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Abstract. In this paper, classical surrogate data methodsplying some metric, such as time asymme®glireiber and

for testing hypotheses concerning nonlinearity in time-seriesSchmitz 1997 or maximal Lyapunov exponent to a time se-
data are extended using a wavelet-based scheme. This givesias of outputs from a system and comparing the response to
method for systematically exploring the properties of a signalsurrogate data that are linear variants of the original signal.
relative to some metric or set of metrics. A signal continuum A test for any significant difference can be developed within
is defined from a linear variant of the original signal (same this framework Theiler et al, 1992 Schreiber and Schmitz
histogram and approximately the same Fourier spectrum) td996. The intention of this paper is to pursue this matter in
the exact replication of the original signal. Surrogate dataa new direction. The approach developed here moves away
are generated along this continuum with the wavelet transfrom the acceptance/rejection framework of the hypothesis
form fixing in place an increasing proportion of the proper- test for nonlinearity to askdow similar to the original data
ties of the original signal. Eventually, chaotic or nonlinear do the surrogates need to be to avoid rejection of the null hy-
behaviour will be preserved in the surrogates. The techniqueothesis?From this, it is possible to develop new research
permits various research questions to be answered and exjuestions within a surrogate data framework, such as:
amples covered in the paper include identifying a threshold

level at which signals or models for those signals may be — Which parts of the time series need to be identical be-
considered similar on some metric, analysing the complexity ~ tween the data and the surrogate in order to prevent the
of the Lorenz attractor, characterising the differential sensi-  rejection of the null hypothesis (i.e. what are the most
tivity of metrics to the presence of multifractality for a turbu- complicated parts of the original time series)?

lence time-series, and determining the amplitude of variabil-
ity of the Holder exponents in a multifractional Brownian
motion that is detectable by a calculation method. Thus, a
wide class of analyses of relevance to geophysics can be un-
dertaken within this framework.

— Does the range of values for a metric calculated for a
set of surrogates that are not statistically different to the
original data include the value of this metric for a model
of that system (i.e. is the model validated)?

— Do different, but related nonlinear or chaotic time series
exhibit differences in how similar their surrogates need
1 Introduction to be to the original data to avoid rejecting the null hy-
pothesis (i.e. are there differences in complexity of the
Because of the wide ranging occurrence and varied nature ~ series)?
of nonlinearity in geophysical time seriedopnson et al.
2005 Khan et al, 2005 Roux et al, 2009, gaining an un-
derstanding of the sources of any nonlinearity is an impor-
tant topic. The presence of nonlinearity can be tested by ap-

— Do different measures applied to a nonlinear or chaotic
time series exhibit differences in how similar the surro-
gates need to be to the original data to avoid rejecting
the null hypothesis (i.e. are there differences in sensitiv-
ity of the measures used to characterise chaotic or non-
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616 C. J. Keylock: Gradual wavelet reconstruction

Our approach, which we terr@radual Wavelet Recon- 4. Repeat until a convergence criterion is fulfilled or any
struction permits these questions to be answered. This is  changes are too small to result in any re-ordering of the
illustrated by the examples presented in the final parts of the  values.

paper. Before this, we explain the gradual wavelet recon- o i .
struction approach, which requires us first to review briefly 1€ phase randomisation part of the algorithm will destroy

relevant literature on hypothesis testing for surrogate data if€MPoral organisation in the original series that contributes
nonlinear science. to any nonlinearity, while the fact that the amplitudes of

the spectrum are approximately preserved and the values of

) ) ) ) ) ) the original dataset are completely preserved mean that dif-

2 Hypothesis testing for nonlinear time series using ferences on some metric between the data and the surro-
surrogate data gates cannot be attributed to these sources, which could be

The surrogate data methodology as proposedtbgiler et~ SOUrces ofdiff_erence be_twe_en tW(_) linear time-series. Hence,
al. (1992 and enhanced bgchreiber and Schmi(d99§ is a significant _d|ffer_en<_:e |mpI|e_s,_e|ther the presence of some
a common technique with applications in studies of river me-form of nonlinearity in the ongm_al da_ta or that these data
andering Erascati and Lanzon2010), ice core datakwas- &€ samplgd from. a non-Gaussian, linear process. Subse-
niok and Lohmann2009, environmental turbulencaasu ~ duently, this algorithm has been refined by groups such as
et al, 2007 Keylock, 2009 and the magnetospher@gvlos Venema et al(2006 who rel_axed step _3(b), by imposing the
et al, 1999, as well as other disciplines beyond geoscience Values ofg, more gradually in order to improve convergence.
such as medicinéormann et al.2009. Typically, one gen- The IAAFT algorithm was first implemented in the
erates surrogate data that are stochastic realisations from'4avelet domain bykeylock (2009 using a Maximal Over-
Gaussian linear system with the same values and (to som@P_Discrete Wavelet Transform (MODWT), which is de-
error tolerance) Fourier spectrum as the original data ancCfiPed in the Appendix to this paper. Because a wavelet
employs a metric to see if the observed time series is signififfansform is a time-frequency decomposition (see Al), the
cantly different to the surrogates. For a two-tailed hypothesigiS€ Of & single IAAFT results in the constrained randomi-
test at a significance level, if the value of the metric for the ~ Sation of a time-series of wavelet coefficients representing
original data is less than or greater than that for all of the@n€ Particular frequency band (or scale). Thus, witHif-
(2/a) — 1 surrogate datasets then the null hypothesis that théerent scales, performing an IAAFT at each scale, results

original data is a realisation of a Gaussian linear process will & full-randomisation of the wavelet coefficients. Be-
be rejected. cause the IAAFT algorithm does not alter the values for

