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Abstract. We present a viscoelastic constitutive relation ral scale, in spite of its constraint to only predict a stationary
which describes transient creep of a modified second gradstress/strain rate relation at the minimum creep rate observed
fluid enhanced with elastic properties of a solid. The materialin laboratory creep experiments. However, the laboratory ex-
law describes a Rivlin-Ericksen material and is a generalizaperiments on the creep of ice conducted in the past consis-
tion of existing material laws applied to study the viscoelas-tently revealed non-stationary creep of ice (dgjlinek and

tic properties of ice. The intention is to provide a formulation Brill, 1956 Mellor and Cole 1982 Jacka1984).

tailored to reproduce the viscoelastic behaviour of ice rang- Several attempts were made to describe the transient creep
ing from the instantaneous elastic response, to recoverablef polycrystalline ice observed in laboratory creep experi-
deformation, to viscous, stationary flow at the characteris-ments by viscoelastic constitutive equations, relating strain
tic minimum creep rate associated with the deformation ofrates, strain, stress and time in different ways. Nonlinear,
polycrystalline ice. We numerically solve the problem of a time-dependent constitutive relations describing creep be-
slab of material shearing down a uniformly inclined plate. haviour observed in uni-axial compression tests at constant
The equations are made dimensionless in a form in whichioad were given bySinha (1979 and Le Gac and Duval
elastic effects and/or the influence of higher order terms (i.e.(1980), and reviewed irfAshby and Duva(1985. The work
strain accelerations) can be compared with viscous creep ajf Szyszkowski and Glockng1985 considered a nonlin-
the minimum creep rate by means of two dimensionless paear constitutive equation based on spring and dash-pot ele-
rameters. We discuss the resulting material behaviour anéhents. A description of the transient strain rate as a nonlin-
the features exhibited at different parameter combinationsear power-law function of stress and strain was proposed by
Also, a viable range of the non-dimensional parameters isAzizi (1989. Shyam-Sunder and W{1989ab) published a
estimated in the scale analysis. differential flow model, and iShyam-Sunder and W 990

it was compared with the models 8inhg andLe Gac and
Duval. Later on,Meyssonnier and Goubef1994) took up

the models ofLe Gac and Duvaland Shyam-Sunder and
Wu and proposed some modifications. While the early at-

Creep of ice is an inevitable issue when dealing with glacierd€MPpts of the aforementioned models describe only uni-axial
and terrestrial ice masses. From the pioneering work inC'€€P responses, and I.ack an obvious generalization to multi-
the 1950s Glen, 1952 Nye, 1953 Steinemann1958, the axial creep states (e.§inhg, the more recent models b_é
viscous constitutive relation for stationary creep of ice has®ac and Duval Shyam-Sunder and Wiand Meyssonnier
emerged, which, in the glaciology community, is referred to and Goubertmcludg pne or more s.tate varlqbles which must
as Glen’s flow law. The Glen flow law is a generalized New- P modeled by additional differential equations.

tonian material model (e.@rochet et a].1984 with power- Morland (1979 andMorland and Spring1981) proposed

law viscosity and is widely used when modeling the flow of constitutive equations of rate typedckett 1972 Hutter,

glaciers, ice streams and ice sheets at any spatial and temp983 to describe the viscoelastic responses of isotropic poly-
crystalline ice. They considered constitutive relations which

] relate stress and stress rates to either strain rates and strain ac-
Correspondence tcP. Riesen celerations, which is a fluid type modafi¢rland and Spring
BY (riesen@vaw.baug.ethz.ch) 1981), or else to strain and strain rates, i.e. a solid type model
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(Spring and Morlandl982. These models are capable of re- 2 Constitutive relations
producing idealized decelerating (primary), stationary (sec-
ondary) and accelerating (tertiary) creep responses, but werd our description we use the Eulerian notation. The kine-
not applied to real creep data. matic measures used are summarized in Tapkellowing

If stress rates are excluded from the constitutive relationLockett(1972 andHutter and 8hnk(2004). Before we dis-
and the stress is considered only a function of the straircuss the proposed generalized constitutive relation, we now
rates, strain accelerations, and possibly higher order derivequote the relations for the already mentioned material laws.
tives, the relation then describes a fluid of differential type In general, the ice is assumed an incompressible material,
(Rivlin and Ericksen1955. These fluids are also known as Which introduces the pressure as an independent field, ab-
fluids of grade N (e.gloseph1990, or, order fluids Qwens  sorbing any isotropic stress contribution.
and Phillips 2002. The incompressible second grade fluid
model (fluid of grade 2) was first applied to creep experi-2-1 Glen's flow law
ments and ice mechanics BMcTigue et al.(1989, who in- , .
vestigated the relevance of normal stress differences in sheaw Gl-en s flow law, the Cauchy stress tensas given by the
ing flow. However, the second grade fluid model has no strainre'atlon
rate-dependent viscosityMan and Sun(1987 thereupon _ A Ay — R LlirD2)) S
postulated a modified second grade fluid with power-law vis-t_ pl+a(@®)D.  where 7(D)=B(tr(DY) 2. (1)
cosity. The relation oMan and Surdescribes primary and - Here, p is the pressure due to the incompressibility con-
secondary creep, and the material behaviour asymptotes t0graint,| is the identity tensorj(D) the strain rate-dependent
Glen-like power-law fluid model for vanishing second order power-law viscosityB a constant, and the power-law expo-
terms. For ice, Sun estimated the phenomenological coeffinent. Fon + 1, the material model becomes non-Newtonian.
cients for the modified second grade fluid model with power-Thjs relation is valid for all times; obviously it can merely de-
law viscosity from triaxial laboratory creep experiments.  scribe stationary creep. For the monotonic secondary creep

