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Abstract. We present a viscoelastic constitutive relation
which describes transient creep of a modified second grade
fluid enhanced with elastic properties of a solid. The material
law describes a Rivlin-Ericksen material and is a generaliza-
tion of existing material laws applied to study the viscoelas-
tic properties of ice. The intention is to provide a formulation
tailored to reproduce the viscoelastic behaviour of ice rang-
ing from the instantaneous elastic response, to recoverable
deformation, to viscous, stationary flow at the characteris-
tic minimum creep rate associated with the deformation of
polycrystalline ice. We numerically solve the problem of a
slab of material shearing down a uniformly inclined plate.
The equations are made dimensionless in a form in which
elastic effects and/or the influence of higher order terms (i.e.,
strain accelerations) can be compared with viscous creep at
the minimum creep rate by means of two dimensionless pa-
rameters. We discuss the resulting material behaviour and
the features exhibited at different parameter combinations.
Also, a viable range of the non-dimensional parameters is
estimated in the scale analysis.

1 Introduction

Creep of ice is an inevitable issue when dealing with glaciers
and terrestrial ice masses. From the pioneering work in
the 1950s (Glen, 1952; Nye, 1953; Steinemann, 1958), the
viscous constitutive relation for stationary creep of ice has
emerged, which, in the glaciology community, is referred to
as Glen’s flow law. The Glen flow law is a generalized New-
tonian material model (e.g.Crochet et al., 1984) with power-
law viscosity and is widely used when modeling the flow of
glaciers, ice streams and ice sheets at any spatial and tempo-
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ral scale, in spite of its constraint to only predict a stationary
stress/strain rate relation at the minimum creep rate observed
in laboratory creep experiments. However, the laboratory ex-
periments on the creep of ice conducted in the past consis-
tently revealed non-stationary creep of ice (e.g.Jellinek and
Brill , 1956; Mellor and Cole, 1982; Jacka, 1984).

Several attempts were made to describe the transient creep
of polycrystalline ice observed in laboratory creep experi-
ments by viscoelastic constitutive equations, relating strain
rates, strain, stress and time in different ways. Nonlinear,
time-dependent constitutive relations describing creep be-
haviour observed in uni-axial compression tests at constant
load were given bySinha (1978) and Le Gac and Duval
(1980), and reviewed inAshby and Duval(1985). The work
of Szyszkowski and Glockner(1985) considered a nonlin-
ear constitutive equation based on spring and dash-pot ele-
ments. A description of the transient strain rate as a nonlin-
ear power-law function of stress and strain was proposed by
Azizi (1989). Shyam-Sunder and Wu(1989a,b) published a
differential flow model, and inShyam-Sunder and Wu(1990)
it was compared with the models ofSinha, andLe Gac and
Duval. Later on,Meyssonnier and Goubert(1994) took up
the models ofLe Gac and Duval, and Shyam-Sunder and
Wu and proposed some modifications. While the early at-
tempts of the aforementioned models describe only uni-axial
creep responses, and lack an obvious generalization to multi-
axial creep states (e.g.Sinha), the more recent models ofLe
Gac and Duval; Shyam-Sunder and Wu, and Meyssonnier
and Goubert, include one or more state variables which must
be modeled by additional differential equations.

Morland(1979) andMorland and Spring(1981) proposed
constitutive equations of rate type (Lockett, 1972; Hutter,
1983) to describe the viscoelastic responses of isotropic poly-
crystalline ice. They considered constitutive relations which
relate stress and stress rates to either strain rates and strain ac-
celerations, which is a fluid type model (Morland and Spring,
1981), or else to strain and strain rates, i.e. a solid type model
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(Spring and Morland, 1982). These models are capable of re-
producing idealized decelerating (primary), stationary (sec-
ondary) and accelerating (tertiary) creep responses, but were
not applied to real creep data.

If stress rates are excluded from the constitutive relation
and the stress is considered only a function of the strain
rates, strain accelerations, and possibly higher order deriva-
tives, the relation then describes a fluid of differential type
(Rivlin and Ericksen, 1955). These fluids are also known as
fluids of grade N (e.g.Joseph, 1990), or, order fluids (Owens
and Phillips, 2002). The incompressible second grade fluid
model (fluid of grade 2) was first applied to creep experi-
ments and ice mechanics byMcTigue et al.(1985), who in-
vestigated the relevance of normal stress differences in shear-
ing flow. However, the second grade fluid model has no strain
rate-dependent viscosity.Man and Sun(1987) thereupon
postulated a modified second grade fluid with power-law vis-
cosity. The relation ofMan and Sundescribes primary and
secondary creep, and the material behaviour asymptotes to a
Glen-like power-law fluid model for vanishing second order
terms. For ice, Sun estimated the phenomenological coeffi-
cients for the modified second grade fluid model with power-
law viscosity from triaxial laboratory creep experiments.