An effective method for producing surrogate data that these coefficients, the wavelet power spectrum obtained from

preserve the values and, to some error level, the Fourief® MODWT (which is proportional to the variance of the
spectrum of the original data is the Iterated Amplitude Ad- wavelet coefficients) is unaffected by this transformation.
justed Fourier Transform (IAAFT) algorithnSthreiber and The convergence of this method compared to the standard

Schmitz 1996. Given a discrete time serigs, n=1,...,N  AAFT and the enhanced method benema et al(2009
this algorithm proceeds as follows: was tested byKeylock (20083, while the approach devel-

] . _ oped inKeylock (2009 has subsequently sparked interest
1. Store the squared amplitudes of the discrete Fouriefy gther new ways for describing stationarity of time series

X N i g .
transform ofg,, (i.e. G3 = | Y7 g, 2" /"/N |2); (Borgnat and Flandrir2009 2010.
) Keylock (2007 presented a refinement to the earlier
0.
2. perform a random shuffle g, to give g, ™ method, which still used the MODWT and the IAAFT, but
3. Subsequently, iterate a power spectrum step and a ranKixed in place particular wavelet coefficients to provide a flex-
order matching step o (lj) as follows: ible means for designing surrogates. It is this algorithm that

_ underpins gradual wavelet reconstruction, as is explained in
(a) Take the Fourier transform @f,ﬁ” and replace the the next section.
squared amplitudes With;f,, while retaining the
phases. Given the initial random sort, this means i
that the spectrum should be preserved but with ran-3  Gradual wavelet reconstruction
dqm phases. Inve_rt the transformation with the am—3_1 The algorithm
plitudes replaced;

(b) Replace the values in the new se@é@ bythosein  As established in the Appendix for the continuous wavelet
gn using a rank-order matching process. This pre-transform and as stated for the MODWT, the square of
serves the set of original values in the dataset butthe wavelet coefficientan?(j,k)/j2 is the energy func-
deteriorates the quality of spectral matching, which tion of a time-series signal decomposed over different
explains why the Fourier amplitudes are only repli- scales/frequencieg, and positions along the time serigés,
cated approximately; (Vela-Arevalo and Marsder2004). For a signal of length
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C. J. Keylock: Gradual wavelet reconstruction 617

N =27 there will be a total ok =1,..., N wavelet coeffi-
cients at each scalg, produced by the MODWT. The total
energy content of the real-valued wavelet transformed S|gnal
is proportional to

E= ZZka 1)

j=lk=

(b)

and we definep as some chosen fraction &f. If the w

are placed in & x N length vector in descending rank or-
der, the smallest number mzk required to attairp can be
determined by cumulating the squared wavelet coefficients & _

(ms

3
2
DR i
0
1

until their sum as a fraction of attainsp. We term these _ZT ]
thefixedwavelet coefficients. The other coefficients are ran- -3 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
domised as explained below. Hengeprovides a measure 10010 s e sy T e e e

that can be used to vary the degree of similarity between the
surrogates and original datéeylock, 2007). Forp =0 there
are no fixed coefficients and the resulting surrogate will beFig. 1. Two perpendicular components of turbulent velocity data
similar to that obtained using the IAAFT. Trivially, far=1  (u1 inblack andu in grey) obtained in a wind tunnel at 5000 Hz.
all coefficients are fixed, no randomisation occurs and the
surrogates and data are identical.

More formally, if W € RT is the set of/ x N coefficients,
wfk placed in descending rank order then, witkk & <
(J x N) acting as an index foi, the set of fixed coefficients,

(a) Fit an exact interpolator through the fixed coeffi-
cients and the end values; We used a piecewise
cubic Hermitian polynomial method-(itsch and

F C W, is given by the firsk elements ofW that fulfils the Carlson 1_980’ ) _

N T w2 5 , (b) Add t.o.th|s funct|_on the randomly sh_uffled, unﬂxet_j
condition = ) > p. Hence, the{wg, ..., wy} € F are coefficients at this scale and use this as the starting
the smallest number of coefficients that fulfils the energy pro- point for the IAAFT algorithm;
portion, pE. (c) Run the IAAFT algorithm until convergence, reim-

