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Abstract. We present a novel method for regional climate
classification that is based on coarse-grained categorical
representations of multivariate climate anomalies and a
subsequent Markov chain analysis. From the estimated
transition matrix several descriptors, such aspersistence,
recurrence timeandentropy, are derived. These descriptors
characterise dynamic properties of regional climate anoma-
lies and are connected with fundamental concepts from
nonlinear physics like residence times, relaxation process
and predictability. Such characteristics are useful for a
comparative analysis of different climate regions and, in the
context of global climate change, for a regime shift analysis.

We apply the method to the bivariate set of water vapour
and temperature anomalies of two regional climates, the
Iberian Peninsula and the islands of Hawaii in the central
Pacific Ocean. Through the Markov chain analysis and
via the derived descriptors we find significant differences
between the two climate regions. Since anomalies are
departures from seasonal and long term components, these
differences relate to differences in the short term stability of
both regional climates.

1 Introduction

Climate classifications represent the complex interaction of
climate elements and climate factors as well as their impact
on the Earth’s surface in form of climate types, as stated by
Lauer and Bendix(1993). Generally two types of climate
classification exist, which are thegenetic classificationand
theempirical classification. Genetic classification describes
climate with respect to the climate genesis, e.g. continental
and oceanic climate. In the 1950s the famous German
climatologist Hermann Flohn developed a genetic climate

Correspondence to:S. Mieruch
(mieruch@iup.physik.uni-bremen.de)

classification based on global circulation systems (Flohn,
1957). In contrast, empirical climate classification is based
on climate appearance, in the form of vegetation, temperature
etc. The combination of genetic and empirical classification
is calledintegrative climate classificationand was developed
by Lauer and Frankenberg(1988). In the context of the
topology of life-forms Konrad Lorenz stated: “Without the
essential principle of classification in the sense of abstract
types, it would be impossible for our awareness to bring order
and clarity into the overwhelming manifold of the forms
around us. . . ” (Lorenz, 1983), which is also true for climate.

The earliest attempt of climate classification probably
goes back toParmenidesof Elea (500BCE), who tried to
differentiate climate zones of the at that time known world
(Blüthgen and Weischelt, 1980). One of the most common
empirical climate classifications, which is still used today,
was developed by Wladimir K̈oppen in the year 1900, which
is based on empirical observations of vegetation, temperature
and precipitation. The quite useful Köppen classification
was updated recently byKottek et al.(2006) andPeel et al.
(2007). Another approach was performed byHoldridge
(1947) who divided the Earth in live zones based on
evapotranspiration (evaporation from plants), precipitation
and humidity. Climate classification is used on all scales,
for instance,Gerstengarbe and Werner(1999) have updated
the well-known classification of the European North Atlantic
region in 29Großwetterlagen. Nicolis et al.(1997) analysed
more local weather patterns from Switzerland and parts of
Austria. They employed coarsened descriptions of weather
regimes via three main clusters (convective, advective and
mixed weather) and transitions between them to model
climate dynamics in the framework of Markov chains.

As stated byNicolis et al. (1997), the main motivation
for mapping meteorological fields onto a small number of
symbols is the chance to make “predictions beyond the
predictability time” of fine scale weather. Furthermore, in
the context of climate change, an important application of
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climate classifications is the detection of gradual changes
of climate types or abrupt transitions between prototypic
states, so-called regime shifts. Such regime shifts are also
analysed in the framework of bifurcation analysis (Scheffer
and Carpenter, 2003). For instance,Beck et al. (2005)
detected changes of the Köppen climate zones over time,
which could be attributed to global warming.

The purpose of our paper is to open up the perspective
for a new global climate classification scheme based on
Markov chain analyses. Since our method evaluates aspects
of climate dynamics that usually are neglected, we propose
to use it supplementary to the existing climate classification
methods and not as an alternative to these. Whereas
existing climate classification schemes rely on absolute
environmental quantities, our new approach investigates the
temporal covariation and interaction of climate anomalies.
We thus coin adynamic climate classificationand add
it to the afore-mentioned existing climate classifications
(genetic, empirical, integrative). In contrast to these our
novel scheme classifies regional climates through a statistical
analysis of departures from seasonal and trend behaviour.
Consequently, quantities like persistence, recurrence time
and entropy (to be defined below) have to be interpreted
as dynamical characteristics of fluctuations. A relaxation
of these fluctuations (towards the seasonal and long term
components, in particular the annual cycle) is governed by
the in general nonlinear dynamics and coupling of various
climatic processes. Changes in the relaxation characteristics
can therefore be interpreted in the context of nonlinear
dynamics phenomena as, for instance, bifurcation scenarios.