In recent field observations on an Alpine glacier (Gorner-yagime of ice, a value of = 3 is commonly used. The pa-
gletscher, Switzerland), repeated near-reversal of flow, ac-

. . o rameterB is in the range of 1.2 t0 2.9 MPador ice at tem-
Companled by reversed displacement direction was observed, - res betweerr® and—10°C, as recommended Ra-
(Sugiyama et a].2007, 2008. The change of motion takes terson(1994).
place within a few days during the periodical drainage of
a supra-glacial lake, and is possibly related to the unloads 5 The modified second order fluid model
ing and stress redistribution during the rapid drainage. The
question was raised whether the retrograde movement mayhe modified second order fluid model with power-law vis-
be attributed to viscoelastic recovery properties of the ice.cosity(MSOFM) was introduced bilan and Sur(1987) as
To elaborate on this hypothesis, an appropriate viscoelastic
constitutive model for glacier ice is needed, preferably appli-
cable to multi-axial deformations. No attempt has been madé = —pl +n(A@) A +21A2) +a2A(21), (2)
so far to take into account transient, recoverable deformation
effects when an external load (e.g. a forming and drainingWhereA 2 are the first and second Rivlin-Ericksen ten-
lake) is applied to and removed from a glacier. This wasSOrs, describing the current strain rate and strain accelera-
our motivation to construct a simple constitutive formulation tions Rivlin and Ericksen1959. The first Rivlin-Ericksen
with a material response varying smoothly in between thetensor in terms of the spatial velocity gradientAgy =
limits of ice behaving as a viscous fluid on long time scales,L +L " =2D. The strain acceleration tensayy), and higher
and ice behaving as an elastic solid on short time scales. warder tensors are constructed via the recurrence relation (viii)
here propose a constitutive model able to predict instantaln Tablel. The coefficients > are termed normal stress co-
neous elastic strain followed by recoverable, transient strairgfficients. The viscosity (A 1)) follows a power-law relation
fading into a steady creep response associated with the st&f the form
tionary minimum creep rate of ice, based on a further gener-
alization of the modified second grade fluiddan and Sun  n(A)) =,u<%tr(A(21))>
(1987. A tertiary response with increasing strain rate after
the minimum strain rate is not considered. In Sun(1987, the MSOFM was proposed as an improvement

Ultimately, we target to corroborate whether glacier ice on Glen’s flow law to include non-stationary creep. Glen'’s
allows for deformations such as those observed. By now, wdlow law is contained in Eq.2) as the asymptotic limit af-
develop the constitutive relation aimed for, and investigate itter transient creep has died out. Or else, with use of (vii)
in a numerical example. The possible range of parameters iand (viii) (Tablel), Eq. (1) is recovered whew; =a2 =0
collected and the characteristics which can be exhibited byn Eq. ), m = (1—n)/n, andu =27 B, is substituted in
the rheological model are illustrated. Eq. 3). If m =0, the MSOFM becomes the second order

m
2

©)
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Table 1. Definition of kinematic tensor quantities in Eulerian notation. In index notation, the tensor quantity is non-bold and indexed

(i.e.L=L;;). The material derivativé) is given as% +v;-0,;, whe
Ay =2D.

rev=v; is the velocity. Note that for (viii), we hav& g =1, and

Symbol Measure
0] X=(X,Y,Z) Particle coordinates in the reference configuration
(ii) X=(x,y,2) Position coordinates in the present configuration
(iii) F=0dx/0X Deformation gradient
(iv) B=FF' Left Cauchy-Green deformation tensor
v  e=iB-Dn Finger strain tensor
(vi) L =gradv) =FF~1 Velocity gradient
(viij D=3(L+LT) Strain rate (Stretching) tensor
(viii)  Agy =A(n_1) +Au-plL +LTA(n_1) n-th Rivlin-Ericksen tensor
(ix) tr(-) The trace of a measure, i.e() = D;;

fluid model. Clearly, Eq.2) is a generalization of the second
order fluid model. A good summary on related generaliza-
tions of the second order model and the MSOFM is given in
Massoudi and Vaidy&008.