The algorithm for generating a surrogate data series using posing the fixed values in the correct positions at
this approach may now be stated. This is an improved ver- each rank-order matching step (see stage 3(b) of the
sion of the algorithm given bieylock (2007). The wavelet IAAFT algorithm in Sect. 2);

used in this paper is Baubechieg1993 least-asymmetric
wavelet with 16 vanishing moments for effective frequency
localisation. The centre frequency (i.e. the frequency that
maximises the Fourier transform of the modulus of the
wavelet) is 0.6774 and the relation between scalend the
negative logarithm of the pseudo frequencies has a propor-
tionality constant of 0.693. We made use of MATLAB and
software accompanyingercival and Walde(R000, written
by Charlie Cornish and available frofWMTSA (2006 to 5. Because of a loss of the original values in the dataset
implement the MODWT. from this operation (and a subsequent loss of matching
of the power spectrum when they are re-imposed), re-
peat stages (3) and (4) of the IAAFT algorithm to ensure
1. Choose a value fop; convergence for the dataset as a whole.

4. Invert the wavelet transform to produce a new time se-
ries of lengthN using the original approximation coef-
ficients (which will be a constant for a stationary series
if a full wavelet decomposition is undertaken, as is done
throughout this paper) and the randomised detail coeffi-
cients (see Eq. A9—-A12 for an explanation of MODWT
approximation and detail coefficients).

2. Perform a wavelet decomposition of the time series intoFixing in place more coefficients asincreases means that
a J x N array using the MODWT and determine the the surrogates become progressively more similar to the data.
fixed coefficients for thig as explained, above; Applying the IAAFT algorithm to each scale of the wavelet
transform ensures that the coefficients have the appropriate
3. For each wavelet scale, determine if any of tNe  autocorrelation function and can be reconstructed appropri-
wavelet coefficients are to be fixed. ately because they are a feasible realisation of a MODWT.
If they are not, apply the IAAFT algorithm to give a Note that by terminating the hierarchical MODWT algo-
randomised realisation of the coefficients at this scale.rithm at any stage (thereby increasing the number of frequen-
If they are: cies contained within the approximation coefficients relative

www.nonlin-processes-geophys.net/17/615/2010/ Nonlin. Processes Geophys., $3262610



618 C. J. Keylock: Gradual wavelet reconstruction

N AANNAANN AN~ WM !

3.2 lllustration and explanation of the method
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Consider the B4 s (23 values) of the longitudinal1, and
vertical,up, components of turbulent velocity time series ob-
tained at 5000 Hz in a 1 m cross-section wind tunnel in the

g OEW\/\M/\M\WW\/V © wake of a 100 mm high fence, which are shown in Fig. 1.
5 o5 : : : Data were obtained by the author at a Taylor Reynolds hum-
g OEW/WMMWWW @ ber for the far field of 150 and recorded 0.5m downwind of
£ o5 ‘ ‘ ‘ the fence at a height of 55 mm above the base of the tun-
B °2WV\N\/\M/\M\/WMW © nel. Figure 2 shows the process of developing a surrogate
= 00 \ \ \ for uy at p =0.5, with just the operation of the algorithm

B °§MM/VWV\/\MNMW\/W o at wavelet scalg =8 shown, which was a local maximum

= 02 | for the wavelet spectrum and 23% of the coefficianfs g «

L L L L
10.0 10.5 11.0 115

time (s) were fixed for thiso. As the IAAFT algorithm converges, the
initially randomly located unfixed coefficients are adjusted
to respect the stored Fourier amplitudes of the original set
of coefficients. The fixed coefficients can be seen clearly as
smooth regions in Fig. 2b, while Fig. 2e and f show that the

shows the fixed coefficients together with randomised values adde&@rt_S of the surrogate tlme-serle§ .that differ mO.St from the
to a cubic Hermitian polynomial that is used to interpolate betweenOrlglnal data are where the coefficients are not fixed, as ex-
fixed values. The coefficients after one full iteration of the IAAFT Pected.

algorithm has been applied to the coefficients in (b) are shoyg) in . . .

and the results after convergence (indicated by cv) afd)inThe ~ 3-3 Surrogate representations of multifractal signals

difference between (a) and (d) is indicated by the prime and is given . .
in (e), while (f) shows the differences for another realization of (b) Various types of ggophysmal data _hgve t_’een "?‘nalysed in
after convergence of the IAAFT algorithm. terms of their multifractal characteristics, including atmo-

