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Abstract. The backpropagation (BP) artificial neural net-
work (ANN) technique of optimization based on steepest de-
scent algorithm is known to be inept for its poor performance
and does not ensure global convergence. Nonlinear and com-
plex DC resistivity data require efficient ANN model and
more intensive optimization procedures for better results and
interpretations. Improvements in the computational ANN
modeling process are described with the goals of enhancing
the optimization process and reducing ANN model complex-
ity. Well-established optimization methods, such as Radial
basis algorithm (RBA) and Levenberg-Marquardt algorithms
(LMA) have frequently been used to deal with complexity
and nonlinearity in such complex geophysical records. We
examined here the efficiency of trained LMA and RB net-
works by using 2-D synthetic resistivity data and then finally
applied to the actual field vertical electrical resistivity sound-
ing (VES) data collected from the Puga Valley, Jammu and
Kashmir, India. The resulting ANN reconstruction resistiv-
ity results are compared with the result of existing inversion
approaches, which are in good agreement. The depths and re-
sistivity structures obtained by the ANN methods also corre-
late well with the known drilling results and geologic bound-
aries. The application of the above ANN algorithms proves
to be robust and could be used for fast estimation of resistive
structures for other complex earth model also.

1 Introduction

Geoelectrical resistivity surveys have been found very useful
to map the resistivity structure of complex subsurface geol-
ogy (Griffiths and Barker, 1993). The data obtained from
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these surveys are commonly arranged and contoured in the
form of pseudo-section, which gives an approximate picture
of the subsurface resistivity. One of the approaches that have
been used very frequently to interpret the data is forward
modeling using the finite element method. However, the
above approaches are time consuming and model obtained
so could also suffer from the interpreter bias. Alternatively
several workers (Constable et al., 1987; Dahlin, 1996; Dahlin
et al., 2002; Dey and Morrison, 1979; Edwards, 1977; Loke
and Barker, 1996; Meju, 1992; Oldenburg and Li, 1999;
Smith and Vozoff, 1984; Tripp et al., 1984; Uchida, 1991;
Zhang, et al., 1995) focused on the application of inversion
of 2-D and 3-D inversion techniques for data interpretation of
vertical electrical resistivity sounding (VES). Although these
techniques make interpretation more objective and less time
consuming than the trial and error approaches, the problem
of non-uniqueness remains intact (Sasaki, 1989). In order
to resolve complicated geological structures from the geo-
physical data, it is necessary that the solution of the inverse
problem must be stable (El-Qady and Ushijima, 2001). For
the following reasons, however, the inversion procedure can-
not be very precise (1) exact inversion techniques are often
unstable and are usually applicable only in ideal situations
that may not hold in practice. (2) The model that one seeks
to determine is a continuous function of the space variables
while in a real field survey; the available data are usually dis-
crete and finite. (3) The inverse problem is not unique as
there is many models that could explain the same data set
equally well (Pelton et al., 1978). (2) The data cannot con-
tain sufficient information to determine the model uniquely.
In addition to the above the field data are always contami-
nated with noise and hence it may bear little resemblance to
the earth that gave rise to observed data (Ellis and Oldenburg,
1994).
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During the last decade, researches have demonstrated po-
tential use of artificial neural networks (ANN) for nonlin-
ear inversion and pattern recognition of geophysical data
(Raiche, 1991; Poulton et al., 1992; El-Qady and Ushijima,
2001; Singh et al., 2002, 2005, 2006; Zhang and Zhou, 2002;
Rummelhart et al., 1986; Roth and Tarantola, 1994). The
petroleum industries have also vigorously applied the ANN
schemes to process seismic and potential field data (McCor-
mack et al., 1993; Brown et al., 1996) to estimate a model
that is consistent with the measured data.

However, several problems have been encountered in the
use of neural networks. These arise from either designing
them incorrectly or by using improper training techniques.
The inappropriateness of backpropagation algorithm, for in-
stance, for ANN training has been the subject of consider-
able research activities. An improvement in the optimization
process is therefore essential which will not only speedup
the computational process but will also ensure global con-
vergence and thereby enhance the quality of result. In this
paper, we compared four algorithms using backpropagation
neural network, which include the backpropagation algo-
rithm (BPA), adaptive backpropagation algorithm (ABPA)
and Levenberg-Marquardt algorithm (LMA) and algorithm
of Radial basis (RBA) network for solving 2-D VES inverse
problems. While dealing with synthetic and actual field data,
we found that both LMA and RBA based training approaches
are efficient in resolving resistivity structure and also com-
paratively faster than the other existing methods.