Methodologically we transfer the ideas ofHill et al.
(2004) and Freund et al.(2006), who analysed ecological
communities through Markov chains, to water vapour and
temperature measurements, an approach which is new in
atmospheric research. As other methods of multivariate data
analysis, e.g. a reduction to the first principal component (of
a PCA), our method maps multivariate data series, such as
water vapour and temperature series, to a univariate sequence
of symbols in a rather transparent way. This method of data
representation is also known as symbolic dynamics (e.g.Daw
et al., 2003) and is widely used in the statistical analysis
of chaotic time series resulting from nonlinear dynamics.
Estimating one-step transition probabilities from the symbol
series means to describe this sequence as a Markov chain.
The efficiency of a first-order Markov description relies on
the fact that the sampling interval1t roughly matches the
typical auto- and cross-correlation timeτ of the multivariate
series. The case of a mismatch (i.e.1t < τ ) might be cured
by resampling the data. The scale of resolution is determined
by the number of symbols introduced. As elaborated in
Sect. 2, the aim of high resolution has to be traded off
against tolerable estimation errors of transition probabilities.
The method is free from any assumptions on distributions
(e.g. normal distribution) and can easily be extended to data
with gaps.

The document is structured as follows: Sect.2 represents
a short overview on symbolic dynamics, Markov chains
and derived descriptors. Section3 introduces the data and
presents the exemplary application of the methods to two
climate regions. Finally, we discuss the results and give the
conclusions and an outlook in Sect.4.

2 Methods

2.1 Symbolic dynamics – coarse grained data
representations

Quite often processes of interest correspond to a dynamics
evolving in an m-dimensional continuous space. Recordings
of such processes lead to multivariate time series with
values x(tn) = {x1(tn),...,xm(tn)} measured at discrete
(equidistant) sampling timestn(= n1t). An analysis and
interpretation of the data series is traditionally done against
the backdrop of linear stochastic processes. More recently
the comprehension of nonlinear dynamics and the paradigms
of deterministic chaos have launched diverse methods
of nonlinear time series analysis (Kantz and Schreiber,
2004). Many of these methods work on a coarse-grained
representation of data series which is effected by partitioning
state space or theattractor X, i.e. the subset supporting the
asymptotic dynamics, into cellsCi uniquely labeled with
symbolsci (i = 1,...,λ) (e.g. Ebeling and Nicolis, 1992;
Daw et al., 2003). The shape of these cells can in principle
be chosen arbitrarily. The collection of cells{C1,C2,...,Cλ}

constitutes apartition (Lind and Marcus, 1996) if its union
covers the attractor (or state space) completely and if cells
are pairwise mutually disjoint, i.e.

X =

⋃
i

Ci and Ci

⋂
Cj = ∅, ∀i 6= j . (1)

The collection of related symbols{c1,c2,...,cλ} may be
called an alphabetA of size |A| = λ. The finiteness of
the partition is more a practical than a rigorous demand.
Likewise, for reasons of better interpretation cells are
frequently chosen as simply connected subsets. The
maximum of all cell diameters is defined asrefinementof the
partition and can also be viewed as the scale of resolution.
The strive for high resolution would favour partitions with
quite many small cells. However, since the essence of
symbolic dynamics is to evaluate the statistics of symbol
subsequences the demand for large cell numbers must be
weighed against expected estimation errors. The latter-
mentioned are typically tied to the sample size, which is
equal or less than the length of the time series.

Lets suppose we have chosen a partition withλ cells and
we want to reconstruct the probabilities for subsequences
σ1,...,σn (where eachσi ∈A) of length n, also calledn-
words. The number of possible combinations is given byλn.
The combinatorial explosion poses a considerable problem
for statistical estimation because the sample size, i.e. the
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length N of the sequence, definitely should be larger or
at least not less than the number of states. As a rule
of thumb we might demand thatN ≥ 2λn which, for an
equidistribution, means to allow each state to occur twice in
the sample. SinceN is fixed by the length of the time series
this usually poses severe constraints onλ andn. This coarse
grained representation of time series will be described in the
following as a stochastic process, particularly a first order
Markov chain.