spheric processeslégssier et a). 1993 Venugopal et al.
2006, topography Gagnon et a). 2003, and seismicity
to a full decomposition), this algorithm can be tailored to (Nakaya and Hashimot@®002. The aim of this paper is
only operate at selected scales. However, in this paper, not to replicate such characteristics explicitly in the surro-
pertains to the fraction of energy in a full decomposition of gates, but to provide a means of generating surrogates that
the time series. vary in their nature as a function gf. As p increases,
The re-introduction of unfixed coefficients in our method any multifractality in the underlying dataset will be increas-
provides a contrast with those techniques where some subingly preserved. To see this, note that while it is possible
set of the initial wavelet coefficients are used to reconstructo analyse the multifractal characteristics of a signal using
a process, such as the study ¥gnugopal and Foufoula- windowed spectraRikovsky et al. 1995, it is more com-
Georgiou(1996. The primary advantages of our approach mon to adopt a wavelet perspectinduzy et al, 1991). It is
are the preservation of the original values, the improvedwell known (e.g.Mallat, 1999 that the multifractal charac-
preservation of the Fourier spectrum, and the ability to deter{eristics of a signal can be approximated by calculating the
mine the effect of the unfixed coefficients upon some metricwavelet transform modulus maxima, chaining together max-
applied to the data by consideration of the variability of the ima across scales and then forming the partition function
surrogates. However, in the examples considered in Sects. 4 ) ) q
and 5, signal reconstructions based simply on the fixed coZ(@+/) = Z'w(]’&"” @
efficients in the style of Venugopal and Foufoula-Georgiou’s Li
work are also used. This helps illustrate the role played bywhereq € 9 is a selected power that measures the scaling
the unfixed coefficients for the chosen signal metric. Thebehaviour ofZ(q, j), § is @ maximum of the wavelet trans-
black lines in Fig. 6b—d and the dotted lines in Fig. 8, areform modulus maxima, andli indexes each of these max-
examples of this approach. ima. Scaling exponents are calculated by
Given a set of stochastic surrogates at various choices for __logZ(q, j)
p, the research question stated in the introduction can be rez(g) = liminf T
expressed asAt what choice ofo is there no longer any i=0 09/
difference between the value of our metric for the surrogatesand it has been shown WBacry et al.(1993 and Jaffard
and for the original data? (1997 that these scaling exponents can be related to the sup-
port of the multifractal distribution via a Legendre transform:

t(g) =minlg(x+1/2) — D(a)] 4

Fig. 2. lllustration of the surrogate generating algorithmigrwith
p = 0.5 just showing MODWT scalg =8. Thew;_g;—1.y at
this scale from the original MODWT are shown (a), while (b)

©)
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Fig. 3. Surrogate time series for thg dataset from Fig. 1 are shown in the left hand column for stated valueswfhile the right hand

column gives the corresponding absolute part of the continuous wavelet transform for each surrogate series using a Mexican Hat wavelet
applied to the first 5 scales (formed using 81 voices). Differences would be less visible if more scales had been displayed because the highe
energy at highey means that a greater proportion of coefficients are fixed.

where the Hlder/lipshitz exponentsy fall within the sup- 447 values in the same positions in Fig. 1 as they are in
port of the multifractal spectrunv(«). Figure 3 shows that the surrogate~ 5% of N =8192). For a very short seg-
asp increases, the time series converges upon that in Fig. 1anent of this time series of 256 velocity values and averaged
In addition, it illustrates how the resulting wavelet modulus over 500 surrogates, fgr € {0.5,0.9,0.99}, 2.7 (1%), 15.5
maxima are preserved. For example, note that at sedle (6%) and 49.4 (19%) of values were fixed in place. These
andr ~ 10.9 s an energetic feature is fixed for~ 0.3, butthe  values may be compared to similar results for a time series
feature at scale:5 andr ~ 11.25 s is only fixed forp > 0.5. also of 256 points, but of a very different structure - the
For the replication of the wavelet transform modulus max- sunspot data analysed Keylock (2007). In that case, for
ima it is necessary for the surrogates to preserve the mule € {0.5,0.9,0.99}, on average 2.8 (1%), 13.4 (5%) and 37.5
tifractal spectrum of the original data, and that this is only (15%) of values were fixed in place. Hence, finite size ef-
accomplished over all scales at high valuesdoHowever, ~ fects need to be considered for very high valuesgfavhen
it is also the case that there is both an imprecision in the caldatasets are short because a perceived incregsevith not
culation of thex exponents due to the limitations of the reso- have altered the nature of the time series. However, the exam-
lution and length of the datasets, as well as imprecision in thedle applications of the technique in this paper retain sufficient
signal itself owing to instrument noise etc. Hence, at a somedegrees of freedom for sufficient randomisation to occur.
what lower value fop there will be no significant difference ~ Please note that in all the examples presented in the rest
between surrogates and a multifractal dataset, depending o®f the paper, unless otherwise stated, 19 surrogates are gen-
the width of the support of the multifractal spectrum. This erated. As explained in the introduction, this is sufficient for

issue is examined in Sects. 6.3 and 7. a one-tailed test at the 5% significance level (Sects. 4, 6 and
7) or a two-tailed test at the 10% significance level (Sect. 5).
3.4 Evaluating finite size effects on randomisation An increase in the number of surrogates can be used to either

reduce the significance level or enhance the statistical power

Clearly, in the limit of p = 1 the surrogates and dataset are of the test but becomes computationally demanQing whe.n a
identical and no randomisation occurs. Hence, the issue o?umber of surrogates mus_t be gener_atv_ed for various choices
finite size effects is complex as it will be a function of the of p. The value used here is not dissimilar to that used else-

