve the equations with integration stepAof=
0.05. A region with similar characteristics to that shown by
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5 Application to El Nifio used is 18 years (216 months), givimg= 16 andn = 34 for

70 = 15 andrp = 7 months, respectively. Thedimensional
In this section we show the performance of the proposedsubspaces of dimension from 3 to 8 are scanned. The blind
methodology when characterizing the largest ENSO eventsforecast time ig" = 60 months.
El Nifio Southern Oscillation (ENSO) is known as the dom-  To obtain a time delay set that characterizes a region of
inant driver for year-to-year climate variability'ienberth  the attractor, we seek for a unique optimal set of time delays
1997. The ENSO phenomenon originates in the coupledthat minimizes, simultaneously, the sum of cumulative er-
ocean-atmosphere dynamics of the tropical Paciftilan-  rors at the termination point for a number of successive start-
der, 1990. Through teleconnections associated with atmo-ing points. In this study this region spans six months, and
spheric circulation and air-sea interaction outside the trop-a mean forecast is computed by averaging all forecasts for
ical Pacific, it deeply affects climate worldwide with large the six successive starting points. Although individual per-
environmental and societal impactSlantz 2001). ENSO  formance give better results, as expected in local prediction
is generally represented by the Southern Oscillation indexDing et al, 2008, with the requirement of simultaneously,
(SOI) (Trenberth 1984, representing the southern oscilla- the sub space of the embedding space is determined where
tion, i.e. the principal mode of surface pressure variability the limit of predictability is obtained by ensemble average.
in the Tropics. The SOI index is the standardised anomaly In Fig. 6 the mean forecast is plotted (orange dots) for
of the mean sea level pressure difference between Tahitiy = 15 and dimensions frord = 3 tod = 8. The individual
and Darwin. Sustained negative values of the SOI oftenforecast for each starting point is also plotted (green dots),
indicate El Nfio episodes. These negative values are usuas well as the SOI signal (black dots). In panel (a) we show
ally accompanied by a decrease in the strength of the Pahree vertical segmented lines referencing successively the
cific Trade Winds and an anomaly warming of the centralfirst and last starting point, as well as the termination point
and eastern tropical Pacific Ocean. Instead positive valuegTP) of the event. In each panel the corresponding set of time
of the SOI, La Niia episodes, are associated with strongerdelays is shown.
Pacific trade winds and warmer sea temperatures over the In Fig. 7 is shown the performance of the methodology for
western Pacific, while the central and eastern tropical Pacifiehe El Nifio 1997-1998 event with the 68% decay time of the
Ocean is cooler. An important aspect of ENSO is that Elautocorrelation as basic time scale. The panels (a—f) show
Nifio events are generally characterized by a larger magnithe mean forecast (orange dots) fgr= 7, and for dimen-
tude than La Nia counterparts. The strongest EfiNievents  sjons fromd = 3 tod = 8, respectively. The individual fore-
ever recorded being those of the 1982-1983 and 1997-199@asts, for each starting point, are also plotted (green dots),
years. The oscillation does not have a specific period butis well as the SOI signal (black dots). In panel (a) we show
occurs preferentially at inter-annual time scales. It has beenhree vertical segmented lines referencing successively the

also observedTprrence and Webstet 999 that the ampli-  first and last starting point, as well as the termination point
tude of ENSO undergoes changes on decade time scales. TIfeP).
SOl time series used here (see FEpextends monthly from In Fig. 8 the performance of the methodology for the EL

1866 to 20009 ttp://www.cgd.ucar.edu/cas/catalog/climind/ Nifio 1982-1983 event is shown. The panels (a—f) show the
soi.htm). We low pass filtered (box car, 15 months) the mean forecast (orange dots) fay=7, and for dimensions
anomaly time series to keep frequencies where the power ofrom d = 3 to d = 8, respectively. The individual forecasts,
the system is concentrated and which are the most relevanfor each starting point, are also plotted (green dots), as well
the low frequencies (interannual, decadal). as the SOl signal (black dots). In panel (a) we show three ver-