Sun (1987 performed the exploitation of the second
law of thermodynamics (Clausius-Duhem inequality) for the

tic solid. We propose to extend the constitutive form of the
MSOFM by an explicit dependence on the Finger strain ten-
sor (Tablel), postulating

~

t=te,Aw),Aw) 4)

as a frame-invariant functional relation for the stress. We

MSOFM and deduced the restrictions on the stress functior]:a” the corresponding material atastic modified second
and its parametens, @y ande,. There is much controversy order isotropic materia(EMSOIM). The functional form4)

on the second order fluid models. Experimental observa:

tion and mathematical analyzes on the fluid model and it
stability properties do not share the same consequences
the sign of the normal stress coefficient (see e.gDunn
and Fosdick 1974 Joseph 1976 Miller and Wilmanski
1986 Joseph199Q Rajagopal and Srinivas2008. A re-
view on this topic is given bypunn and Rajagopdl1995.
Here, we follow the work oSun (1987, who used the re-
strictions (i)a1 +a2 = 0, and (iiym = —2/3, corresponding
ton =3 in Glen’s flow law, Eq. {). Sundetermined mean
values ofu =2.41 MPad anda1 = 161 MPad from fitting
the model to the data of triaxiaMcTigue et al, 1985, and
pressure-meteKjartason 1986 creep experiments.

3 The elastic modified second order isotropic material
model (EMSOIM)

is a further generalization of the MSOFM, and belongs to

Sthe class of Rivlin-Ericksen materialRiilin and Ericksen

Y55,

We now restrict the constitutive moded)(by ad-hoc as-
sumptions to make the mathematical proof of the thermo-
dynamic behaviour performed tun (1987 applicable to
the EMSOIM. In this way, we preserve the essential proper-
ties, namely (i) inclusion of elasticity effects, which, paired
with the viscous effects, allow for relaxation phenomena, and
(i) use of the MSOFM concept to account for the primary
and secondary creep regimes, in the context of an extended
Glen flow law.

For an isothermal process with a body at uniform temper-
ature the thermodynamic analysisin(1987) is recovered
for the EMSOIM (Eq4) if the following postulates hold:

1. The Cauchy stress tensibcan be additively composed
as

In the past, the role of primary creep and elastic effects on
glacier flow and observed flow anomalies on a scale of hours

to a few days has scarcely been investigated. To strike a new
path in this direction, we adopt the MSOFM, in which the

ice is able to reproduce both primary and secondary creep
effects with good agreement on the creep experiments ana- 2,
lyzed by Sun(1987. However, we further require the ma-
terial to exhibit two contrasting properties: (1) viscous sta-
tionary creep of a fluid on long time scales, and (2) elasticity

of a solid when the time scale under consideration becomes
short, allowing elastic strain jumps and reversible creep. The 3.
material law needs to include properties of an isotropic elas-

www.nonlin-processes-geophys.net/17/673/2010/

®)

wheretp is a dissipative stress component that does not
depend org, andtg is an elastic stress contribution.

t=te+tp =te(e) +in(A1), A),

The functional dependence of the Helmholtz free en-
ergy may be additively decomposed as
¥ =9 @AD) =110 +P2Aw). (6)

The componentj, of the Helmholtz free energy is a
convex function of its argumenty).
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Table 2. Values for the parameters of the Glen flow law and flow law and a Hooke-type elasticity relation with vanishing

MSOFM, available from the referenced literature, expressed for theé?Ulk modulus for an incompressible isotropic material of the
generalized EMSOIM constitutive relation. (*) The value for the Class of materials of differential typ&ivlin and Ericksen
modulusgy corresponds to @, whereG = 3500 MPa is the shear 1959. A similar, even more general constitutive relation is

modulus of ice $chulson and DuvaP009. discussed by hou(1991).
In Table2 we summarize values of the parametersu,
EMSOIM Glen's flowlaw ~ MSOFM a and Bp which are available from the literature and experi-
(Paterson1994  (Sun 1987 mental data. The values afand B in Glen'’s flow law, given
. o3 o3 in Sect.2.1, are expressed in termsafandy.
" 14-23MPad 2.41MPad
o 161MPad 4 Unidirectional flow of the EMSOIM
Bo 7000 MP&

We solve the balance equations for incompressible, isother-
mal Stokes (creeping) flow with the EMSOIM law. The gov-

4. The conditions erning equations are
n=z0, @120, a1t+a2=0, (M) —div(ty+pf=0, (12)
must be met. div(v) =0, (13)
t=—pl+nAmx)A A — A2 g)€, 14
We refrain from carrying out the complete thermodynamic PlnAo)Ae +ma( @ @) +AE) (14)
gna_ly5|s here as the problem which we consider in the fO||0W-n (Aw) =1 (%tr(A(zl))) 2 (15)
ing is an isothermal process and does not require an energy
balance to be solved. An admissible form of the elastic stresg(e) = gy exp—C%Wd %) (16)
contributiontg for an incompressible material with elastic
deformation limited to shearing is the relation Equation (2) is the momentum balance, wherés the (con-
stant) material density arfdan external force. Equatioi )
te=B(€)€, (8)  is the mass balance, which requires the velogityo be

solenoidal. The remaining equations describe the constitu-

tive relation of the EMSOIM.