length and nature of the time series, and the chosen valu}ghere in the literature (e.gEav!os .9t .al.1-999 and can be.
for p. For example, the highest valug € 0.999) used in increased for more accurate discrimination between choices

this paper leaves, on average (calculated over 200 surrogategs p-
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Fig. 5. Gradual wavelet reconstruction of the laser intensity data
based on the one step time asymmet{=1. The dotted line gives
Fig. 4. Example realisations of the Santa Fe laser intensity data, ~ the value forA%=1. The boxplots are the values for the 19 surro-
for various choices op. Figure 4a is the original data series. The gates, where the box indicates the upper and lower quartiles, the
other 5 time series are those for the surrogate with the median valugentral line is the median and the whiskers extend up to 1.5 times
for A§=1 at the appropriate value fgrin Fig. 5. The values fop the interquartile range, with outliers indicated by a +. Note the non-

are 0.00 (3b); 0.20 (3c); 0.50 (3d); 0.70 (3e); 0.97 (3f). linear scale on the abscissa.
4 An application to the time asymmetry behaviour of a Figure 6 shows the original Santa Fe laser serigsfor
laser intensity time series reference (Fig. 6a) together with the differencé. between

x, and surrogate data series (in grey and displaced vertically
Figure 4a shows 1024 values from the Santa Fe laser timey +40 (Fig. 6b and c) o#=140 (Fig. 6d), as well as a series
series,xy, (Huebner et al.1989. This is a well-known test  defined by the fixed wavelet coefficients (i.e. with no stochas-
data series in nonlinear science. Example surrogate seriegt, unfixed coefficients added), which is shown in black, for
for different choices op are given in Fig. 4b—f. The surro- the three choices of. In every case, the surrogate series for
gates shown in Fig. 4 are those corresponding to the mediag/ that is displaced downwards is that with the median value
value for the surrogate asymmetry in Fig. 5. While visually, gy 4*=1 in Fig. 5, and that displaced upwards is the series
a choice ofp ~ 0.5 qualitatively begins to resemble the orig- ith the maximum. The key difference between the series
inal data, gradual wavelet reconstruction is used to study th§,hose value ford* =1 exceeds that fon’=1 (the upper grey
behaviour of these data using the temporal asymmetry (Ofine in Fig. 6b) and all the other data shown (including the

skewness) measure (Schreiber and Schmitz 997): fixed part of the data series fpr=0.97) is that the unfixed
3 coefficients have acted to remove the discontinuity that oc-
At = <(Xz —Xz—x)3>/<(Xz —Xz—x)2> (5) curs after 70 samples, where there is a sudden transition in

the behaviour ok;. Hence, it would appear that, in addition

where the standard choice in testing for nonlinearity is toto the general saw-tooth nature of the laser intensity, repre-
chooset =1 (Schreiber and Schmit2997). Thereis alogic  senting this type of discontinuity correctly is essential if a
for ChOOSing)\. =1 for this dataset because the aUtOCOfr9|a'm0de| for this System is to rep”cate the asymmetry charac-
tion function has crossed zero hy= 2, going from 053 at  teristics of the original data.
A=11t0-0.19 ath =2. Adopting an ensemble of different StudyingA*=4 and A*=%, which are the lags greater than
choices fora gives additional information on the nature of zero with the minimum and maximum autocorrelatioRs=
the nonlinearity within the dataset and provides further crite-_0.62 and R = 0.75, respectively), one finds that the null
ria that one could aim to replicate when attempting to modelhypothesis is rejected ungil= 0.97 and untilp = 0.999, re-
atime series. spectively. Thus, more rigorous model validation can be ac-

Figure 5 gives values fon*=1 for 19 surrogates, at 14 complished by deploying additional choices for Going
choices forp, as well as the value for the laser datg,=",  further, an ensemble of different metrics could also be em-
which is indicated by a dotted line. From Flg 5, the null hy- p|oyed, a topic that is considered in Sect. 6.
pothesis is rejected until = 0.97. Hence, although there are  Huebner et al(1989 propose two models for their laser

visual similarities between Fig. 4d and the original intensity gata, one based on the Lorenz equatitsénz 1963
data, a much higher choice fpris required to preserve the

key elements of the signal with respect to asymmetry.
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Fig. 7. Output from the two models for the laser series, formed

by squaring they; output from Egs. (6) and (7), which may be
. . . . . compared to the series;,, in Fig. 4a and a surrogate witgh=0.97

0 200 400 600 800 1000 in Fig. 4f.

time (no. of samples)

. . ) ) . ) . the correlation dimension measure adopted in Sect. 5, imply-
Fig. 6. x;, is shown in(a), while (b—d) illustrate the difference (in- ing that Lorenz-type models are suitable for modelling such
dicated by a prime) between this time series and various surrogateﬁm . : i

; ) . ) : e-series. To test this hypothesis with respect to our skew-
series at 3 choices fgs (0.97in 6b, 0.95 in 6¢, and 0.50 in 6d). ness/asymmetry measure, we integrated both sets of equa-