2 Geological setting of the study area

A very brief account of these aspects will be presented be-
low. Figure 1a shows the geological and tectonic map of
the study area. The Puga Valley is located at an elevation of
4400 m a.m.s.l. in the Ladakh, Jammu & Kashmir, India. In
the western and southern part of the Puga Valley, the rock
sequence consists of granites and gneisses of unknown age
at the base, followed by the Puga formation of probable Pa-
leozoic age (Raina et al., 1963). This formation is made up
of a lower unit of paragneisses and an upper unit of quartz
schist and quartz-mica schist, which at places are gypsifer-
ous. Both the quartz and quartz-mica schist contains sul-
fur as fillings along the fissures and cracks. The Puga for-
mation is seen on both flanks of the Valley and thrust over
by a Cretaceous volcanic formation of basic volcanic flows,
traps and phyllites in the east. Basic rocks and amphibole-
chlorite schist also intrude the Puga formation as dykes and
sills. The Valley floor is covered by recent and sub recent
deposit of glacial moraines, alluvium; sands spring deposits,
sulfur, borax and other hot spring deposits. This loose Valley
fills material continuous up to the depths ranging from 15 m
to 65 m. Thereafter, hard reconsolidated breccias continues
up to the depth of the basement rock i.e. paragneisses and
schists (Puga formation). The basement rock intruded by the

Polokongkala granite in the west while, in the east the Samdo
formations are exposed. These are comprised of volcanic
flow ash beds and associated sedimentary rocks intruded by
an ophiolite suite. Along the base of the northern hills in
the central part of the Valley sulfur condensates, which are
ought to represent an old line of fumarolic activity along a
hidden fault (Ravishanker et al., 1976), are found. It should
be pointed out, that a prominent N60◦ W to S60◦ E trending
reverse fault. Along the fault, the sequence of paragneiss and
schist has been down through towards the southwest with a
thin band of impure limestone below the Valley fill material.
Several thin limestone bands have been noticed on the north-
ern hill scarp of the central part of the Valley. The ultimate
heat source for the Puga Valley geothermal field is probably
the intrusive rocks lying close to the Valley.

The electrical resistivity depth probes covered the whole
area of the Puga Valley, starting from the Samdo confluence
on the extreme eastern side to western side, involving a strike
length of about 6.5 km. The location of these soundings has
been shown in Fig. 1b. On the basis of geological studies,
it was thought that the heat derived from magmatic sources
travels upward by conduction; the transfer of magmatic heat
is greatly facilitated and accelerated by the presence of the
deep-seated Zildat fault. This NW-SE trending reverse fault
cuts the Puga Valley near the Samdo confluence. In view
of the established utility of resistivity method in locating
and demarcating potential geothermal areas it was consid-
ered worth while to conduct the electrical resistivity depth
probe over and near this fault zone in order to get an idea
of the resistivity value which could be attributed to the heat
source.

3 Theoretical Background

3.1 Artificial Neural Network (ANN)

The ANN processing techniques are based on the analogy of
human brain functioning networks. The ANN parallel bio-
logical nervous system consists of a large number of simple
processing elements with similar number of interconnections
among them and is able to collectively solve complicated
problems. A three layer schematic nonlinear feed forward
neural network(nL,nH,nO) is shown in Fig. 2. The first (in-
put) layer consists ofnL nodes, each of which receives one of
the input variables. The intermediate (hidden) layer consists
of nH nodes each of which computes a non-linear transfor-
mation as described below. The third (output) layer consists
nO nodes, each of which computes a desired output. In ANN
processing, a set of inputsα1, α2, α3,...,αn signals are mul-
tiplied by an associated weightW1,W2,W3,...,Wn before it
is applied to the summation element Net (U).