d—e— %tr(e)l, 9) To solve the system forward in time, the set of equations
must be complemented by an evolution equation for the Fin-

is the deviatoric strain tensor, apds a variable shear mod- ger strain tensoe from the present time. Differentiation of

where

ulus of the form g, using (vi) from Tablel yields
1 2 , .
B(&) = poexp 21 (), (10) e=3(FFT-1)
L =1(LFFT+FFTLT)
with initial rigidity So = 2G, where G = 3500 MPa corre- 2
sponds to the shear modulus of icecbiulson and Duval = Le+eLT+%(L +L 1,

2009. The constant > 0 is referred to as “fading elastic-

ity factor”. The purpose of the exponential dependence of°"

the shear modulus on strain evolution is the ability to destroy, T 1
- : ; oe—Le—el =35Aq), 17)

elasticity on long time scales. It introduces an exponentially

fading strength of elasticity with increasing strain accumula-

tion. This is analogous to an exponentially fading memory of As a benchmark example, we consider one-directional

the material’s elastic properties with increasing deformaﬂon.shearing flow of a slab of material down a uniformly in-

This should not be confused with the concept of materials_,. . R
with fading memory Coleman and NoJl1960). clined plate (UIP), as illustrated in Fig. Congruent to

Thus, in the EMSOIM, the Cauchy stress te es the the two_-dlme_nsm_nal spatial C_arteS|an coo_rdlnate system (
form z) depicted in Fig.1, we define the particular reference

configurationX = (X, Z). The plate is considered infinite
t=—pl+nA1)A1 +aAg _A(Zl))ﬂg(e()e(, (11) !n the doqutream direct'io(IXZx), and the slgb _thickness

is monotonic. The flow is driven by a gravitational force
wherex = o1 = —ap Was used. This representation is a fairly f = (gsing, —gcosp) where¢ is the inclination angle of the
general form of a material law containing the modified sec-plate. We seek the velocity profile= (v(z),0) which varies
ond order fluid model byMan and Sun(198%, the Glen  with the thickness of the slab.

which follows as an identity.

Nonlin. Processes Geophys., 17, 6684 2010 www.nonlin-processes-geophys.net/17/673/2010/
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which, in this unidirectional case, is simply=du/dt. We
keepv and u separate and insert Eql4), together with
Egs. 0) and Q1) into the momentum equatiol?). The
stress divergence yields two equations as

9 ( m 8v> 9 ( 32v )
o — ) —a— | —
0z 0z 0z \ 010z
2 . 4
_ ﬁoi(expcz[@z) +i (%) ]%8_“) = pgsing,
0z 9z

9 (dv\% 9 (,0u\® ap
—a—| — —|5— — =—pgcosp, (24
“az(az) +'803z (282> +8z pecosp, (24)

X,x with the velocityv, displacement;, and pressure as un-
knowns.

Fig. 1. Problem geometry of one-directional shearing flow of aslab ~ Note, the pressure equatioB4 is decoupled from the

of material down an uniformly inclined plate (UIP). The coordinate flow equation 3). Equation 24) is interesting as it obvi-

systems of the referencX) and presentx) configurations are ori-  ously describes deviations from a hydrostatic stage (linear

ented concordantly, inclined by some angleelative to the gravi-  pressure variation with slab thickness) which arise from sec-

tational forcef acting in the vertical. ond order effects and elasticity. These normal stress con-

tributions due to second order effects (term associated with

a) and elasticity (term associated wit) in Eq. 4) carry

opposite signs. If we would have used a geometrically lin-

earized strain tensor, elastic normal stresses, i.e., the second

x=X+u, z=2Z, (18)  termin Eq. 24) would be absent.

whereu is a spatial displacement in the flow direction. The _ !N the following, we will only be concerned with the solu-

deformation gradient is then tion of the flow problem (Eq23).
We now non-dimensionalize problem (E2f) by replac-

F= X _ (1 g_Lzl> (19)  ing the relevant fields on the basis of a characteristic time
X \0 1 scale as

ov
0z

(23)

X X

In this rectilinear flow problem, the following relations ex-
ist between present and reference configuration:

dudz _ 3 i i - _
We note thatg—% = 37 35 = 3., So thatthe Finger strain tensor , —7[T]=7[LIIVI"Y, z=Z[L]. v=3[V]. (25)
is given by
2 where each bracketed term represents a characteristic scale
e—1 (3—;’) 3—”2' . (20) of the_r_es_pective field. For EQ29), upon_inserting Eq.?(S)
2 3_u 0 and dividing by the loagh ¢ and rearranging, we obtain
z

It may appear appropriate to use a geometrically linearized 9 /lav|™ ab 9 { 9%
g = ) 2= — A=
( 0z 81) 0z \ 010z

strain tensor, i.e., neglecting terms less thatid@/0z)2). —1'[1?
However, this would render the use of a variable modulus in- .
con_sist_ent,_ as (_ce(z) x (z_m_/az)z. Thus, the geomet_rical lin- _ 1'133_ (expvi[(g‘é)2+i(3ﬁf)4] lﬁ) =sing,
earization implies explicitly that one only moves little away 297

from the reference configuration; the material’s elastic prop- (26)
erties would remain unchanged in that range of deformation.