Indeed, the events selected to test our method are thécal segmented lines referencing successively the first and
strongest, that is the 1982-1983 and 1997-1998 BEbNi last starting point, as well as the termination point (TP).
events. In the signal, both events (oscillations) can be In Fig.9, in panels (a) and (b) (for 1997-1998 event) and
roughly described by two maxima and a minimum. The (c) (for 1982—-1983 event), we plot the cumulative errors of
minimum is the peak amplitude of the EL i event. In  the mean forecast for dimensioiis= 3 tod = 8 correspond-
the study, the termination point is located just one month af-ing to Figs.6, 7, and8, respectively.
ter the second maximum. We place the “starting point” 60 If we compare Figs6 to 7, particularly panels (d) to (f),
months (5 years) before the termination point. which correspond to embeddings from dimensibs 6 to

To determine the;; coefficients of Eq. (1) at the “present” d =8, it is visually clear that the mean forecast fits better
point, the nearest neighbour to the present point and 24 nedhe event in Fig.7. Thus, a global comparison of cumula-
forward neighbours from the nearest older orbit are selectedive errors for the 1997-1998 event in F&y(panels a and b)
(corresponding to the small black dots in Fij. Here, we  show that using the 68% decay time for the autocorrelation
userty, the zero autocorrelation lag and the 68% autocorrela{zg = 7) offers a significantly better event reconstruction than
tion decay time (for SOI these are 15 months and 7 monthsthe zero autocorrelation timeg= 15). The plotted cumula-
respectively) to reconstruct the-dimensional embedding tive errors of the mean forecast at the termination point for
space. The largest time scale relevant to the phenomenatie computed dimensions in panel a) (with= 15) show no
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vertical segmented lines referencing successively the first and last starting point, as well as the termination point (TP).
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segmented lines referencing successively the first and last starting point, as well as the termination point (TP).

significant differences in the range between 50% and 60%with figures spreading over a range between 15% and 55%.
Instead, the ones computed with the 68% decay time for thdRemarkably, dimension 7 has a significantly lower cumula-
autocorrelation®p = 7, panel (b) show important differences tive error & 15%) performing a better event reconstruction
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1.0 a cumulative error ofs 15%) at the termination point. The

o8 termination point for the computed dimensions with the 68%

decay time for the autocorrelatiomg(= 7). It is also visu-
ally clear that, compared to the 1997-1998 event's (panel b
of Fig. 9), the cumulative errors are larger, although, in Big.
panels (d) to (f), timing and amplitude of the main event are
correctly estimated.

" ed-3 ’ ’ i event's characteristics, the amplitude and the termination (at

sl . ils ] the termination point), are reconstructed roughly 3.5 and 4.5
°az¢ 1 years in advance. In panel (c) of Figwe plot cumulative

© d=8 NN errors of the mean forecast for the 1982-1983 event at the

0.4r

2 ‘
:/?J' & For the El Nflo 1982-1983 event, the results indicate a
ooldef ‘ ‘ ‘ ‘ ‘ ‘ correct reconstruction for the timing and the amplitude of
1994 1996 1998 2000 1996 1998 2000 1981 1983 19 . .
year year year the main event (ranging from 1982 to 1984, see panels (d
and e) in Fig8) but with relatively larger errors before (from
Fig. 9. Panelg(a) and(b) show cumulative errors of the mean fore- 1980 to the beginning of 1982), as compared to 1997-1998's
cast for dimensions = 3 tod = 8 for the 1997—1998 event, corre- 'esults. Probably, the better performance of the methodology
sponding to Figs6 and7, respectively. Pandt) shows the cumu-  in reconstructing the 1997-1998 event is due to the fact that
lative error of the mean forecast for dimensiehs 3 to d = 8 for the information of the 1982-1983 event is already present in
the 1982-1983 event, corresponding to Big. the time series used for reconstructing the 1997-1998 event.
Finally, to complement the information provided in this
paper we show in FiglO some two-dimensional projections
than dimension 8. Thus, for this particular event, the use ofof the two events with the parameters of the case shown in
this technique allows also to identify the minimal embedding Fig. 7 in panel (e).
dimension. For the El Nio 1997-1998 event, the embed-
ding dimension 7 and time delays [0, 29, 85, 92, 162, 190,
197] produce a mean forecast that reconstructs the event with

cumulative error
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Fig. 10. Some 2-D projections of the phase portrait for dimensgiea? in Fig. 7 for the large event 1982-1983 (blue dotted line) and the
large event 1997-1998 (red dotted line).