In recent field observations on an Alpine glacier (Gorner-
gletscher, Switzerland), repeated near-reversal of flow, ac-
companied by reversed displacement direction was observed
(Sugiyama et al., 2007, 2008). The change of motion takes
place within a few days during the periodical drainage of
a supra-glacial lake, and is possibly related to the unload-
ing and stress redistribution during the rapid drainage. The
question was raised whether the retrograde movement may
be attributed to viscoelastic recovery properties of the ice.
To elaborate on this hypothesis, an appropriate viscoelastic
constitutive model for glacier ice is needed, preferably appli-
cable to multi-axial deformations. No attempt has been made
so far to take into account transient, recoverable deformation
effects when an external load (e.g. a forming and draining
lake) is applied to and removed from a glacier. This was
our motivation to construct a simple constitutive formulation
with a material response varying smoothly in between the
limits of ice behaving as a viscous fluid on long time scales,
and ice behaving as an elastic solid on short time scales. We
here propose a constitutive model able to predict instanta-
neous elastic strain followed by recoverable, transient strain
fading into a steady creep response associated with the sta-
tionary minimum creep rate of ice, based on a further gener-
alization of the modified second grade fluid ofMan and Sun
(1987). A tertiary response with increasing strain rate after
the minimum strain rate is not considered.

Ultimately, we target to corroborate whether glacier ice
allows for deformations such as those observed. By now, we
develop the constitutive relation aimed for, and investigate it
in a numerical example. The possible range of parameters is
collected and the characteristics which can be exhibited by
the rheological model are illustrated.

2 Constitutive relations

In our description we use the Eulerian notation. The kine-
matic measures used are summarized in Table1, following
Lockett(1972) andHutter and J̈ohnk(2004). Before we dis-
cuss the proposed generalized constitutive relation, we now
quote the relations for the already mentioned material laws.
In general, the ice is assumed an incompressible material,
which introduces the pressure as an independent field, ab-
sorbing any isotropic stress contribution.

2.1 Glen’s flow law

In Glen’s flow law, the Cauchy stress tensort is given by the
relation

t = −pI + η̂(D)D, where η̂(D)=B(1
2tr(D2))

1−n
2n . (1)

Here, p is the pressure due to the incompressibility con-
straint,I is the identity tensor,̂η(D) the strain rate-dependent
power-law viscosity,B a constant, andn the power-law expo-
nent. Forn 6= 1, the material model becomes non-Newtonian.
This relation is valid for all times; obviously it can merely de-
scribe stationary creep. For the monotonic secondary creep
regime of ice, a value ofn= 3 is commonly used. The pa-

rameterB is in the range of 1.2 to 2.9 MPa d
1
3 for ice at tem-

peratures between 0◦C and−10◦C, as recommended byPa-
terson(1994).

2.2 The modified second order fluid model

The modified second order fluid model with power-law vis-
cosity(MSOFM) was introduced byMan and Sun(1987) as

t = −pI +η(A(1))A(1)+α1A(2)+α2A2
(1), (2)

whereA(1,2) are the first and second Rivlin-Ericksen ten-
sors, describing the current strain rate and strain accelera-
tions (Rivlin and Ericksen, 1955). The first Rivlin-Ericksen
tensor in terms of the spatial velocity gradient isA(1) =

L +LT
= 2D. The strain acceleration tensorA(2), and higher

order tensors are constructed via the recurrence relation (viii)
in Table1. The coefficientsα1,2 are termed normal stress co-
efficients. The viscosityη(A(1)) follows a power-law relation
of the form

η(A(1))=µ
(

1
2tr(A2

(1))
)m

2
. (3)

In Sun(1987), the MSOFM was proposed as an improvement
on Glen’s flow law to include non-stationary creep. Glen’s
flow law is contained in Eq. (2) as the asymptotic limit af-
ter transient creep has died out. Or else, with use of (vii)
and (viii) (Table1), Eq. (1) is recovered whenα1 = α2 = 0
in Eq. (2), m= (1−n)/n, andµ= 2−1/nB, is substituted in
Eq. (3). If m= 0, the MSOFM becomes the second order
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Table 1. Definition of kinematic tensor quantities in Eulerian notation. In index notation, the tensor quantity is non-bold and indexed
(i.e. L=̂Lij ). The material derivativė() is given as∂()

∂t
+vj · (),j , wherev=̂vj is the velocity. Note that for (viii), we haveA(0) = I , and

A(1)= 2D.

Symbol Measure

(i) X = (X,Y,Z) Particle coordinates in the reference configuration
(ii) x = (x,y,z) Position coordinates in the present configuration
(iii) F = ∂x/∂X Deformation gradient
(iv) B = FFT Left Cauchy-Green deformation tensor
(v) e=

1
2(B− I) Finger strain tensor

(vi) L = grad(v)= ḞF−1 Velocity gradient
(vii) D =

1
2 (L +LT) Strain rate (Stretching) tensor

(viii) A(n)= Ȧ(n−1)+A(n−1)L +LT A(n−1) n-th Rivlin-Ericksen tensor
(ix) tr(·) The trace of a measure, i.e. tr(D)=Dii

fluid model. Clearly, Eq. (2) is a generalization of the second
order fluid model. A good summary on related generaliza-
tions of the second order model and the MSOFM is given in
Massoudi and Vaidya(2008).