U=α1W1+α2W2+α3W3+ ...+αnWn (1)

The mathematical form of three layers feed forward neural
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Fig. 1(a). Geological map of the geothermal area, Puga Valley, Kashmir, India. 
Fig. 1a. Geological map of the geothermal area, Puga Valley, Kashmir, India.

network is given as follow:
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whereUi∈[−∞ ∞], Uj is bounded on (0 1) for the sigmoid
function, on (-1 1) for the tanh function. Hereαi(t) is the
input to nodei of the input layer, andγk(t) is the output

computed by nodek of the output layer. The input layer bias,
αO = 1.0, is included to permit adjustments of the mean level
at each stage. The activation functionsf (.) to be continuous
and bounded non-linear logistic sigmoid and hyperbolic tan-
gent transfer functions are commonly used:

f1(Uj) =
1

1+e−Uj
(4)

f2(Uj) =
1−e−Uj

1+eUj
(5)

The squared difference between predicted and actual outputs
is computed for the whole training set as can be given which
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Fig. 1(b). Tectonically map of the geothermal area, Puga Valley, Kashmir, India. 
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Fig. 1b. Tectonically map of the geothermal area, Puga Valley, Kashmir, India.
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WhereEN the error for theN -th input pattern,P is the num-
ber of output,γPk andOPk is the actual and predicted, re-
spectively. Here an embedded anomalous was considered to
generate a synthetic training datasets that required for train-
ing of the network using the finite element forward modeling
(Uchida, 1991; Dey and Morrison, 1979) scheme as shown
in Fig. 3.

3.2 Computational procedure

The computational ANN modeling process may be divided
into the following three steps: (i) preprocessing of the In-
put data, (ii) determination of the functional form of ANN
model, (iii) initialization of the weights, (iv) complexity re-
duction through the optimal size of network, and (iv) applica-
tion of optimization algorithm using the appropriate training
algorithms.

(i) Preprocessing of the input data prior to multivariate
analysis is a common task. We compute principle component
for the data to use as input because the number of principle
component (PC) equals the lesser of the number of samples
and variables which significantly reduces the number of in-
puts to the ANN. The use of PC as inputs decreases the likeli-
hood of algorithm convergence problems and greatly speeds
up optimization, because fewer weights have to be optimized
(Baum and Haussler, 1989).
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Fig. 2. Schematic diagram for supervised Artificial Neural Network architecture.
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Fig. 2. Schematic diagram for supervised Artificial Neural Network
architecture.

(ii) Computational neural networks have the ability to ap-
proximate any function to any desired degree of accuracy.
This universal approximation ability results from the com-
bination of sufficient numbers of differently shaped func-
tions or neurons in the hidden layers of the ANN. It has
been shown that the transfer function must be continuous,
bounded and non-constant for an ANN to approximate any
function (Hornik, 1991). Such transfer functions include the
sigmoid and tanh, the latter is preferred for general purpose
use because of its –1 to +1 output range. For the present
analysis we used sigmoidal transfer function.

(iii) After deciding the functional form of the ANN model
we initialized weight as follows: (a) initialize the hidden
layer weights, (b) calculate the sum-squared error (SSE) for
that particular ANN model and, and (c) to repeat steps suffi-
cient number of times and select the weights with the lowest
SSE to provide a good starting point for the optimization pro-
cess. The results (Fig. 4) shows that the weight initialization
is simple way to determine how many hidden neurons are re-
quired to create a satisfactory computational model. Apply-
ing the LMA method to same data, but varying the number of
neurons, gives insight into how many neurons were required.

Fig. 3. The 2-D forward model used to create the resistivity synthetic training and test required for
implementing ANN.
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Fig. 3. The 2-D forward model used to create the resistivity syn-
thetic training and test required for implementing ANN.

Fig. 4. SSE results of the weight initialization when the number of
neurons is varied.

We conducted 10 trials for one to 30 neurons with resulting
SSE plotted in Fig. 4. The lower bound of SSE results levels
off beginning 18 neurons. The output layer of an over pa-
rameterized ANN will be less than full rank because of the
multicolinearity of the neurons. A better starting point im-
proves the performance of the most optimization algorithms,
especially the LMA method.