The black line in these cases represeits- x r, wherex g is a data . . . i f 01 and ch ing th | )
series produced solely from the fixed wavelet coefficients. The gre}IonS using a ume step of.LL and choosing the values:

lines showx; x; where the upper surrogate series maximizés?® b=0.25,R=15,0=2, ands =0.05, as perHuebner et
at this p in Fig. 5, and the lower series has the median value for@l- (1989. In both cases, the time series fﬁiT’WaS down-
A= sampled such that the time to the first zero crossing of the

autocorrelation function matched that in the original dataset
(2 samples) and*=! was calculated for series of 1024 val-
ues. We obtainedi*=1 = 2.207 for the Lorenz model and
A*=1=2624 for the complex Lorenz model. These results
are higher than the value for the laser datat6t! = 2.008,

y1=o0(y2—y1) L ; . o L
o LRy ©6) but it is not immediately clear if this difference is significant.
y.z = TYLRTRITY2 Using the results in Fig. 5 we see that@t 0.97 there

Y3 =y1y2—bys is no significant difference between the original data and the

] ] ] ) ) surrogates ford*=1. Both asymmetry values for the mod-
and one on a set of five ordinary differential equations thatg|s are much greater than the largest valugbf! = 2.017

constitute a complex-valued Lorenz model du€éghlache  ¢5,nd for the 19 surrogates at this choicegof Going fur-

and Mande(1983: ther, 200 surrogates were generatedder0.97 and a Ryan-
Joiner test for normality showed th&*=1 values to be nor-

; mal at the 10% significance level. Based on the standard de-
Y2 =—0(y2=8y1—ya) viation of 0.0078, the asymmetry values for the models are
¥3 = —y3+Ryi1+8ys—y1ys (7 79 and 25 standard deviations from the value for the data.
Y4 = —ya+Ry2—8y3—y2y5 Hence, the probability of obtaining the mpdels’ asymmetry
= byet " yaIL_Jes_ basgd on surrogates at a valueofanith the greatgst _
s IST Y13 T Y254 intrinsic variability that preserve the asymmetry properties, is

whereb, the Rayleigh numbem, and the Prandtl number, Vanishingly small. The difference in the nature of the model
o, are the three classic parameters of the Lorenz model an8ignals is illustrated in Fig. 7. For the additional choices of
§ represents the detuning between the frequencies for thd"~" and A*=>, marked differences are also evident, with

electric field and the atomic polarization in this application. ©nly the results using Eq. (6) for=4 anywhere close to
Hence, wherd = 0 andy, = y2 = 0 we recover the standard those for the data (3.5 standard deviations too high). Hence,

Lorenz model. the gradual wavelet reconstruction approach to model valida-
Huebner et al(1989 found that these two models gave a tion would suggest that Lorenz-type models are not validated
reasonable fit to the original data in terms of their value for With respect to the asymmetry of the original data.

V1= —0(y1+8y2—y3)
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622 C. J. Keylock: Gradual wavelet reconstruction

5 An application to the Lorenz system 2

The Lorenz equations are the paradigmatic chaotic system™ DWWWWWW%M

although it is only relatively recently that a comprehensive -

study of all three parameters of this model has been under- 2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
taken Barrio and Serran@007, 2009. In this section of the .- DWWVW\/\WWMNW
paper we employ classical choices foe=8/3 ando = 10,

-20 L L L L L L I L I

()

(b)

but consider values for the Rayleigh numiy that include 2 L R=BOD
the classical, globally attracting chaotic attract@r=£ 28), ;

a value R = 24.29) that gives a chaotic attractor with a = ° |
pair of stable attracting rest points, a valuefof= 24.75 by 20 ‘ ‘ ‘ ‘ ‘ ‘ ‘ T o
which the stable points have been eliminated &aglan and % ‘ @
Yorke, 1979, and a value within the regime of an intermit- = o

tent transition to chaos identified bjanneville and Pomeau 50 ‘ ‘ ‘ ‘ ‘

(1979 andPomeau and Mannevillg980 (R = 167.0). e e T me e e

The Lorenz equations were solved with a time step of
t =0.01, with results recorded every tenth time step from
1000. The accuracy of our numerical method was checked b)l,:_ig. 8. Subsgctions for time series from the Lorenz equations for
using theGottwald and Melbourné2008 test for chaos ap-  diferent choices ok.
plied to y1. The transition to chaos & = 166.0616 found
using this method was in agreement with the value found us-

ing the methods dBarrio and Serran(®007) (personal com- Y, = (yi, Yi+L,---, Yi+(Dy—1)L) 8
munication from Roberto Barrio).
In this study we employed the correlation dimensibn, each of which defines a point in this embedding space, where