Sun (1987) performed the exploitation of the second
law of thermodynamics (Clausius-Duhem inequality) for the
MSOFM and deduced the restrictions on the stress function
and its parametersµ, α1 andα2. There is much controversy
on the second order fluid models. Experimental observa-
tion and mathematical analyzes on the fluid model and its
stability properties do not share the same consequences on
the sign of the normal stress coefficientα1 (see e.g.Dunn
and Fosdick, 1974; Joseph, 1976; Müller and Wilmanski,
1986; Joseph, 1990; Rajagopal and Srinivasa, 2008). A re-
view on this topic is given byDunn and Rajagopal(1995).
Here, we follow the work ofSun(1987), who used the re-
strictions (i)α1 +α2 = 0, and (ii)m= −2/3, corresponding
to n= 3 in Glen’s flow law, Eq. (1). Sundetermined mean

values ofµ= 2.41 MPa d
1
3 andα1 = 161 MPa d2 from fitting

the model to the data of triaxial (McTigue et al., 1985), and
pressure-meter (Kjartason, 1986) creep experiments.

3 The elastic modified second order isotropic material
model (EMSOIM)

In the past, the role of primary creep and elastic effects on
glacier flow and observed flow anomalies on a scale of hours
to a few days has scarcely been investigated. To strike a new
path in this direction, we adopt the MSOFM, in which the
ice is able to reproduce both primary and secondary creep
effects with good agreement on the creep experiments ana-
lyzed bySun(1987). However, we further require the ma-
terial to exhibit two contrasting properties: (1) viscous sta-
tionary creep of a fluid on long time scales, and (2) elasticity
of a solid when the time scale under consideration becomes
short, allowing elastic strain jumps and reversible creep. The
material law needs to include properties of an isotropic elas-

tic solid. We propose to extend the constitutive form of the
MSOFM by an explicit dependence on the Finger strain ten-
sor (Table1), postulating

t = t̂(e,A(1),A(2)) (4)

as a frame-invariant functional relation for the stress. We
call the corresponding material anelastic modified second
order isotropic material(EMSOIM). The functional form (4)
is a further generalization of the MSOFM, and belongs to
the class of Rivlin-Ericksen materials (Rivlin and Ericksen,
1955).

We now restrict the constitutive model (4) by ad-hoc as-
sumptions to make the mathematical proof of the thermo-
dynamic behaviour performed bySun(1987) applicable to
the EMSOIM. In this way, we preserve the essential proper-
ties, namely (i) inclusion of elasticity effects, which, paired
with the viscous effects, allow for relaxation phenomena, and
(ii) use of the MSOFM concept to account for the primary
and secondary creep regimes, in the context of an extended
Glen flow law.

For an isothermal process with a body at uniform temper-
ature the thermodynamic analysis ofSun(1987) is recovered
for the EMSOIM (Eq.4) if the following postulates hold:

1. The Cauchy stress tensort can be additively composed
as

t = tE+ tD = t̂E(e)+ t̂D(A(1),A(2)), (5)

wheret̂D is a dissipative stress component that does not
depend one, andt̂E is an elastic stress contribution.

2. The functional dependence of the Helmholtz free en-
ergy may be additively decomposed as

ψ = ψ̂(e,A(1))= ψ̂1(e)+ ψ̂2(A(1)). (6)

3. The componentψ̂2 of the Helmholtz free energy is a
convex function of its argumentA(1).
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Table 2. Values for the parameters of the Glen flow law and
MSOFM, available from the referenced literature, expressed for the
generalized EMSOIM constitutive relation. (*) The value for the
modulusβ0 corresponds to 2G, whereG= 3500 MPa is the shear
modulus of ice (Schulson and Duval, 2009).

EMSOIM Glen’s flow law MSOFM
(Paterson, 1994) (Sun, 1987)

m −2/3 −2/3

µ 1.4–2.3 MPa d
1
3 2.41 MPa d

1
3

α 161 MPa d2

β0 7000 MPa∗

4. The conditions

µ≥ 0, α1 ≥ 0, α1+α2 = 0, (7)

must be met.

We refrain from carrying out the complete thermodynamic
analysis here as the problem which we consider in the follow-
ing is an isothermal process and does not require an energy
balance to be solved. An admissible form of the elastic stress
contribution tE for an incompressible material with elastic
deformation limited to shearing is the relation

tE =β(e′)e′, (8)

where

e′
= e−

1
3tr(e)I , (9)

is the deviatoric strain tensor, andβ is a variable shear mod-
ulus of the form

β(e′)=β0exp−c
1
2tr(e′2)

, (10)

with initial rigidity β0 = 2G, whereG= 3500 MPa corre-
sponds to the shear modulus of ice (Schulson and Duval,
2009). The constantc≥ 0 is referred to as “fading elastic-
ity factor”. The purpose of the exponential dependence of
the shear modulus on strain evolution is the ability to destroy
elasticity on long time scales. It introduces an exponentially
fading strength of elasticity with increasing strain accumula-
tion. This is analogous to an exponentially fading memory of
the material’s elastic properties with increasing deformation.
This should not be confused with the concept of materials
with fading memory (Coleman and Noll, 1960).