(iv) The solution to the problem of choosing the optimal
size of the network belongs to the task of generalization the-
ory of neural networks. The number of hidden layer neurons
has been chosen on the ground of good generalization. Baum
and Haussler (1989) suggest that the number of neurons in
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Table 1. A comparison of the initialized weight taken in BPA, ABPA, LMA, and RBA based ANN optimization methods.

Optimization method Weight adjustment

Back-propagation algorithm of errors (BPA) −ηJ T e

Adaptive Back-propagation algorithm of errors (ABPA)−H−1J T e

−

(
ηJ T e+µ1wprevious

)
η = Learning rate,µ = Momentum

Levenberg-Marquardt algorithm (LMA) −

(
J T J +λI

)−1
J T e

λ = Step size

Radial Basis Network algorithm (RBA)
∥∥∥−H−1J T e

∥∥∥

the hidden layer should be calculated as follows:

J = m
Error

(n+z)
(6)

where J = number of neurons in the hidden layer,
m = number of data points in the training set, n = number of
inputs andz = number of outputs. Actually no rules exist for
determining the exact number of neurons in a hidden layer.
In our resistivity inversion, we have taken 18 neurons.

In order to avoid the problem of over-fitting, we performed
cross validation with separate set of data solution. Further
there is a large amount of redundant information contained
in the weights of fully connected network. We found it rea-
sonable to prune some weights from the network and at the
same time retain the functional capability needed to solve the
problem. This has reduced the complexity of the network and
made the learning process easier. Secondly at the same num-
ber of training samples the reduction of weights leads to the
improvement of the generalization ability of neural networks
(Haykin, 1994).

The number of hidden layers and neurons is subject to ad-
justment in an experimental way by training different struc-
tures and choosing one of the smallest one, still satisfying
the learning conditions. In our inversion, we have taken the
input from Fig. 2 of the ANN architecture with 18 hidden
neurons. The network was trained on 75% of the total avail-
able data and then tested on 25%. Using LMA, the pruning
method with modification was applied on the synthetic re-
sistivity data. The results of testing the network before and
after regularization are presented in Table 1. This presents
the SSE for unpruned and pruned ANN model created for the
VES data sets as well as the number of weights in each model
before and after pruning. The application of the pruning pro-
cedure has resulted in elimination of 179 weights out of 1179
which means more than 15.18% reduction of the number of
weights. Testing the original and reduced network on the
same data has revealed the overall improvement of predic-
tion accuracy on the data.

(v) The mathematical formulas for some of the derivative
optimization method generally used in neural networks are
shown below in table. Table 1 permits the comparison of the
various methods in terms of first and second partial deriva-
tives of the error vector ‘e’ with respect to weights in the
ANN. Equations (7) and (8) show the formulae for the Jaco-
bian (J) and Hessian (H) matrices, the first and second par-
tial derivative matrices, respectively (Masters, 1995; Battiti,
1992):

J =
∂e

∂wi

= 2e
∂y

∂wi

for weight i, desired outputy and errore (7)

H =
∂2e

∂wi∂wj

= 2

(
∂y

∂wi

·
∂y

∂wj

+e
∂2y

∂wi∂wj

)
for weights i and j (8)

Better approximations to a full Newton’s method optimiza-
tion are given by the Levenberg-Marquardt (Levenberg,
1994; Marquardt, 1963) algorithms. Not surprisingly, the
LMA method has been shown to outperform both BPA and
ABPA in ANN modeling, converging much more rapidly
(Hagan and Menhaj, 1994). The LMA approaches the opti-
mization process by attempting to utilize some second order
information and assumes the second partial derivative com-
ponents of the Hessian matrix are insignificant and approx-
imates the Hessian with the first term in the Taylor series
expansion,JT J, adjusted by some multipleλ of the identity
matrix.

The performance of the BPA, ABPA, LMA and RBA opti-
mization algorithm were compared for training with 18 hid-
den layer neurons on datasets. A small number of iterations
were used in these algorithms to adjust theη, µ andλ param-
eters. All algorithms were initialized with the same starting
weights. Figures 5, 6 and Table 3 represent the results for
computational ANN training models for the VES data set.
Overall the ANN with RBA training was able to effectively
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Fig. 5. Graphs showing SSE vs. time for these paradigms(a) ABP,
(b) ABPA, (c) LMA, and (d) RBA.

predict the resistivity structure with fraction time. The test
data SSE ranged from 0.0130 to 0.0148, equivalent to a 1–
2% error.