2.2 Markov chains – a brief review

A Markov chain is a time and state discrete stochastic process
(Norris, 1998), which obeys the Markov property: given the
present stateσt , the future stateσt+1 is independent from past
statesσt−k (for all positive k). Mathematically, the above
statement is expressed via conditional probabilities as

P (σt+1|...,σt−2,σt−1,σt ) = P (σt+1|σt ) (2)

and has the consequence that joint probabilities can be
decomposed in the following way

P (σ1,...,σt ) = P (σt |σt−1) ·P (σt−1|σt−2) ·

... ·P (σ2|σ1) ·P (σ1) . (3)

The conditional probabilitiesP(σt+1|σt ) can be viewed
as transition probabilities and be organised as entries
of a λ × λ transition matrix Pt where the subscriptt
indicates the fact that the matrix is in general time variant.
Time independent transition probabilities describe so-called
homogeneous Markov chains which are fully characterised
by the transition matrixP. We note that entries of each
column must sum to one (i.e.

∑
i Pij = 1) since leaving state

j the system must arrive at any of the statesi ∈A.
The probability distribution of the states of a homogeneous

Markov chain at timet denoted asπt is recursively related to
the transition matrix (Norris, 1998) via

πt = Pπt−1. (4)

A stationary distributionπ obeys

π = Pπ , (5)

which meansπ is an eigenvector of the transition matrix with
eigenvalue one. A sufficient condition for the existence of a
unique stationary distribution exists: it is enough for the non-
negative matrixP to be primitive, i.e.Pm > 0 for somem ≥ 1
(see e.g.Horn and Johnson, 1990).

We mention that generalisations of the above introduced
Markov chains are possible. Replacing Eq. (2) by

P (σt+1|...,σt−2,σt−1,σt ) = P (σt+1|σt−k+1,...,σt−1,σt )

(6)

defines a so-called Markov chain of orderk and comprises
standard Markov chains as of order one. The orderk

determines the correlation range which can be shown by
applying a specific information-theoretic measure: given the
probabilities ofn-wordsP(σ1,...,σn) we can definen-block
entropies (Ebeling and Nicolis, 1992)

Hn := −

∑
(σ1,...,σn)∈An

P (σ1,...,σn)logλP (σ1,...,σn) . (7)

as generalisations of Shannon’s famous information measure
(Shannon, 1948). Due to choosing the alphabet sizeλ as
base of logarithms it is clear that 0≤ Hn ≤ n. The quantity
Hn represents the average amount of information necessary
for a prediction (or gained after observation) of ann-word
(σ1,...,σn). From this it is obvious that the conditional
entropy (Freund et al., 1996)

h0 := H1 and hn := Hn+1−Hn (n = 1,2,...), (8)

is nothing but the average information necessary when trying
to predict the symbolσn+1 given perfect knowledge of the
prehistory(σ1,...,σn). For a Markov chain of orderk it can
rigorously be shown (Gatlin, 1972) that

hn≥k = Hk+1−Hk = h (entropy of the source) (9)

which means that the profile of conditional entropies
stagnates exactly at the Markov orderk shaping a plateau
at heighth (cf. dotted line in Fig.5 in Sect.3.3). As seen
in Fig. 5 when computing conditional entropies from finite
length time series this ideal is affected by the estimation
problem (Scḧurmann, 2004), which is actually an underes-
timation of the entropy caused by biased probabilities ofn-
words. The reason for these underestimated probabilities is
the finite sample size and the fact that somen-words thus
are too rare and too frequent. Nevertheless, the profile ofhn

can be used to assess the order of a Markov process and how
useful is the standard (i.e. first order) Markov approximation.