as a means of characterising the attrac@ragsberger and L is a lag andV is the number of values in the time series.
Procaccia 1983 based on a Gaussian kernel method and Gradual wavelet reconstructions based on 19 surrogates
using the output for1, with lags and Theiler windows de- are shown for two choices gf, 99% (blue error bars) and
fined based on the decay of the autocorrelation function an®9.9% (red error bars). In addition, reconstructions at these
on false nearest neighbours, respectively. We tested ouvalues forp are shown based purely on the fixed wavelet co-
method for long (40 960 points) and short (4096 points) efficients without using the IAAFT algorithm to re-introduce
datasetsGrassberger and Procac¢i®83 quote a value of the unfixed coefficients (as described at the end of Sect. 3.1).
D. =2.0540.01 for the correlation dimension d = 28, These are indicated by the dotted lines, with the circles show-
which was matched successfully by both of our datasetsng p =0.99 and the squares=0.999. The error bars are
(D, =2.052 andD. = 2.055, for long and short datasets, re- displaced a small horizontal distance from the integer value
spectively). Hence, we employed the shorter series in analyfor D, and indicate the mean anR standard deviations by
sis. It is possible to obtain erroneous, finite correlation di- horizontal lines.
mensions for stochastic process&sHertzer et al.2002. The most similar plots are Fig. 9b and c, both of which
However, by working with a system that is known to ex- are within the same regime of behaviour ®®raccording to
hibit chaos and by deploying high values ferthat ensure  Kaplan and Yorkg1979. In these cases, at= 0.99 the
the basic structure of the Lorenz attractor is fixed in placedataset built from just the fixed coefficients clearly differs
(much as it would be for data from a Lorenz attractor with from the original data. The surrogate data (blue error bars)
noise),means that we have generated correlation dimensiorere generally even further from the original data on average,
for data that are approximating the original, chaotic attrac-but within the+2 standard deviation tolerance of both the
tors. original data and the fixed coefficient surrogate (particularly
Figure 8 illustrates short time series for for the four ~ whenR =28.00). The higher choice fqr results in a conver-
choices ofR examined here. Figure 9 gives the correlation gence of both types of surrogate to the original data. Thus, at
dimension as a function of embedding dimensibp, for our o =0.99, on average for these two cases, the addition of the
four choices ofR. The embedding dimension is the dimen- unfixedw; ; to the surrogates results in greater error than a
sion of the phase space into which the time series is embedack of precise preservation of the data histogram or wavelet
ded based on delayed versions of the original sefliakgns spectrum from just using the fixed coefficients. However, by
1981). An accurate estimate fdp. requiresD, to be suffi- o =0.999 this other error source is dominant and realisations
cienly large to capture the dimension of the attractor (i.e. atbuilt from just the fixed coefficients contain greater error. A
least 3 for the Lorenz system) but not so great as to intro-more in-depth analysis could examine the precise values for
duce errors from finite size effects. For a time serigst is p at which this transition in the dominance of different error
possible to form a set o¥ — (D, — 1) L vectors: sources occurred.
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(@) (b)

35

(d)

Fig. 9. The correlation dimension)., as a function of embedding dimensiab,, for the Lorenz system and surrogates with= 24.29

(@), R=24.75(b), R=28.00 (c), andR =167.0 (d). The results for the Lorenz system are given by a black line, with those for series
reconstructed from the fixed wavelet coefficientsder 0.99 (dotted line with circles) and = 0.999 (dotted line with squares) and surrogate
series forp =0.99 (blue) and =0.999 (red). The latter summarise results for 19 surrogates according to mean (central horizontal line) and
+2 standard deviations (vertical lines). They are translated slightly from the integer valDg for clarity.

Table 1. The proportion of wavelet coefficients fixed in place as a types of surrogates have converged upon one another, none

function of R for our two choices op. have converged on the original data. Table 1 lists the propor-
tion of coefficients fixed at the two chosen thresholds. For
Rayleigh numberf) =099 p—0.999 o= 099 andR =1670 _ther_e isa smaII_ propor_tion of fixed
coefficients (i.e. there is high energy in relatively few val-
24.29 58.2% 68.8% ues). This means that the randomisation within the surro-
24.75 57-52@ 68-6? gates is causing a relatively weak convergence on the scal-
igfg 28:2£ gz:g;‘; ing behaviour ofD.. However, byp = 0.999 more coeffi-

cients are preserved for this dataset than the others yet the
surrogates still differ significantly (at the 10% level) from the
original data. This shows that the attractor for the Pomeau
The situation differs in Fig. 9a, where the error bars for and Manneville intermittency regime is more complex than
the gradual wavelet reconstruction are all small and lie closdor the other values foR used here in the sense that, the
to the original data. However, fgr =0.99 there is a clear value for D, in the data can only be replicated by fixing in
difference for the surrogate built purely from the fixed coef- place a higher proportion of the wavelet energy and a greater
ficients, which sits outside the error bars for the surrogatesproportion of the wavelet coefficients. In contrast, while the
In this case, failure to preserve the wavelet spectrum and hisdimension of the attractor is higher whén= 24.29, surro-
togram accurately has had a significant effectiayn while gate series gt =0.99 can adequately capture its behaviour.
randomisation by the unfixed coefficients has a minimal ef-Thus, gradual wavelet reconstruction can be used to elucidate
fect. additional information on the nature of an attractor, here pro-
The situation differs again in Fig. 9d, where this time at viding a classification of complexity ranging from the sim-
p =0.99 it is the realisation from the fixed coefficients that pler case of Fig. 9a (lowes is sufficient to capture the be-
lies significantly closer to the original data than the surro-haviour) through the intermediate cases shown in Fig. 9b—
gates. Hence, the randomised coefficients generate greater to the more complex case in Fig. 9d. That=24.75
error than the failure to preserve the histogram or spectrumand R =28.00 exhibit similar behaviour mimics the similar
For this case, it is also notable that py= 0.999, while both  structure of their attractors.
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Fig. 10. Testing the oscillation-based method and a wavelet-based algorithm for estimatiatey ldxponents(a) Shows the spectrum of