Since we require degradation of material elasticity, terms lesgvith the IT-coefficients

than Q((du/9z)?) should be retained in the formulation for

consistency. I = % Iy = %V]Z, I3 = bo . (27)
The first Rivlin-Ericksen tensor is determined from the [LI""pg [LIFpg [Llpg
spatial velocity gradient as The coefficientsIT;_3 containpg to the first power. This
0 means that only twdlI-products are independent, namely
A(1)=L+LT=<3_U "6) (21) H=II,/M; andK =I13/I1;, evaluated as
0z
The evaluation of Eq.1(7) brings up the relation between p— Z[T]m*{ K= @[T]mﬂ. (28)
velocity v and displacement as M M
v 9%u 9 ou e non-dimensional numb&r measures the significance o
2 Th di i | b&Er he signifi f
32 = 99z 3z 9t (22)  strain accelerations, whili is the initial rigidity modulus.

www.nonlin-processes-geophys.net/17/673/2010/ Nonlin. Processes Geophys., $8462610
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The non-dimensionalization emphasizes the parameters’ resf satisfying a consistent set of initial conditions for the
lationship to transient effects. Dropping the superscript bars N-dimensional vectors of unknowngto) = uo, du/dt|;, =
the non-dimensional form of the initial/boundary value prob- v(r9) = vo, and possiblypv/dz|,, (e.g.Brown et al, 1998.

lem takes the form Initially, the creep rate of ice is larger than in the stationary
m ) creep regime and it is decelerating (primary creep). We thus
_i< ikl 8_1)) _Hi v requirevg > vsteady 10 COMpute a consistemp, we solve
dz \|dz| 0z 9z \ 9z0r (29)  onetime step witfil =0 using a very small step size. In this
. 2 . 4 . . . .
—Ki exp‘c%[(%) +711(3f) ]13_“ —sing, way, we obtam a valid steady solupcﬁn,v). The velocity
2 was then multiplied by a constant i.e. (ug, vo) = (u,av).

Ju We usea = 2.5 and then start the actual computation with
v=os (30)  H specified, andug, vo) as initial guesses. K =0, we re-
v(z=0,1)=0, (31) th tlhe displatcemenb ]1:(0 aés no iTitiaI inst?jntar_]e_ct)_uis elastic

splacement occurs. ,up also served as initial guess.
u(z,t=0)=uo, v(z.1=0)=1o, 32 P e = o vedasiiialgd

where Eq. 81) is the Dirichlet boundary condition, assuming
that the slab adheres to the plate, and B8) describes aset S Results
of initial conditions. ]
We have now reduced the set of coefficients to the param®-1  Creep under step function load

etersH andK as measures on viscoelastic, transient effects ] ]
(strain acceleration and/or elasticity) relative to the purely 1he UIP problem may be interpreted in analogy to a shear

viscous power-law material, i.e., the first term of E20)( creep experiment. At time< 0, the load is zero and the ma-
terial has been at rest for a long time. For 0, we assume
4.1 Numerical implementation the load to be constant, i.e., equal togsirHowever, as we

are also interested in the unloading phase, we artificially re-
The field equations are numerically implemented using themove the (gravitational) load after some time, so we define
DOLFIN/FFC finite element softwareK{rby and Logg the modified load si@ (¢) with
2006 Logg and Wells 2010. We solve the flow problem
of Egs. @9), (30) together with the homogeneous boundary ¢ (t) = (H(t) — H(t —t)) ¢, (34)
condition 1) and the initial conditions32) in a mixed prob-
lem. The weak form of the discrete Galerkin formulation is where¢. =12°, H(-) is the Heaviside function, ang is a

to find s, vi) €Uy x Vy, such that portion of the experiment run-time (60% of the total run-
time). Of the solutions, we display velocity (creep rate) and
F(up,vp; by, wp) := displacement (creep) at the surface of the slab as functions of
dwy |dv, " oy (awh 92y, time. In Figs.g to 4 we elucidate results for different param-
(—, - —) - eter combinations.
9z 19z 9z 9z~ 9z0t If second order (creep accelerations) and elasticity effects