In practical applications one must estimate the entries of
the transition matrix from anomalies, i.e. from deseason-
alised and detrended time series. Denoting the observed
frequency of transitions from statesj at time t to statei

at time t + 1 by nij a standard estimator for the transition
probabilities, when working with anomalies, is given by

p̂ij =
nij∑
i nij

. (10)

Notice that the presumed stationarity of anomalies corre-
sponds to the assumption of a homogeneous Markov chain.
In case the resulting empirical matrix̂P turns out to be
primitive one can compute the related stationary distribution
π . Likewise, an empirical distribution̂π can be estimated
from the data via

π̂j =
nj∑
j nj

(11)

where nj denotes the observed frequency of statej .
The observation that̂π is not significantly different from
π provides additional support for the assumption of
stationarity.
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2.3 Markovian descriptors

The aim of our Markov chain analysis is to characterise the
regional climate system through several descriptors derived
from the estimated transition matrix̂P. FollowingHill et al.
(2004) these descriptors can be formulated at the level of
single states or the system as a whole. Below we will
consider only the latter-mentioned option and further only
the most important descriptorspersistence, recurrence time
andentropy:

2.3.1 Persistence

Persistence gives the probability that the system residing in
statej at timet remains there at timet +1

P(persistence) =

λ∑
j=1

p̂jj π̂j . (12)

For instance, a state that is dryer and warmer than the average
seasonal condition will have the general tendency to return
to the more humid and more temperate state of the seasonal
average. The persistence is a measure for the fraction of
deviations that do not leave the related cell in the following
time step. It can also be interpreted in terms of the average
residence time within an arbitrary cell, e.g. drier and warmer.

2.3.2 Recurrence time

The Smoluchowski recurrence time describes the average
time elapsing between leaving a statej and then returning to
it again. The recurrence time for statej is given by the ratio
of the number of statesi 6= j and the number of unbroken
blocks of statesi 6= j . Kac (1947) elucidates this connection
with an example. Suppose just having two statesX(t) ∈ [0,1]

and, for instance, the following sequence of length 14:

10101010101010, (13)

here the recurrence time for state 1 is the number of 0’s
divided by the number of unbroken blocks of 0’s, which is
7/7= 1. Suppose another sequence is observed

100100100100100, (14)

here we find 10 zeros and five unbroken blocks of zeros, thus
computing a recurrence time for state 1 as 10/5= 2.

In accordance with the definition byHill et al. (2004), the
recurrence time for a single state is given by

φj =
1− π̂j(

1− p̂jj

)
π̂j

. (15)

Thus, for the whole system we can define

〈φ〉 =

λ∑
j=1

φj π̂j (16)

=

λ∑
j=1

1− π̂j

1− p̂jj

. (17)

The recurrence time identifies the time it takes between
leaving the drier and warmer state before returning to it
again. Just as the persistence it is related to the relaxation
time, i.e. the time to return to the average seasonal state,
but not identical with it, since the return to the average state
may be followed by several deviations into quite different
directions.

2.3.3 Entropy

As already mentioned above the Shannon information
(Shannon, 1948) or entropy is a measure of unpredictability.
The entropy of the Markov chain is defined by the
expression:

H (P) =

λ∑
j=1

{
(−)

λ∑
i=1

p̂ij logp̂ij

}
π̂j . (18)

From the following identities

H (P) =

〈 λ∑
i=1

p̂ij log
1

p̂ij

〉
j

(19)

=

[
λ∑

i,j=1

5̂ij log5̂−1
ij

]
−

[
λ∑

j=1

π̂j logπ̂−1
j

]
(20)

= H2−H1 = h1, (21)

where5ij = pijπj denotes the joint probability (to observe
statej at timet andstatei at timet +1), we see thatH(P) is,
in fact, the conditional entropyh1 (cf. Eq.8). Division by the
maximum entropyHmax(P) = logλ (which is attained for the
equidistribution 1/λ) corresponds to computing logarithms
to baseλ (since logλx = logx/logλ) and normalises the
entropy, i.e.

0≤ Hr(P) =
H (P)

Hmax(P)
≤ 1. (22)

Finally, the entropy is a measure for the lack of average
predictability of the next anomalous deviation that follows
the present one. Typically, the stagnation of an anomaly
expressed by high persistence is a situation that is easy to
predict. Therefore, in our comparison of the two climate
regions we found a decrease of entropy, i.e. an increase of
average predictability, with increasing persistence (cf. Figs.7
and9).
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Fig. 1. Iberian Peninsula subdivided into 20 2◦
×2◦ grid pixels.