4 Application of optimization method

4.1 Synthetic examples

4.1.1 Creation of the 2-D synthetic resistivity structure

We considered an embedded anomalous body of resistivity
120�m (Fig. 3) to generate a synthetic training set required
for training the network. A collinear Schlumberger was de-
ployed in a sounding mode with half of the current electrode
spacing 3000 m. The position of the anomalous body was
changed and moved to all the model mesh elements. In this
approach, we allowed each element in the mesh to be either
resistive or conductive. The 2-D data set was generated using
the finite element forward modeling (Uchida, 1991; Dey and
Morrison, 1979) scheme in which sixty training sets and ten
test sets were generated for each profile.
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Fig. 6. Graphs showing SSE vs. epoch for these paradigms(a)
ABP, (b) ABPA, (c) LMA, and (d) RBA.

4.1.2 Training and testing of synthetic 2-D resistivity
data

The network was trained by trial and error for each data rep-
resentation to produce the lowest errors Training consists of
comparison of correct and calculated output patterns and of
the adjusting the weights by small amounts1Wij calculated
from the gradient descent rule:

1Wij = −η
∂
∣∣Ep

∣∣
∂Wij

(9)

This constant term (also called learning rate) governs the rate
at the weights are allowed to change at any given presenta-
tion. Once the network attains convergence, the weights are
adapted and stored in the weight file. Using these updated
weights, the network performs the inversion of the field data
in few seconds without any more training.

we applied improved to LMA-ANN method to stabiles the
inversion in the beginning, and we tie it to the error in the
right hand side so that as the error decreases, so does added
learning parameter. The above-mentioned each paradigm re-
sults are summarized in Table 2. This gets an idea as how
the algorithm compare in terms of training speed and epochs
with time. For the present analysis, the error goal is set to
0.02, learning rate 0.001 and momentum 0.8. Figure 6a,
b, c, and d shows the sum of square error (SSE) as a func-
tion of the epochs of individual methods during the training
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Table 2. Sum squared error (SSE) and number of weights in each model for the unpruned and prned computational ANNN models for the
VES data sets.

Sounding Data Set Data SSE for Unpruned Model SSE for Pruned Model

Synthetic Resistivity VES Data Training 0.0125 0.01.40
Validation 0.0130 0.0135
Test 0.0135 0.0.130
Number of Weights 1179 100

Field VLS Data (Case Study-1) Validation 0.0136 0.0140
Test 0.0141 0.0140
Number of Weights 1179 100

Field VLS Data (Case Study-1) Validation 0.0125 0.0155
Test 0.0128 0.0132
Number of Weights 1179 100

Table 3. A comparison of the number if iterations and time taken by the BPA, ABPA, LMA, and RBA methods to converge for synthetic
resistivity data sets.

Paradigms Technique Time (in s) Epoch for Convergence Given Epochs Flops

BPA Backpropagation 6.0 529 2000 8 144 355
ABPA Adaptive Backpropagation 1.2 52 2000 1 272 175
LMA Levenberg-Marquardt 0.4 7 2000 809 615
RBA Radial Basis Network 0.3 2 2000 272 772

of different ANN techniques using 2-D resistivity synthetic
data. The behavior of the sum-squared network error depicts
that the LMA paradigm provides a more stable solution to ar-
rive at global minima. With LMA, assign error goal is 0.02,
network converges at 7 epochs and the sum square error is
0.0125, which is less than the error goal 0.02. The error be-
gins high and decreases as the iteration proceeds until it at-
tains an almost constant value of about 0.0125 after 7 epochs,
hence the network attains convergence as shown in Table 2.
Although the error range lies 0.1–0.2, it is considered very
low compared with the other conventional inversion tech-
niques i.e. radial error of≤5% (Zohdy, 1989).