)2 w4 (33) . o ;
+K(aaﬂ,exp_“‘11[(aazh) +%(%) ]%Bﬂ> are absent, i.eH = K = 0, the purely viscous flow prob-

z 9z lem, equivalent to the Glen power-law is solved. In that case,
_ duy, the material simply shears down the plate with steady creep
- (wh, sm¢) + (bh, ar Uh) =0, rate (velocity). As the load is removedsat 0.9, the creep

rate instantaneously drops to zero. This case is depicted by
for all admissible &, w;) €Uy, x V,,. Here, F is a bilin- the black solid curve in Figa. In Fig.2b, the correspond-
ear form, where-() is an L2($2) inner product for scalars ing creep curve is depicted. The displacement increases lin-
defined with respect to the partition of the bounded domainearly with time with a slope corresponding to the creep rate
Q of R into finite elements, and the subscripts a dis-  (Fig. 2a). At unloading {=0.9), the creep curve remains at
cretization parameter. The finite element spddgsand)), a constant level of permanent creep experienced so far.
are appropriate spaces of square integrable basis functions For increasing (decreasing) power-law exponentthe
with derivatives also being square integrable. We use continconstant creep rate increases (decreases) proportionally.
uous Galerkin elements with Lagrange polynomials of sec-However, the creep rate is fixed for a constant load, and
ond order. The time derivatives are discretized using the im-o transient behaviour occurs. In all the following compu-
plicit backward Euler scheme. We apply Newton’s method totations, we useth = —2/3 (n = 3).
solve the resulting system of nonlinear algebraic equations. In Fig. 2a, b, we have & H < 10, while K =0. Here,
Note that Eq. 83) results in a system of nonlin- the material initially deforms rapidly with high creep rate.
ear differential-algebraic equations (DAEs) of the form For H < 1.0, the creep rate decays rapidly and asymptoti-
G(t,u,v,dv/dt) =0. It contains the initial value problem cally reaches the steady creep rate (the solution it 0,

Nonlin. Processes Geophys., 17, 6684 2010 www.nonlin-processes-geophys.net/17/673/2010/
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Fig. 2. (a, c)Velocity (creep ratep at the slab surface as function of tim@, d) Displacement (creep) at the slab surface as function of
time. In (a, b), solutions of andu are displayed for different values of the dimensionless nurfibehile K=0. In (c, d), solutions ob
andu are displayed witfil = 0 and varyingK. Other parameters are as displayed in the plot headers. All figlds#) are non-dimensional.

Fig. 2a, black solid). IfH =5 or 10, the creep rate decel- creep with initial velocity as the solution witk =0. All
erates significantly, but does not reach stationary creep untitreep rates then decay asymptotically to zero; the time it
t =0.9. When the load is removed at that time, the creeptakes to reach zero depends ®Bn At the removal of the
rates do not drop instantaneously to zero, but further deload ¢ =0.9), the creep rates instantaneously jump to neg-
cay for allH > 0. For smallH, the creep curves in Fi¢b ative values, which indicates that creep starts to recover. In
are composed of four sections; an initial interval of decel-Fig. 2d, the increase of displacements decelerates with in-
erating (primary) creep followed by monotonically increas- creasing time and eventually the individual displacement
ing, stationary creep, and a recurring interval of deceleratingsolution approaches an asymptotic limit (el§= 10° in
creep, which then goes over inig= const. However, afl is Fig. 2d). At unloading timer = 0.9, the displacements start
increased, the alternation of these different creep intervalg¢o decrease again quasi-exponentially and re-approach zero.
is blurred and the displacement function transforms into aThus, for K > 0, the material becomes elastic and rigid,
single interval of almost permanently decelerating (primary)which prevents permanent creep but allows complete recov-
creep (sedl =10, Fig.2b). Note that the decelerating creep ery of the displacement.

atr > 0.9 is particularly interesting since the material now |, Fig. 3, we display the material behaviour when elas-

exhibits, after removal of the load, continued deceleratingiic and second order effects are both activated with nonzero
creep. This situation indicates a retardation of the material'sy ang K. We show solutions fofll = 2.0 and varying

response to the removal of the load; with increasthghe K (Fig. 3a, b), and forK = 10? with variableH (Fig. 3c

creep rate decays increasingly slower. The creep undergon@)_ WhenH > 0, the slab starts to creep with initially high
by the material is not recoverable, so the material is aviscou@reep rate. IfK is very small, i.e., K = 1.0, the decay

fluid with the ability to experience transient creep, according of the creep rate slows down and becomes almost constant

to the MSOFM. (Fig. 3a). At removal of the loadt(= 0.9), the decay of
In Fig. 2c, we now impose elastic properties wikh> 0 the creep rate speeds up again and approaches zero fast. If
and sefll = 0. For anyK the material immediately starts to K = 10?, the creep rate initially decays rapidly but slows
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Fig. 3. (a, c)Velocity (creep rate) at the slab surface as function of tim@, d) Displacement (creep) at the slab surface as function of
time. In (a, b) solutions ob andu are displayed foll = 2 and variablék, while in (c, d) solutions of andu are shown fofK = 10 and
different values ofll. Other parameters are as displayed in the plot headers. All figlds 1) are non-dimensional.