The above derived descriptors, which are new in
atmospheric science, can be viewed as characteristics of a
regional climate system. As we will explain in Sect.3.5,
their absolute values are strongly dependent on the choice
of a partition. Therefore, we propose to use these values
in a comparative analysis with the aim to differentiate
climatic regions or to assess trends or sudden shifts across
time. Of course, conclusive statements require an analysis
of statistical significance. Since this is standard practice
and can be achieved by surrogate simulations or resampling
techniques as, for instance, jackknife and bootstrap methods,
we do not detail it here but exemplify it in the next section.

Methodologically, the computation of descriptors means
to condense the wealth of information contained in the
λ2 matrix entries p̂ij in comparatively few and well
interpretable numbers. This is useful for subsequent
classification and, quite generally, for gaining a better
overview. For a more detailed analysis one can compute
similar transition specific descriptors (Hill et al., 2004) or
investigate statistically significant state or transition changes
across a set of matrices.

3 Results – application to a climatological example

Regarding the K̈oppen classification, which is mainly based
on temperature and humidity, we apply the above concepts to
two temperature and water vapour data sets with the aim to
classify two distinct climatic regions: the Iberian Peninsula
(Fig. 1) and the Hawaiian Islands (Fig.2). In future studies
it is also planned to incorporate more climate variables and
expand the analysis globally.
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Fig. 2. A region centred over Hawaii subdivided into 20 2◦
×2◦

grid pixels.

3.1 Data base

One pillar of the Markov chain analysis is constituted by
measurements of the satellite instruments GOME (Global
Ozone Monitoring Experiment) (Burrows et al., 1999) and
SCIAMACHY (SCanning Imaging Absorption spectroMeter
for Atmospheric CHartographY) (Burrows et al., 1990,
1995; Bovensmann et al., 1999; Gottwald et al., 2006),
which provide the total atmospheric water vapour column
(unit: g cm−2) since 1995. The data have been retrieved
by the AMC-DOAS method (Noël et al., 2004). The
main advantages of the GOME/SCIAMACHY data are the
independence from external information and the ability to
retrieve water vapour also over land, which is e.g. not
possible with microwave sensors like SSM/I (Special Sensor
Microwave Imager) (e.g.Andersson et al.(2010)). The
GOME/SCIAMACHY data are gridded on a global 0.5◦

×

0.5◦ lattice and aggregated to monthly means. Based on this
data a global trend study for the time span from 1996 to 2006
was performed byMieruch et al.(2008).

Several global temperature products are available, e.g. the
HadCRUT3 (on a 5◦ × 5◦ grid) data from the University
of East Anglia or the GISS (Goddard Institute of Space
Studies) surface temperatures. In the present study the GISS
data set is used and builds the second pillar of the analysis,
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Fig. 4. Frequency distributions of 2400 water vapour and temperature anomalies from the islands of Hawaii. Similarly to Fig.3 the anomalies
have been derived from monthly mean data, where we removed the trend and the seasonal components.

because of its higher spatial resolution (2◦
×2◦). The GISS

data (Hansen and Lebedeff, 1987) are based on the Global
Historical Climatology Network (GHCN), which comprises
7280 stations, the United States Historical Climatology
Network (USHCN) with more than 1000 stations and the
Scientific Committee on Antarctic Research (SCAR) with
stations in Antarctica. The data sets are adjusted to the
overlapping time span, which is from January 1996 to
December 2005, and the GOME/SCIAMACHY data are
gridded to a 2◦ ×2◦ grid.

The Markov chain analysis is exemplary applied to the
regions of the Iberian Peninsula and Hawaii, which are
covered by 20 2◦ × 2◦ grid pixels (shown in Figs.1
and 2), hence the analysis is based on 20 water vapour
and temperature time series each consisting of 120 monthly
mean measurements from 1996 to 2005. Thus, each region
provides overall 2400 samples – the problem that these are
not independent but spatially correlated will be dealt with
by a resampling strategy. As mentioned in the introduction
we are not interested in absolute values but rather in the
interaction of the anomalies, which goes beyond systematic
connections like seasonalities. As stated above, to obtain

the anomalies we removed systematic terms, i.e. the linear
trend plus the offset, and also the seasonal components,
which were modelled as a Fourier series including annual
and semiannual cycles.