Thus, in the EMSOIM, the Cauchy stress tensort takes the
form

t = −pI +η(A(1))A(1)+α(A(2)−A2
(1))+β(e

′)e′, (11)

whereα=α1 = −α2 was used. This representation is a fairly
general form of a material law containing the modified sec-
ond order fluid model byMan and Sun(1987), the Glen

flow law and a Hooke-type elasticity relation with vanishing
bulk modulus for an incompressible isotropic material of the
class of materials of differential type (Rivlin and Ericksen,
1955). A similar, even more general constitutive relation is
discussed byZhou(1991).

In Table2 we summarize values of the parametersm, µ,
α andβ0 which are available from the literature and experi-
mental data. The values ofn andB in Glen’s flow law, given
in Sect.2.1, are expressed in terms ofm andµ.

4 Unidirectional flow of the EMSOIM

We solve the balance equations for incompressible, isother-
mal Stokes (creeping) flow with the EMSOIM law. The gov-
erning equations are

−div(t)+ρ f = 0, (12)

div(v)= 0, (13)

t = −pI +η(A(1))A(1)+α(A(2)−A2
(1))+β(e

′)e′, (14)

η(A(1))=µ
(

1
2tr(A2

(1))
)m

2
, (15)

β(e′)=β0exp−c 1
2 tr(e′2) . (16)

Equation (12) is the momentum balance, whereρ is the (con-
stant) material density andf an external force. Equation (13)
is the mass balance, which requires the velocityv to be
solenoidal. The remaining equations describe the constitu-
tive relation of the EMSOIM.

To solve the system forward in time, the set of equations
must be complemented by an evolution equation for the Fin-
ger strain tensore from the present timet . Differentiation of
e, using (vi) from Table1 yields

ė=
1
2

(
FFT

− I)
)·

=
1
2

(
LFFT

+FFTLT
)

= Le+eLT
+

1
2(L +LT),

or,

ė−Le−eLT
=

1
2 A(1), (17)

which follows as an identity.
As a benchmark example, we consider one-directional

shearing flow of a slab of material down a uniformly in-
clined plate (UIP), as illustrated in Fig.1. Congruent to
the two-dimensional spatial Cartesian coordinate system (x,
z) depicted in Fig.1, we define the particular reference
configurationX = (X,Z). The plate is considered infinite
in the downstream direction(X,x), and the slab thickness
is monotonic. The flow is driven by a gravitational force
f = (gsinφ,−gcosφ) whereφ is the inclination angle of the
plate. We seek the velocity profilev = (v(z),0) which varies
with the thickness of the slab.
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Fig. 1. Problem geometry of one-directional shearing flow of a slab
of material down an uniformly inclined plate (UIP). The coordinate
systems of the reference (X) and present (x) configurations are ori-
ented concordantly, inclined by some angleφ relative to the gravi-
tational forcef acting in the vertical.

In this rectilinear flow problem, the following relations ex-
ist between present and reference configuration:

x=X+u, z=Z, (18)

whereu is a spatial displacement in the flow direction. The
deformation gradient is then

F =
∂x
∂X

=

(
1 ∂u
∂Z

0 1

)
. (19)

We note that∂u
∂Z

=
∂u
∂z

∂z
∂Z

=
∂u
∂z

, so that the Finger strain tensor
is given by

e=
1
2

( ∂u∂z)2
∂u
∂z

∂u
∂z

0

. (20)

It may appear appropriate to use a geometrically linearized
strain tensor, i.e., neglecting terms less than O((∂u/∂z)2).
However, this would render the use of a variable modulus in-
consistent, as tr(e′2)∝ (∂u/∂z)2. Thus, the geometrical lin-
earization implies explicitly that one only moves little away
from the reference configuration; the material’s elastic prop-
erties would remain unchanged in that range of deformation.
Since we require degradation of material elasticity, terms less
than O((∂u/∂z)2) should be retained in the formulation for
consistency.

The first Rivlin-Ericksen tensor is determined from the
spatial velocity gradient as

A(1)= L +LT
=

(
0 ∂v

∂z
∂v
∂z

0

)
. (21)

The evaluation of Eq. (17) brings up the relation between
velocityv and displacementu as

∂v

∂z
=
∂2u

∂t∂z
=
∂

∂z

∂u

∂t
, (22)

which, in this unidirectional case, is simplyv= ∂u/∂t . We
keep v and u separate and insert Eq. (14), together with
Eqs. (20) and (21) into the momentum equation (12). The
stress divergence yields two equations as

−µ
∂

∂z

(∣∣∣∣∂v∂z
∣∣∣∣m ∂v∂z

)
−α

∂

∂z

(
∂2v

∂t∂z

)

−β0
∂

∂z

(
exp−c 1

4

[(
∂u
∂z

)2
+

1
4

(
∂u
∂z

)4]
1
2
∂u

∂z

)
= ρg sinφ,

(23)

−α
∂

∂z

(
∂v

∂z

)2

+β0
∂

∂z

(
1
2
∂u

∂z

)2

+
∂p

∂z
= −ρgcosφ, (24)

with the velocityv, displacementu, and pressurep as un-
knowns.