down considerably after~ 0.3. If K=10 or larger, the 5.2 Fading elasticity
creep rates decay very rapidly and even drop below zero and

then increase again. So, the creep rates begin to oscillate al}gs already mentioned, wheki > 0 (Figs.2c, d and3), the
fade to zero afterwards. If the load is removed, the creep rateﬁwaterial is essentially a viscoelastic solid which can only ex-

drop, oscillate and fade again to zero. Thus, siice 0 and perience limited, though fully recoverable creep. It is obvi-

H#0, the matengl IS §trongly elgstlc and .able 0 respondous that these properties of a viscoelastic solid dominate the
to creep accelerations; the material behaviour becomes réx aterial behaviour for all times However. ViScous creep

silient. The corresponding creep curves show deceleratin%f a fluid should be the dominating material behaviour for

creep r_eachmg a maximum a? increasingly earlier time, att > 0, thus with increasing time the material needs to for-
which time recovery is also activated (FR&h).

. . t its elasti ties. This i hi justing th
In Fig. 3c, we observe how the creep rate decays mcreasge LS elastic properues Is is achieved by adjusting the

inalv | idlv with i . Th terial fading elasticity factor. In our creep experiment, KK > 0
INgly 1€ss rapidly wi mgreasm@l. € materal response o, the load sifi () is applied, the displacement approaches
gets strongly delayed. H is small, the creep rate quickly de-

. . L some asymptotic limit for increasing time. In that case, i.e.,
cays asymptotlcally to Z€r0. At unloadmg:( 0.9), it jumps t > 0, the last term of Eq.29), associated witlK, becomes
to negative values and again asymptotically returns to Z€104ominant atr > 0, while due tov — O the other terms di-
If H=1 or 5, the creep rate_ first decreases fast and then th inish. Setting: > 0 exponentially attenuates the growth of
decay slows down rather quickly. For lafgle> 10, the creep -

te d lowl d unloadi 0.9 h | i that term with increasing displacement (i.e., strain). This is
rate decreases slowly and unioading &i). nas aimost no equivalent to an exponential decay of the initial dimension-
effect. In this case, for increasirifj and fixedK, the mate-

i . . . ) . less modulusk with increasing displacement/strain. Note
rial experiences increasingly more creep until at unloadlng‘that this results in a temporal response of the material be-
the creep decreases (recovers) again (dg. haviour, however it is not an explicit time-dependent re-
sponse, as the change in the phenomenological parameter is
linked to the deformation. This response can be physically
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Fig. 4. (a, c)Velocity (creep rate) at the slab surface as a function of tingb, d) Displacement (creep) at the slab surface as a function
of time. In (a, b) solutions of andu are displayed for different values of the memory damping factwhile H=0. In (c, d) solutions
of v andu are shown for various values ofandH = 3.0. Other parameters are as displayed in the plot headers. All figlds () are
non-dimensional.

interpreted as a change in resistance of the material, whicl6 Discussion

e.g.Ashby and Duva(1985 andCastelnau et a[20098 as-

sociate with a change in the internal stress field of the mateg 1 vjaple ranges of  and K
rial.

We display the associated ”.‘ate”a' behaviour in Rigf The EMSOIM includes three relevant material parameters,
second order effects are left asid®£ 0) we observe the ma- .
Le., u, a, andBp. The parameterga anda have been deter-

rial cr r wards zero and thenincr in. . .
terial creep rate to decay towards zero and then increase 298l0ined based on laboratory experiments and creep function

(Fig. 4‘?‘)' The larger is, the earlier the dec"’?y of the creep fitting. McTigue et al. performed the parameter identifica-
rate will be interrupted and the creep rate increases agair, of 4, &3, andaer, for a second order fluid model with

the creep dacelorates and then accelerates again, neressflg0: SUN(L987 re-fted the creep data afcTigue et a.
P gain, P the MSOFM, under the conditions of = —-2/3, (n =3

gradually with time. When the load is removedzat 0.9, in Glen's flow law) ande; + a2 = 0 (thermodynamic con-

some recovery of creep takes place where the dISpI"’memenl[s%raint). The resulting mean estimates of Sun were listed in

decrease and approach some constant value again, COMES e 2. We now usen ande as determined byan and
sp_onding to the amou_nt of permanent viscous creep vaUiregun(1§87 see Tabl®) and insert them into the definition of
(Fig. 4b). The larger is, the more permanent viscous creep H (first equation of Eq28). In Fig. 5, we plot the variation of

and the less recovery of creep occurs. If second order effec : . 0 )
. ! : . as a function of time scale. The limits of the abscissa en-
are taken into account, e .= 3, primary creep is activated . ) ;
compass the approximate range over which the experiments

again and oscillating creep rates (r_e-)a_ppear. The INCreasst mellor and Colg(1982 andJacka(1984 lasted. The time
of ¢ in such cases dampens the oscillations and prevents the