3.2 Data processing and construction of
the Markov chains

Employing the method of symbolic dynamics (cf. Sec.2.1)
the continuous-valued water vapour and temperature anoma-
lies are mapped onto a sequence of discrete states labeled
with symbols. The distributions of the water vapour (v(t))
and temperature (ϑ(t)) anomalies from the Iberian Peninsula
and Hawaii are shown in Figs.3 and 4. Interestingly
the water vapour anomalies from the Iberian Peninsula are
smaller than those from Hawaii, whereas the temperature
anomalies from the Iberian Peninsula are larger than the
anomalies from Hawaii. This finding is important for a more
detailed climatological interpretation of the results in the
light of short term climate stability aspects, because the final
partitioned sequences are independent of former absolute
values.
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As explained above (Sect.2.1), the size of the partition
λ (the number of cells in the state space spanned by all
selected parameters) must be weighed against sample size
N . Consider the case ofP parameters. We might specify
the partition by the vectorK = (k1,...,kP ) whereki is the
number of intervals used to segment the observed range
of parameteri. This leads to a total ofλ =

∏P
i=1ki cells

in the form of hypercubes. Of course, more sophisticated
choices are thinkable, for instance, cell boundaries reflecting
covariation of parameters, however, will not be considered
here. In the present case we use the combination of
temperature and water vapour (P = 2) and, moreover, will
only considerk1 = k2 = k; therefore ourλ = k2.

From the consideration of our sample sizeN = 2400 it
seems appropriate to map each data series onto two (k = 2)
or three (k = 3) cells. It is recommended to choose adaptive
partitions (Cellucci et al., 2005) which generates cells with
equal probabilities (equipartition). However, we prefer to
define cell borders for each parameter independently in
order to maintain a more transparent physical interpretation.
As a consequence we do not account for covariation of
temperature and water vapour and, therefore, do not arrive
at an exact equipartition (cf. Fig.6).

For the twice binary partition we choose cell symbols:

v(t) → {lv,hv}

ϑ(t) → {lϑ ,hϑ }

and for the ternary partition we transform:

v(t) → {lv,mv,hv}

ϑ(t) → {lϑ ,mϑ ,hϑ } .

Since we are interested in the interaction of both
climate variables we merge the water vapour and
temperature sequences to a single symbol sequence by
combining both symbol sets, thus forming the alphabets
A2 = {[lv,lϑ ], [lv,hϑ ], [hv,lϑ ], [hv,hϑ ]} of size λ = 4 and
A3 = {[lv,lϑ ], [lv,mϑ ], [lv,hϑ ], [mv,lϑ ], [mv,mϑ ],[mv,hϑ ] ,
[hv,lϑ ], [hv,mϑ ], [hv,hϑ ]}, which is of size λ = 9.
Furthermore, we perform our calculations for finer partitions
of sizek = 4,...,10 to show the dependence on the coarse
graining, although critical estimation problems arise for
partition sizes larger thanλ = 9.

3.3 The conditional entropy

As discussed in Sect.2.2 the conditional entropy can be
used to assess the order of a Markov chain. Consequently
we have exemplarily estimated thehn for the Hawaiian
water vapour – temperature sequence for the four states
alphabetA2 (sample sizeN = 2400) and show the result in
Fig. 5 as filled circles connected with a line. In addition,
the theoreticalhn for an independent sequence, a Bernoulli
chain, (open squares connected with a line) and a first
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Fig. 5. Theoretical and estimated conditional entropies for several
sequences.

order Markov chain (open circles connected with a line)
are depicted in Fig.5. While, for infinite sample size, the
Bernoulli chain gives rise to a constant profile the Markov
chain would stagnate aftern = 1 (the order of the Markov
chain). Furthermore, we have simulated an ensemble of
Bernoulli and first order Markov chains and plotted the
ensemble averagedhn as filled squares and filled triangles
connected with lines, respectively. The thick grey curves
represent the 2σ confidence intervals for thehn of the
simulated Bernoulli and Markov chains.

For the given sample size 2400 the above mentioned
length-effect can hardly be seen forn = 1. Fromn = 2 on the
finite sample size progressively affects the entropy estimates.
Nevertheless, Fig.5 supports the idea, that the symbol
sequence, constructed from water vapour and temperature
measurements at a region around the islands of Hawaii,
can quite adequately be described by a first order Markov
chain.