4.1.3 Effect of Gaussian noise on model

The apparent resistivity values for Schlumberger multi-
electrode system with 28 electrodes are calculated with finite
difference program. All possible apparent resistivity values
are used as the input data sets. Gaussian random noise of
5% is added to the apparent resistivity values. The resulting
apparent resistivity pseudo-section and resistivity section are
shown in Fig. 7a, b, and c, respectively. Examples to illus-
trate modeling and inversion for each type of 2-D structure
are presented here. The starting homogeneous earth model
gives an apparent resistivity with RMS error 65%. The RMS

error decreases after each iteration with the largest reduc-
tions in the first two iterations. The improved LMA con-
verges at the 7 iterations with the RMS 0.11 after which no
significant improvements were obtained. The inversion were
performed both noise free data (Fig. 7c) and data containing
5% (Fig. 7b). Only the results for the noisy data will be pre-
sented as they lead to the same conclusions as the noise free
data. Plots of the data RMS misfit and of the model RMS
misfit versus iteration number are also given for the various
model parameters, which can affect the results.

4.1.4 Error calculations

In this section, the forward results from tests conducted using
synthetic data and two field data sets are given. The synthetic
subsurface model used by the inversion program is shown in
Fig. 3. The starting homogeneous earth model gives sum
square error (SSE) of 80%. The change in the SSE with the
computer CPU time (together with the epochs) for all the
methods is shown in Figs. 5 and 6. The SSE decreases after
each iteration with the largest reductions in the first three iter-
ations. The BPA, ABPA, LMA and RB network converge at
529, 82, 7, and 2 iteration with SSE 0.01999, 0.0188, 0.0125,
and 0, respectively (Fig. 6).
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2-D Resistivity model

Fig. 7. Pseudo-section of synthetic resistivity data by (a) conventional method (c) LMA method and
Resistivity-section of synthetic resistivity data by (b) conventional method (d) LMA method

Synthetic pseudosection data containing 5% Gaussian noise

2-D resistivity inverted by LMA-ANN model

2 Ωm

4 Ωm

25 Ωm

20 Ωm

30 Ωm

4 Ωm2 Ωm

120 Ωm30 Ωm

(a)

(b)

(c)

25 Ωm

Error SSE=0.0125 or rms=0.11

Fig. 7. Example to illustrate 2-D inversion of resistivity structure(a)
2-D model,(b) synthetic pseudo-section data containing 5% Gaus-
sian noise, and(c) inverted model by LMA method.

From Fig. 5, the BPA, ABPA, LMA and RBA methods
took 6, 1.2, 0.4, and 0.3 s to reduce the SSE to 0.01999,
0.0188, 0.0125, and 0, respectively. Besides comparing the
time taken by the different inversion methods, it also impor-
tant to consider the accuracy of the models obtained. To
achieve this, we select the models produced by last two meth-
ods, which gives best result within little iterations. The same
set of learning parameter values (learning rate, momentum,
hidden layer and hidden layer neurons) are used for the all
ANN methods. Note that from the second iteration onwards,
the SSE achieved by the RBA network is significantly lower
than that obtained with the LMA. While the LMA method
converges at 7 iterations, which is slower than RBA network.
For the RBA method, the SSE is almost zero after 2 iterations
as it approaches a minimum point of the objective function.
However, for the LMA method, SSE oscillates about the zero
and reaches the zero value very fast. Figures 5 and 6 also
show that the RBA converges more rapidly than the LMA
from the first iteration onwards.

The initial and minimum learning rate and momentum
were set 0.001 and 0.8, respectively. Rather small learning
parameter can be used. It has been found that small learn-
ing rate will slow the convergence but will help to ensure the
global minima will not be missed. Large learning rate leads
to unstable learning. In order to find an appropriate learning
rate and examine its influence the performance of the clas-
sifier, the model of the highest resistivity value near sound-
ing (S-2) and lowest resistivity value near sounding (S-5) as
shown in Fig. 8. This is the partly a result of equivalence
(Keller and Frischknecht, 1996), where a thicker body with
low resistivity contrast can give rise to the same anomaly as
a thinner block with a higher resistivity contrast.

Fig. 8. Example to illustrate 2-D inversion of resistivity structure (a) 2-D model (b) Synthetic
pseudo-section data containing 5% Gaussian noise (c) inverted model by LMA method

2-D resistivity structure by conventional method

2-D resistivity structure by LMA-ANN method

(a)

(b)

(c)

(d)

Fig. 8. Pseudo-section of synthetic resistivity data by(a) conven-
tional method,(c) LMA method and Resistivity-section of synthetic
resistivity data by(b) conventional method, an d(d) LMA method.