. .~~~ " scales shaded in light grey ranges from 1 to 10 days, and cor-
creep rate from decaying to or below zero, maintaining in- . .
. . L . responds to the durations of the creep experiments analyzed
creasing viscous creep with increasing

by Sun (1987, from which he estimated the parametgrs
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Fig. 5. Change of the dimensionless numbErandK of Eq. (28) as functions of the time scale and the parameters from Table

anda. The value ofu deduced bySunis in the range of

u expected from the Glen flow lawPéterson1994. Con-

sidering a variation of. according to the range given in Ta-

ble 2, the change oH with increasing time scale and fixed

a =161 MPad is given by the dark grey bar in Figa. ary creep ratel{ = 0). The strain accelerations wifti > 0

The range of expecteH is the intersection of the grey bar are necessary to capture the primary creep regime with the

with the time scale interval shaded in light grey, which is deceleration of the creep rate. However, in the EMSOIM

1.5<H < 115. For atime scale of 5d] is ~5. In Fig.5b, constitutive equation, the significant decrease of strain rate

the change oK with increasing time scale, according to the in the primary creep regime will also be influenced by the

second equation 0£), is shown. Here, the dark grey bar in- evolving elasticity of the material and not only by strain ac-

dicates the value & for fop=7000 MPa, and # < u <2.4 celerations, as in the MSOFM. Presumably, the actual value

MPa db. Expected values dK for a time scale between 1 0f « as a material parameter in the EMSOIM is smaller than

to 10d lie in the interval of B x 10° < K < 2 x 10%, with it can be expected on the basis of the MSOFM. Thus, strain

K~8x10%at[T]=5d. accelerations and decay of elasticity in the EMSOIM should
We note that there is a considerable variatiofilodf two be designed in such way that the interference does not result

orders of magnitude with increasiiij], whereask changes  in oscillating creep behaviour.

only one order of magnitude across the time scales of 1 to

10d. In this range, the absolute valueldfs about two or- )

ders larger than that &l at a given time scale. Thus, the / Final remarks

solid elastic properties are the prominent feature of the ice at ) ) ) ) ) ) o

any time scale. Since the valueifshows strong variation & applied a viscoelastic material law in a simple unidirec-

acrosgT], the behaviour of a strongly elastic material (large tional flow problem and studied the influences of the various

K) is expected to vary quite significantly, depending6n material parameters. The EMSOIM relates stress to strain

The occurrence of oscillating creep (Setis a striking in- and its derivatives up to second order, i.e. strain rates and
dication to this. strain accelerations. As the EMSOIM is a generalized ma-

terial law incorporating the Glen flow law, the MSOFM and

a nonlinear elasticity relation, depending on the choice of
parameters, it reproduces material behaviour with respect to
As pointed out, the magnitude Bfobviously varies strongly, either a single or multiple of the incorporated constitutive re-
depending on the scales considered. The interpretation is thdations.

the strain acceleration term in the constitutive relation can For unidirectional flow considered here, the set of field
alter the material behaviour considerably, as demonstratedquations was substantially reduced, however, the consti-
by the appearance of oscillating creep rates with increasingutive model was capable of producing complex material
H and largeK. The oscillating creep questions considera- responses. Such characteristics, including total or partial
tion of second order effects (i.e., strain accelerations) in arecovery of deformation and enhanced viscous deforma-
creeping (Stokes) flow problem. Nevertheless, if no creeption with non-stationary creep rates, may be possibly en-
accelerations are considered, ice(H) is zero, itis not pos-  countered in the observations on Gornergletscher. Such a

sible to reproduce primary creep rates which are up to two
orders larger than the steady secondary creep rateléeka
1984 Castelnau et 812008. ForK > 0, butH =0, there is
no solution with creep rates larger than the viscous, station-

6.2 Relevance of acceleration effect@l > 0)
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multi-dimensional situation makes the problem much moreJellinek, H. H. G. and Brill, R.: Viscoelastic Properties of Ice, J.
challenging and besides the difficulties associated with the Appl. Phys., 27(10), 1198-1209, 1956.

viscoelastic theory and material behaviour, numerically deal-Joseph, D. D.: Stability of Fluid Motions, Vol. 27 and 28 of Springer
ing with the problem in the context of finite elements be-  Tracts in Natural Philosophy, Springer, Berlin, 1976. '
comes more involved. Nevertheless, we target on consider?2S€Ph. D. D.. Fluid Dynamics of Viscoelastic Liquids, Applied
ing further applications of the EMSOIM constitutive model __Mathematical Sciences, 84, Springer-Verlag, 1990.

dthei qati fvi lasti i f alacier i Kirby, R. C. and Logg, A.: A Compiler for Variational Forms, ACM
and the investigation of viscoelastic properties of glacier ice. Trans. Math. Software, 32, 417—444. 2006.
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