3.4 Estimation of transition probabilities

In line with the homogeneity of the Markov chain, justified
by considering anomalies, the transition probabilities are
estimated via observed frequencies of symbol pairs across
the complete time span from January 1996 to December
2005, which comprises 120 months. In addition to spatial
and temporal auto-correlations of single variables, spatio-
temporal cross-correlations between temperature and water
vapour reflect their coupling through the underlying climatic
processes. Estimating probabilities from the full space and
time range of the Iberian Peninsula and Hawaii means to
rely on stationarity and homogeneity of the interplay between
these variables. We estimate the transition matricesP̂ and
the empirical distributionŝπ across all states as detailed in
Eqs. (10) and (11). Exemplarily, the 4×4 transition matrix
P̂ for the islands of Hawaii is given in Table1.
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Table 1. Transition matrix̂P, estimated from 2380 transitions in
120 months for the Hawaiian islands. The entrieŝpij represent the
transition probabilities of changing the state from columnj to rowi.

lv , lϑ lv , hϑ hv , lϑ hv , hϑ

lv , lϑ 0.617 0.452 0.186 0.100
lv , hϑ 0.200 0.323 0.051 0.070
hv , lϑ 0.089 0.075 0.279 0.194
hv , hϑ 0.094 0.151 0.485 0.635
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Fig. 6. Histogram of the observed (π̂j ) and calculated (πj ) relative
frequencies of the states. The errorbars (2σ ) have been estimated
by a resampling technique.

Finally, the observed relative frequenciesπ̂j of the states
(cf. Eq.11) can be compared with the calculated equilibrium
distributions of the statesπj , which are derived viaπ = P̂π .
Figure6 shows the relative frequencies (observed: black and
calculated: grey) of the states as a histogram.

As can be seen, the differences between the observed
and estimated frequencies are marginal, thus the time and
space homogeneous system of water vapour and temperature
of the islands of Hawaii has already reached the stationary
distribution. In the sense of the Markov chain analysis this
result is observed under the decisive assumption of temporal
homogeneity, which implies a constant transition matrix over
time.

3.5 Markovian descriptors

According to Sect.2.3 the Markovian descriptors have
been calculated for the two regional climate systems and
the results are shown in Figs.7, 8 and 9. We have
calculated the descriptors for several partition sizes, where
for instanceλ = 4 results from combining binary water
vapour and temperature sequences. Additionally, we show
the percentage of occupied entries exemplarily for the
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Hawaiian transition matrix. 100% means that allλ2

transitions were observed at least once, while for increasing
λ ≥ 16 the fraction of unobserved transitions increases.

When viewing Figs.7, 8, 9, it becomes clear that all three
descriptors show a pronounced dependence on the partition
size. Increasing the partition size leads to choosing more
cells and a smaller maximum cell diameter. From this it
follows immediately that the persistence will decrease – the
shrinking cell diameter is traversed in shorter time – the
recurrence time will increase – returning to a smaller cell
takes longer because nearby trajectory segments miss it –
and the normalised entropy will decrease – the number of
observed transitions grows slower than the number of all
possible transitions due to refinement. These statements
elucidate why absolute values of our descriptors cannot be
easily interpreted. Persistence and the recurrence time are
continuously decreasing/increasing, respectively, with more
refined partitions. The entropy profile of the Hawaiian
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Fig. 9. Entropy of the regional climate systems of Hawaii (dark
grey) and the Iberian Peninsula (light grey). From partition size
λ = 16 full occupation of the states of the transition matrix cannot
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islands exhibits a very shallow maximum near partition size
λ = 9, however, the significance is not guaranteed. Still it
might be tempting to define an optimal partition through an
entropy maximum criterion.

As already mentioned, our aim is to apply the Markov
chain analysis in a comparative way, which means that
differences between descriptors should have the potential to
discriminate two or more regions. The persistence of the
Markov chain of the Hawaiian system is shown in Fig.7 as
dark grey filled circles together with two times the standard
error. The estimation of the errors of the descriptors is shown
in the following Sect.3.6. The persistence from Hawaii
is systematically significantly larger than the persistence
from the Iberian Peninsula (light grey). Regarding Fig.8
the recurrence time of the Hawaiian system (dark grey) is
larger then the recurrence time of the system of the Iberian
Peninsula (light grey). The difference is significant, as can be
seen in the blow up for partition sizesλ = 4 andλ = 9, where
the errorbars (two times the standard errors) are significantly
separated. Finally a significant difference between Hawaii
and the Iberian Peninsula has been detected with the entropy
descriptor in Fig.9.