Note, the pressure equation (24) is decoupled from the
flow equation (23). Equation (24) is interesting as it obvi-
ously describes deviations from a hydrostatic stage (linear
pressure variation with slab thickness) which arise from sec-
ond order effects and elasticity. These normal stress con-
tributions due to second order effects (term associated with
α) and elasticity (term associated withβ0) in Eq. (24) carry
opposite signs. If we would have used a geometrically lin-
earized strain tensor, elastic normal stresses, i.e., the second
term in Eq. (24) would be absent.

In the following, we will only be concerned with the solu-
tion of the flow problem (Eq.23).

We now non-dimensionalize problem (Eq.23) by replac-
ing the relevant fields on the basis of a characteristic time
scale as

t = t̄ [T] = t̄ [L][V]
−1, z= z̄[L], v= v̄[V], (25)

where each bracketed term represents a characteristic scale
of the respective field. For Eq. (23), upon inserting Eq. (25)
and dividing by the loadρg and rearranging, we obtain

−51
∂

∂z̄

(∣∣∣∣∂v̄∂z̄
∣∣∣∣m ∂v̄∂z̄

)
−52

∂

∂z̄

(
∂2v̄

∂ t̄ ∂z̄

)

−53
∂

∂z̄

(
exp−c 1

4

[(
∂u
∂z

)2
+

1
4

(
∂u
∂z

)4]
1
2
∂ū

∂z̄

)
= sinφ,

(26)

with the5-coefficients

51 =
µ[V]

m+1

[L]m+2ρg
, 52 =

α[V]
2

[L]3ρg
, 53 =

β0

[L]ρg
. (27)

The coefficients51−3 containρg to the first power. This
means that only two5-products are independent, namely
H =52/51 andK =53/51, evaluated as

H =
α

µ
[T]

m−1, K =
β0

µ
[T]

m+1. (28)

The non-dimensional numberH measures the significance of
strain accelerations, whileK is the initial rigidity modulus.
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The non-dimensionalization emphasizes the parameters’ re-
lationship to transient effects. Dropping the superscript bars,
the non-dimensional form of the initial/boundary value prob-
lem takes the form

−
∂

∂z

(∣∣∣∣∂v∂z
∣∣∣∣m ∂v∂z

)
−H

∂

∂z

(
∂2v

∂z∂t

)
−K

∂

∂z

(
exp−c 1

4

[(
∂u
∂z

)2
+

1
4

(
∂u
∂z

)4]
1
2
∂u

∂z

)
= sinφ,

(29)

v=
∂u

∂t
, (30)

v(z= 0, t)= 0, (31)

u(z, t = 0)= u0, v(z, t = 0)= v0, (32)

where Eq. (31) is the Dirichlet boundary condition, assuming
that the slab adheres to the plate, and Eq. (32) describes a set
of initial conditions.

We have now reduced the set of coefficients to the param-
etersH andK as measures on viscoelastic, transient effects
(strain acceleration and/or elasticity) relative to the purely
viscous power-law material, i.e., the first term of Eq. (29).

4.1 Numerical implementation

The field equations are numerically implemented using the
DOLFIN/FFC finite element software (Kirby and Logg,
2006; Logg and Wells, 2010). We solve the flow problem
of Eqs. (29), (30) together with the homogeneous boundary
condition (31) and the initial conditions (32) in a mixed prob-
lem. The weak form of the discrete Galerkin formulation is
to find (uh, vh) ∈Uh×Vh, such that

F(uh,vh;bh,wh) :=(
∂wh

∂z
,

∣∣∣∣∂vh∂z
∣∣∣∣m ∂vh∂z

)
+H

(
∂wh

∂z
,
∂2vh

∂z∂t

)

+K
(
∂wh

∂z
,exp−c 1

4

[(
∂uh
∂z

)2
+

1
4

(
∂uh
∂z

)4]
1
2
∂uh

∂z

)
−

(
wh,sinφ

)
+

(
bh,

∂uh

∂t
−vh

)
= 0,

(33)

for all admissible (bh, wh) ∈ Uh×Vh. Here,F is a bilin-
ear form, where (·,·) is anL2(�) inner product for scalars
defined with respect to the partition of the bounded domain
� of R1 into finite elements, and the subscripth is a dis-
cretization parameter. The finite element spacesUh andVh
are appropriate spaces of square integrable basis functions
with derivatives also being square integrable. We use contin-
uous Galerkin elements with Lagrange polynomials of sec-
ond order. The time derivatives are discretized using the im-
plicit backward Euler scheme. We apply Newton’s method to
solve the resulting system of nonlinear algebraic equations.