Figure 9b (right panel) shows the error contour graph for
the optimum solution of the network at the left corner of the
error contour map. Figure 9a (left panel) show the 3-D view
of the surface error that has a global minimum at center of
the plot and local minimum on top of the Valleys produced
by synthetic resistivity data. Both plots depict the same scene
in different ways. It also shows SSE as a function of epochs
for the training of different ANN paradigms. The error be-
gins high and decreases as the iteration proceeds until it con-
vergences to attain an almost constant value of about 0.0125
after 7 epochs using LMA method (Table 2).

4.2 2-D resistivity field data

4.2.1 Case study-1

The first profile is taken for testing the ANN paradigms in the
SW-NE direction of the Puga Valley (thermal area), which
cuts the Puga fault and Puga Nala (Fig. 1a). Very low con-
ductive zones occur in this area. The subsurface consists of
a thick, complex structure of scoria, and loam in alternate
layers. The objective of the investigation was to map the dis-
tributed range and depth of the thermal water zone for the
foundation of a building.
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Fig. 9. 3-D view of the global and local minima of the ANN net-
work using synthetic resistivity data.

Fig. 10. Pseudo-section of VES field data by (a) conventional method (c) LMA method and resistivity-
section of VES field data by (b) conventional method (d) LMA method.

Case Study-1

Artificial Neural Network

Conventional

(a)

(b)

(d)

(c)

Error RMS=0.12

Error RMS=4.12

- Over burden
- Reconsolidated Brecia
- Fractured bed rocks saturated with hot water
- Impervious bed rock

- Geothermal
borehole location

Fig. 10. Pseudo-section of VES field data by(a) conventional
method,(c) LMA method, and resistivity-section of VES field data
by (b) conventional method,(d) LMA method.

Fig. 11. Pseudo-section of VES field data by (a) conventional method (c) LMA method and resistivity-
section of VES field data by (b) conventional method (d) LMA method

Case Study -2 Conventional

Artificial Neural Network

(c)

(d)

(a)

(b)

Error  RMS = 2.23

Error RMS = 0.115

- Over burden
- Reconsolidated Brecia
- Fractured bed rocks saturated with hot water
- Impervious bed rock

- Geothermal
borehole location

Fig. 11. Pseudo-section of VES field data by(a) conventional
method,(c) LMA method, and resistivity-section of VES field data
by (b) conventional method,(d) LMA method.

Figures 10a, c, and 11a, c show the plot of pseudo-sections
which indicate the resistivity values and the thickness of the
layers on the basis of their results of electrical depth probes.
Pseudo-section (Fig. 10a) and resistivity section (Fig. 10b)
of the interpreted results show that the thickness of conduc-
tive zone is about 300 m on the extreme southwestern side
of the Puga Valley. Corresponding to the sounding location
DRS-21, the resistivity of this layer is 39�m. This is in good
agreement with the result of conventional model. This layer
starts reducing in thickness towards NE, where after it swells
again and fairly pinches off under the sounding DRS-26,
which marks the eastern limit of the conductive zone. The in-
creasing thickness of conductive layer under sounding loca-
tion DRS-26 might be attributed to the flow of the geothermal
fluids facilitated by the presence of the N-S trending features
in this zone. We attribute the N-S feature to basic/ultra basic
intrusive is perhaps inhibiting the spread of geothermal fluids
towards NE and acts as barrier dividing the conductive zones
on the either side. The abrupt increase in the thickness of the
conductive layers SW of the DRS-12 also corresponds to N-
S feature. Thus, it may be seen that the N-S features seem to
have certain bearing on the structures controlling the flow of
geothermal fluids. In the sounding curve DRS-3, a minimum
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resistivity value of 277�m has been interpreted for the zone
between 1.4 m and 21 m of depth below which resistivity val-
ues of 700 and 1120�m are indicated (Fig. 10). This indi-
cates that the resistivity values in this zone are generally more
than 100�m. While some of established geothermal areas in
the world have given resistivity values as low as 5�m for the
reservoir of geothermal fluids.