3.6 Significance of the descriptors

The usefulness of the descriptors for differentiating between
regional climates relies on finding significant differences.
We base our significance analysis of descriptors for the
Iberian Peninsula and Hawaii on simulated surrogate data.
To this end we use the algorithm MIAAFT (Multivariate
Iterated Amplitude Adjusted Fourier Transform), which
was developed bySchreiber and Schmitz(2000). In a
comparative study (Venema et al., 2006) the univariate
IAAFT turned out to be optimal. The MIAAFT algorithm
shuffles the original data, thus exactly preserving the original
distribution. In addition it preserves also the auto- and cross-

correlation structure of our multivariate time series. In the
following we simulated an ensemble of 100 multivariate
data sets and estimated descriptors from these surrogate time
series. The related standard deviations of this ensemble
provide estimates for the standard errors of the descriptors,
which are used in Figs.7, 8 and9, where we have plotted two
times the standard error. As can be seen, the error bars are
far separated, hence the differences between the Hawaiian
descriptors and the descriptors from the Iberian Peninsula are
significant.

4 Conclusions and outlook

The two climate regions are significantly different in all
three descriptors. This is not at all self-evident as one
might think when relating to obvious differences in seasonal
behaviour. For an interpretation of the above differences it is
important to keep in mind that anomalies aredeparturesfrom
seasonal behaviour and that our descriptors thus measure
dynamical features of the relaxation process. Additionally
it has to be kept in mind that we are analysing climate states
and not the variables themselves. Furthermore, partitioned
data are independent from absolute values, which are also
important for an interpretation of the results regarding short
term stability and susceptibility to e.g. external forcings.
The fact that the Hawaiian region has larger persistence,
larger recurrence time and smaller entropy than the Iberian
Peninsula is a reflection of the fact that departures from
normal behaviour return with a larger relaxation time.

Regarding the famous K̈oppen climate classification
(Kottek et al., 2006) the two regions are assigned to
different climate types, i.e. the Iberian Peninsula is classified
as warm/steppe/hot summer (south)/warm summer (north),
whereas Hawaii is warm/fully humid/hot summer. As
can be seen from the K̈oppen classification the main
difference between the Iberian Peninsula and Hawaii is the
humidity and this is captured in our analysis including the
water vapour data. Because the average climate of the
Hawaiian Islands and the Iberian Peninsula are apparently
different these differences may not be surprising. However,
it is not so clear in advance in which direction these
climatic regions differ with respect to dynamical aspects of
anomalies.

Our findings offer the opportunity to develop a new
supplementary global climate classification scheme, which
we namedynamic climate classification, on the basis of
real measurements in the form of condensed Markovian
descriptors. The incorporation of more climate parameters
such as clouds, precipitation and vegetation into the Markov
chain analysis is, of course, desirable. However, in view
of the finite sample size problem it might be advisable to
perform the analyses of many parameters with just a few
principle components (e.g. via a PCA). In addition to existing
climate classifications, which use absolute climate values,
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our dynamic climate classificationdescribes the interplay or
coupling of climate variables through climate states and is
thus suitable for a short term climate stability discussion.

Interpreting the seasonal dynamics as a limit cycle this
means that the Hawaiian short term climate is less stable than
that of the Iberian Peninsula. This conclusion is bit surprising
since naively one might expect a stabilising influence of
the Pacific Ocean. The concept of local stability that is
typically investigated in nonlinear dynamics might be or not
be adequate to characterise the stability of climate regions.
An extended duration of a deviation in climate state space
that corresponds to an anomaly from the seasonal cycle
will be no problem as long as the system (sooner or later)
returns to the seasonal average. Of course, longer lifetimes
of anomalies are typically accompanied by larger excursions
which might well trigger catastrophic events in ecosystems
(e.g. extinction, starvation) and which, in turn might feed
back on climate dynamics. However, even more pronounced
might be supercritical anomalies causing a climatic regime
shift even without feedback of the ecosystem. In such a case
the system does not return to the previous seasonal cycle but
switches to another mode. Whether such tipping points exist
is a prominent question in current climate research (Lenton
et al., 2008). In this context, in a sliding-window analysis our
proposed descriptors might gain importance as early-warning
signals for critical transitions (Scheffer et al., 2009).
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