Note that Eq. (33) results in a system of nonlin-
ear differential-algebraic equations (DAEs) of the form
G(t,u,v,∂v/∂t)= 0. It contains the initial value problem

of satisfying a consistent set of initial conditions for the
N -dimensional vectors of unknownsu(t0)= u0,∂u/∂t |t0 =

v(t0)= v0, and possibly∂v/∂t |t0 (e.g.Brown et al., 1998).
Initially, the creep rate of ice is larger than in the stationary
creep regime and it is decelerating (primary creep). We thus
requirev0> vsteady. To compute a consistentv0, we solve
one time step withH = 0 using a very small step size. In this
way, we obtain a valid steady solution(u,v). The velocity
was then multiplied by a constanta, i.e. (u0,v0)= (u,av).
We usea = 2.5 and then start the actual computation with
H specified, and(u0,v0) as initial guesses. IfK = 0, we re-
set the displacementu0 = 0 as no initial instantaneous elastic
displacement occurs. IfK>0,u0 also served as initial guess.

5 Results

5.1 Creep under step function load

The UIP problem may be interpreted in analogy to a shear
creep experiment. At timet <0, the load is zero and the ma-
terial has been at rest for a long time. Fort ≥ 0, we assume
the load to be constant, i.e., equal to sinφ. However, as we
are also interested in the unloading phase, we artificially re-
move the (gravitational) load after some time, so we define
the modified load sinφ(t) with

φ(t)= (H(t)−H(t− tr))φc, (34)

whereφc = 12◦, H(·) is the Heaviside function, andtr is a
portion of the experiment run-time (60% of the total run-
time). Of the solutions, we display velocity (creep rate) and
displacement (creep) at the surface of the slab as functions of
time. In Figs.2 to 4 we elucidate results for different param-
eter combinations.

If second order (creep accelerations) and elasticity effects
are absent, i.e.H = K = 0, the purely viscous flow prob-
lem, equivalent to the Glen power-law is solved. In that case,
the material simply shears down the plate with steady creep
rate (velocity). As the load is removed att = 0.9, the creep
rate instantaneously drops to zero. This case is depicted by
the black solid curve in Fig.2a. In Fig.2b, the correspond-
ing creep curve is depicted. The displacement increases lin-
early with time with a slope corresponding to the creep rate
(Fig. 2a). At unloading (t = 0.9), the creep curve remains at
a constant level of permanent creep experienced so far.

For increasing (decreasing) power-law exponentm, the
constant creep rate increases (decreases) proportionally.
However, the creep rate is fixed for a constant load, and
no transient behaviour occurs. In all the following compu-
tations, we usedm= −2/3 (n = 3).

In Fig. 2a, b, we have 0≤ H ≤ 10, while K = 0. Here,
the material initially deforms rapidly with high creep rate.
For H ≤ 1.0, the creep rate decays rapidly and asymptoti-
cally reaches the steady creep rate (the solution withH = 0,
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Fig. 2. (a, c)Velocity (creep rate)v at the slab surface as function of time.(b, d) Displacement (creep)u at the slab surface as function of
time. In (a, b), solutions ofv andu are displayed for different values of the dimensionless numberH while K = 0. In (c, d), solutions ofv
andu are displayed withH = 0 and varyingK. Other parameters are as displayed in the plot headers. All fields (u, v, t) are non-dimensional.

Fig. 2a, black solid). IfH = 5 or 10, the creep rate decel-
erates significantly, but does not reach stationary creep until
t = 0.9. When the load is removed at that time, the creep
rates do not drop instantaneously to zero, but further de-
cay for all H> 0. For smallH, the creep curves in Fig.2b
are composed of four sections; an initial interval of decel-
erating (primary) creep followed by monotonically increas-
ing, stationary creep, and a recurring interval of decelerating
creep, which then goes over intou= const. However, asH is
increased, the alternation of these different creep intervals
is blurred and the displacement function transforms into a
single interval of almost permanently decelerating (primary)
creep (seeH = 10, Fig.2b). Note that the decelerating creep
at t > 0.9 is particularly interesting since the material now
exhibits, after removal of the load, continued decelerating
creep. This situation indicates a retardation of the material’s
response to the removal of the load; with increasingH the
creep rate decays increasingly slower. The creep undergone
by the material is not recoverable, so the material is a viscous
fluid with the ability to experience transient creep, according
to the MSOFM.

In Fig. 2c, we now impose elastic properties withK> 0
and setH = 0. For anyK the material immediately starts to

creep with initial velocity as the solution withK = 0. All
creep rates then decay asymptotically to zero; the time it
takes to reach zero depends onK. At the removal of the
load (t = 0.9), the creep rates instantaneously jump to neg-
ative values, which indicates that creep starts to recover. In
Fig. 2d, the increase of displacements decelerates with in-
creasing timet and eventually the individual displacement
solution approaches an asymptotic limit (e.g.K = 103 in
Fig. 2d). At unloading timet = 0.9, the displacements start
to decrease again quasi-exponentially and re-approach zero.
Thus, for K > 0, the material becomes elastic and rigid,
which prevents permanent creep but allows complete recov-
ery of the displacement.