6 Conclusions et al, 20049. The performance of the methodology for the
1997-1998 event can be evaluated by observing that the

We report a methodology for applying Takens’s embeddingamplitude and the termination point can be reconstructed
theorem to reconstruct an event taking into account only locaroughly 3.5 and 4.5 years in advance, respectively. Instead, a
information contained in a short time series. The proposectorrect reconstruction for the timing and amplitude of the El
method makes use of a maximal predictability criterion to Nifio 1982-1983 event is performed but with relatively larger
reconstruct locally an embedding space, in the sense that therrors as compared to 1997-1998's results. This is probably
dynamical evolution of the system registered in the experi-related to the fact that there is no event with the comparable
mental data can be reproduced during a given time span. It isystem dynamics already present in the time series, as was
important to reconstruct first an-dimensional embedding the case for the 1997-1998 event. Therefore, it is possible
space so that the relevant time scales that characterize ttie conjecture that the proposed method may not give good
phenomenon are contained in the set of time delays of theesults if within the time series, past events are not similar
embedding. The event reconstruction is performed with lo-to the studied event, i.e. if there are no similar orbits. Like-
cal nonlinear blind forecagttime steps into the future, using wise, the method can be applied to arbitrarily large sizes, but
near neighbours of the closest orbit. The optimal embeddingt requires a high computational cost.
dimension is selected from all-dimensional subspaces of  These results outline the capabilities of the methodology,
a largerm-dimensional embedding space, the one presentand stress that this local reconstruction method can be used
ing the minimal cumulative error at the termination point of to characterize the local and nonlinear properties of a given
the event. We find that it is possible to select an optimal sesystem dynamics.
of time delays that performs a local long term reconstruc- Characterizing the onset of an Eliidi or La Nila phase
tion of an event, that is, there exist a subspace of an embedar in advance has long been a goal of climate sciefoenf
ding space where local recontruction can reproduce a class dferth et al, 1998. Results byChen et al(2004 has shown
events in a time series of a measured observable of a completkat when the equatorial dynamics is known (based in the
dynamical system. 1960-2000 events), prominent Elfidi events could be pre-

To test the efficiency of our methodology we use the dicted, throughout the past century, with lead times of up to
monthly SOI time series. We studied the EFi1982-1983  two years.
and 1997-1998 events that are known to be the strongest In fact forecasts has been limited by the so called spring
measured (by instruments) events, and difficult to predictpredictability barrier; forecasts issued before the preceding
(Fedorov et al.2003 more than two years in advandehien Northern Hemisphere spring, typically show very limited
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skill (Webster and Yangl992. Recent advances bhgumo Glantz, M.: Currents of change: impacts of Efidiand La Niia on
et al. (2010 has shown that by taking into account both the climate and society, Cambridge Univ Pr, 133-145, 2001.
Indian and Pacific ocean basins the prediction horizon oflzumo, T., Vialard, J., Lengaigne, M., de Boyer Montegut, C.,
ENSO can be extended efficiently up to 14 months. There- Behera, S. K., Luo, J.-J., Cravatte, S., Masson, S., and Yam-
fore new physical understandintzgmo et al, 2010, and agata, T.: Infl_uence o’f the stgte of the Indian O_cean Dipole
new statistical reconstruction methodologies (such as the one °_the following years El Nino, Nature Geosci, 3, 168-
proposed here) that may allow longer-range forecasts, by 172,d0|.10:1038/nge0766ttp.//www.nature.com/ngeoljournall

. . . . . 9T ! v3/n3/suppinfo/ngeo7681.%htm| 2010.
transcgndmg the spring pred|ctapll|ty_barr|er, i.e., more tha”Judd, K. and Mees, A: Embedding as a modeling
a year in advance, could help with climate forecast in other problem, Physica D: Nonlinear Phenomena, 120,
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