4.2.2 Case study-2

The second profile is taken in the E-W direction of the Puga
Valley (thermal area), running parallel to the Puga fault and
Puga Nala (Fig. 3a). The apparent resistivity pseudo-section
(Fig. 11a) and resistivity section (Fig. 11b) show the absence
of any conductive zone on the extreme western side after
which a thick zone of low resistivity is brought out under
the sounding location DRS-37. Further to the east, the con-
ductive layer is fairly uniform in thickness with a localized
zone of very low resistivity (4–8�m). The thinning out of
the conductive layer is also brought out on the N-E section
(DRS-6 and DRS-7). Thus the results of the resistivity depth
probes adequately demonstrate that there are no conductive
layers present either on the eastern or on the western side of
the Puga Valley that could account for the geothermal man-
ifestations in the area. It is also brought out that there is an
extensive area underlain by low resistivity formation varying
in thickness from 25 to 300 m, invariably resting over very
resistive substratum in the central part of the Valley. This
is due to the fact that a resistive substratum is present under
the entire Valley excludes the possibility of a vertical flow of
geothermal fluids under the area surveyed. The fact that high
positive S.P. values associated with the low magnetic values
and the thinning of the low resistivity zones are observed in
the southwestern part of the Valley. It is considered that the
geothermal fluids are possibly injected into the Valley from
this direction.

Sounding DRS-18 corresponds to the zone of categories
(1) and in this curve a very low resistivity formation, with
a resistivity of 4�m is indicated between the depth of 11
and 36 m. Another such zone encompasses sounding DRS-
7 (Fig. 11a), these soundings were conducted near the S.P.
positive closures and it is heartening to note that the sounding
DRS-7 indicated a resistivity value of about 2�m between
19 and 25 m of depth. It may also be noted that the sounding
is located near one of the N-S trending features delineated
geophysically and is in the vicinity of borehole GW-7 (GSI
Technical Report 1976) that gave the maximum discharge of
stem during the course of earlier drilling.

It is clear that the present analysis has brought out remark-
ably improved the image quality of the conductive layers at
different depths. Further existence of the two resistive lay-
ers and one conductive layer are now clearly evident. Fig-
ure 10c and d shows the recovered layers from the inversion
of VES and borehole data at the depth of 350 m. After ap-
plying LMA, the data misfit level was reduced to the desired

level. The LMA inversion recovered the true amplitudes of
all thin conductive layers very well. Resolution of the con-
ductive layer is improved. This suggests that the ANN in-
version of the VES data measured at surface is potentially
beneficial.

Both profiles show that there is a good correlation between
the results of conventional and ANN method. It is obvious
that the result obtained from ANN analyses depict some ad-
ditional structures, which were not clearly visible in the sec-
tion obtained from the conventional techniques. These metic-
ulous structures may be related to hydrothermal circulation
in the study area. It corresponded well with the drilling and
geologic investigation results. Consequently, it is safe to as-
sume a high level of reliability.

5 Conclusions

The reliabilities of LMA method using neural network have
been demonstrated here to 2-D inversion of VES data and
compared to conventional method for two examples of case
history. The goal of this investigation was to provide subsur-
face information about geoelectrical structure of Puga Valley,
Jammu & Kashmir, India. In the present inversion scheme,
we compared iterative gradient descent method (BPA and
ABPA), Gauss-Newton method known as LMA and RBA
interpolation method. Results suggest that LMA and RBA
paradigms are considerably faster than the other ANN meth-
ods.

We have also examined the effectiveness existing meth-
ods generally being used in ANN modeling in an attempt to
enhance the optimization process and reduce the model com-
plexity. This includes the following three steps in the model-
ing process: weight initialization, complexity reduction and
application of optimization algorithm. The proposed modifi-
cation to the RBA and LMA algorithms performed extremely
well and converges more rapidly and with considerably less
computational cost for these data than the backpropagation
(BPA and ABPA).

The above methods were tested on synthetic VES data as
well as on field data collected from Puga Valley. Experiments
with above model suggest that the RB is the most convenient
paradigm for 2-D inversion of VES data sets. The ANN pro-
duced resistivity estimate that was in very close agreement
with result of existing methods. Comparatively this paradigm
approach has been found to be a fast, efficient, more objec-
tive and robust for VES data interpretations.
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