In Fig. 3, we display the material behaviour when elas-
tic and second order effects are both activated with nonzero
H and K. We show solutions forH = 2.0 and varying
K (Fig. 3a, b), and forK = 102 with variableH (Fig. 3c,
d). WhenH> 0, the slab starts to creep with initially high
creep rate. IfK is very small, i.e.,K = 1.0, the decay
of the creep rate slows down and becomes almost constant
(Fig. 3a). At removal of the load (t = 0.9), the decay of
the creep rate speeds up again and approaches zero fast. If
K = 102, the creep rate initially decays rapidly but slows
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Fig. 3. (a, c)Velocity (creep rate)v at the slab surface as function of time.(b, d) Displacement (creep)u at the slab surface as function of
time. In (a, b) solutions ofv andu are displayed forH = 2 and variableK, while in (c, d) solutions ofv andu are shown forK = 102 and
different values ofH. Other parameters are as displayed in the plot headers. All fields (u, v, t) are non-dimensional.

down considerably aftert ∼ 0.3. If K = 103, or larger, the
creep rates decay very rapidly and even drop below zero and
then increase again. So, the creep rates begin to oscillate and
fade to zero afterwards. If the load is removed, the creep rates
drop, oscillate and fade again to zero. Thus, sinceK � 0 and
H 6= 0, the material is strongly elastic and able to respond
to creep accelerations; the material behaviour becomes re-
silient. The corresponding creep curves show decelerating
creep reaching a maximum at increasingly earlier time, at
which time recovery is also activated (Fig.3b).

In Fig. 3c, we observe how the creep rate decays increas-
ingly less rapidly with increasingH. The material response
gets strongly delayed. IfH is small, the creep rate quickly de-
cays asymptotically to zero. At unloading (t = 0.9), it jumps
to negative values and again asymptotically returns to zero.
If H = 1 or 5, the creep rate first decreases fast and then the
decay slows down rather quickly. For largeH ≥ 10, the creep
rate decreases slowly and unloading att = 0.9 has almost no
effect. In this case, for increasingH and fixedK, the mate-
rial experiences increasingly more creep until at unloading,
the creep decreases (recovers) again (Fig.3d).

5.2 Fading elasticity

As already mentioned, whenK> 0 (Figs.2c, d and3), the
material is essentially a viscoelastic solid which can only ex-
perience limited, though fully recoverable creep. It is obvi-
ous that these properties of a viscoelastic solid dominate the
material behaviour for all timest . However, viscous creep
of a fluid should be the dominating material behaviour for
t � 0, thus with increasing timet , the material needs to for-
get its elastic properties. This is achieved by adjusting the
fading elasticity factorc. In our creep experiment, ifK> 0
and the load sinφ(t) is applied, the displacement approaches
some asymptotic limit for increasing time. In that case, i.e.,
t � 0, the last term of Eq. (29), associated withK, becomes
dominant att � 0, while due tov→ 0 the other terms di-
minish. Settingc≥ 0 exponentially attenuates the growth of
that term with increasing displacement (i.e., strain). This is
equivalent to an exponential decay of the initial dimension-
less modulusK with increasing displacement/strain. Note
that this results in a temporal response of the material be-
haviour, however it is not an explicit time-dependent re-
sponse, as the change in the phenomenological parameter is
linked to the deformation. This response can be physically
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Fig. 4. (a, c)Velocity (creep rate)v at the slab surface as a function of time.(b, d) Displacement (creep)u at the slab surface as a function
of time. In (a, b) solutions ofv andu are displayed for different values of the memory damping factorc while H = 0. In (c, d) solutions
of v andu are shown for various values ofc andH = 3.0. Other parameters are as displayed in the plot headers. All fields (u, v, t) are
non-dimensional.

interpreted as a change in resistance of the material, which
e.g.Ashby and Duval(1985) andCastelnau et al.(2008) as-
sociate with a change in the internal stress field of the mate-
rial.

We display the associated material behaviour in Fig.4. If
second order effects are left aside (H = 0) we observe the ma-
terial creep rate to decay towards zero and then increase again
(Fig. 4a). The largerc is, the earlier the decay of the creep
rate will be interrupted and the creep rate increases again,
approaching some constant nonzero value. For such cases,
the creep decelerates and then accelerates again, increasing
gradually with time. When the load is removed att = 0.9,
some recovery of creep takes place where the displacements
decrease and approach some constant value again, corre-
sponding to the amount of permanent viscous creep acquired
(Fig. 4b). The largerc is, the more permanent viscous creep
and the less recovery of creep occurs. If second order effects
are taken into account, e.g.H = 3, primary creep is activated
again and oscillating creep rates (re-)appear. The increase
of c in such cases dampens the oscillations and prevents the
creep rate from decaying to or below zero, maintaining in-
creasing viscous creep with increasingc.

6 Discussion

6.1 Viable ranges ofH and K

The EMSOIM includes three relevant material parameters,
i.e.,µ, α, andβ0. The parametersµ andα have been deter-
mined based on laboratory experiments and creep function
fitting. McTigue et al. performed the parameter identifica-
tions ofµ, α1, andα2 for a second order fluid model with
m= 0. Sun(1987) re-fitted the creep data ofMcTigue et al.
for the MSOFM, under the conditions ofm= −2/3, (n= 3
in Glen’s flow law) andα1 +α2 = 0 (thermodynamic con-
straint). The resulting mean estimates of Sun were listed in
Table2. We now usem andα as determined byMan and
Sun(1987, see Table2) and insert them into the definition of
H (first equation of Eq.28). In Fig.5, we plot the variation of
H as a function of time scale. The limits of the abscissa en-
compass the approximate range over which the experiments
of Mellor and Cole(1982) andJacka(1984) lasted. The time
scales shaded in light grey ranges from 1 to 10 days, and cor-
responds to the durations of the creep experiments analyzed
by Sun (1987), from which he estimated the parametersµ
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andα. The value ofµ deduced bySun is in the range of
µ expected from the Glen flow law (Paterson, 1994). Con-
sidering a variation ofµ according to the range given in Ta-
ble 2, the change ofH with increasing time scale and fixed
α = 161 MPa d2 is given by the dark grey bar in Fig.5a.
The range of expectedH is the intersection of the grey bar
with the time scale interval shaded in light grey, which is
1.5≤ H ≤ 115. For a time scale of 5 d,H is ≈5. In Fig.5b,
the change ofK with increasing time scale, according to the
second equation of (28), is shown. Here, the dark grey bar in-
dicates the value ofK for β0 = 7000 MPa, and 1.4≤µ≤ 2.4
MPa d

1
3 . Expected values ofK for a time scale between 1

to 10 d lie in the interval of 2.9×103
≤ K ≤ 2×104, with

K ≈ 8×103 at [T] = 5 d.
We note that there is a considerable variation ofH of two

orders of magnitude with increasing[T], whereasK changes
only one order of magnitude across the time scales of 1 to
10 d. In this range, the absolute value ofK is about two or-
ders larger than that ofH at a given time scale. Thus, the
solid elastic properties are the prominent feature of the ice at
any time scale. Since the value ofH shows strong variation
across[T], the behaviour of a strongly elastic material (large
K) is expected to vary quite significantly, depending onH.
The occurrence of oscillating creep (Sect.5) is a striking in-
dication to this.

6.2 Relevance of acceleration effects(H > 0)

As pointed out, the magnitude ofH obviously varies strongly,
depending on the scales considered. The interpretation is that
the strain acceleration term in the constitutive relation can
alter the material behaviour considerably, as demonstrated
by the appearance of oscillating creep rates with increasing
H and largeK. The oscillating creep questions considera-
tion of second order effects (i.e., strain accelerations) in a
creeping (Stokes) flow problem. Nevertheless, if no creep
accelerations are considered, i.e.,α (H) is zero, it is not pos-

sible to reproduce primary creep rates which are up to two
orders larger than the steady secondary creep rate (e.g.Jacka,
1984; Castelnau et al., 2008). ForK> 0, butH = 0, there is
no solution with creep rates larger than the viscous, station-
ary creep rate (K = 0). The strain accelerations withH> 0
are necessary to capture the primary creep regime with the
deceleration of the creep rate. However, in the EMSOIM
constitutive equation, the significant decrease of strain rate
in the primary creep regime will also be influenced by the
evolving elasticity of the material and not only by strain ac-
celerations, as in the MSOFM. Presumably, the actual value
of α as a material parameter in the EMSOIM is smaller than
it can be expected on the basis of the MSOFM. Thus, strain
accelerations and decay of elasticity in the EMSOIM should
be designed in such way that the interference does not result
in oscillating creep behaviour.

7 Final remarks

We applied a viscoelastic material law in a simple unidirec-
tional flow problem and studied the influences of the various
material parameters. The EMSOIM relates stress to strain
and its derivatives up to second order, i.e. strain rates and
strain accelerations. As the EMSOIM is a generalized ma-
terial law incorporating the Glen flow law, the MSOFM and
a nonlinear elasticity relation, depending on the choice of
parameters, it reproduces material behaviour with respect to
either a single or multiple of the incorporated constitutive re-
lations.

For unidirectional flow considered here, the set of field
equations was substantially reduced, however, the consti-
tutive model was capable of producing complex material
responses. Such characteristics, including total or partial
recovery of deformation and enhanced viscous deforma-
tion with non-stationary creep rates, may be possibly en-
countered in the observations on Gornergletscher. Such a
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multi-dimensional situation makes the problem much more
challenging and besides the difficulties associated with the
viscoelastic theory and material behaviour, numerically deal-
ing with the problem in the context of finite elements be-
comes more involved. Nevertheless, we target on consider-
ing further applications of the EMSOIM constitutive model
and the investigation of viscoelastic properties of glacier ice.
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