a fractional Brownian motion and a fitted slope, which is translated into a value ifo(b) (dotted line). The box and whisker plots in

(b) show the median, upper and lower quartiles (boxes) values extending up to 1.5 times the interquartile range (whiskers) and outliers (red
crosses) for the set of 4096 estimated valuesx @y as a function of the algorithm used. A wavelet method using a Daubechies wavelet
with 8 vanishing moments is indicated by Dau8, while “O” indicates the oscillation method. The number following the “O” is the largest
exponent used in the calculation farHence, “O8” means that the bins foranged from 2 to 28. Least-squares regression was used unless

a suffix “L” (Lim Inf regression) or “P” (penalised least-squares regression) is included FRECLAB, 2006 for more details(c) Shows

the sinusoidal function fax (¢) used to generate a multifractional Brownian motion (blue line) and then estimated valugs) fisom that
multifractional Brownian motion time series. The black line is the Dau8 algorithm, the green line is O5 and the red line is 010.

6 The Holder characteristics of a turbulence time series m_lu(i)(T)
prin=7 —;

(t=T)! )

There have been a number of studies that have tried to char- i=0
acterise the multifractal characteristics of turbulence (e.g., . . - : .
Meneveau and Sreenivasd®87 She and Leveque 994 wherem is Fhe number .of times .that'ls differentiable in
owing to the well-known intermittency characteristics (e.g., T'+ 3. Defining the error in approximating(t) atT by pr ()
Frisch et al. 1978 that lead to a departure from Kol-
mogorov’s% scaling as discussed olmogorov (1962).
However, the predictions of the latter's log-normal model €7 (") =u(®) = pr (1) (10)
differ from the log-Poisson model oBhe and Leveque . -
(1999 and analyses based on universal multifractal scalingm_eans that the order of dlfferentlabll|ty of¢) close toT
(Schertzer and Lovejoyl992 Schmitt et al. 1992 provide gives an upper bound ar (r):
an alternative framework for classifiying these processes.

It has recently been proposed to make use of the pointier ()| <
wise roughness characteristics of a turbulence velocity time

vironmental turbulence dat&eylock 2008h 2009 using  Hpider/Lipshitz exponent, where a functierr) has a point-
Holder/Lipshitz exponents, (r). That is, the differentiabil-  \yise Holder exponentg, > 0 if a constantk > 0 and the

ity of a signal relative to polynomial approximations within - holynomial p7 (¢) of degreen exists such that
the local domain of a specific point are used to dediy&).

Hence, studying:(r) in a neighbourhoods, about & posi- |, ;) — pr ()| < K| —T|P (12)
tion, T, and taking andT to be rescaled over the unit inter-

val (ranging from 0.0 to 1.0), we obtain from a Taylor series The Holder regularitye, (1), of u(¢) atT is then given by the
expansion: supremum of3 that fulfil Eq. (12).

|m

(11)
m!
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Fig. 11. Gradual wavelet reconstruction for thélder series of the two components of the velocity data from Fig. 1. The measures used are
the correlation between the velocity serfayand Hlder seriegc), the phase synchronisation between the velocity séjesnd the Hblder
seriegd), and the average standard deviation of tlidddr seriege).

6.1 Calculating Holder exponents (DWT-based method), green (least-squares oscillation-based
method with the bins foé ranging from 3 to 2° - O5) and

A rapid method for evaluating,(¢) is based on a log-log red (least-squares oscillation-based method with the bins for

regression of the signal oscillation@z s, within some dis-  § ranging from 2 to 21° - 010). Our choice of the 010 algo-

tances of T agains®, whereOr; is given by: rithm is the most precise. These calculations were performed

using the FRACLAB toolboxKRACLAB, 2006.

Or+s =Max(Ure(T—s,...T+s)) —MiN(User—s,...T+s5)) (13)

6.2 The differential sensitivity of particular metrics to

. - . B . 10 . .
and s is distributed logarithmically (from 2to 219 in this the presence of multifractality

study).

h 'll'r;s approg\ch wa}g d|s§ussbed Wytwankar and ﬁvy ve- | For a choice ofp =0, the surrogate series will preserve the
€1 (2002 and considered to be more accurqtet an wave e_‘zourier spectrum to some error level, but not the intermit-
pa_sed methqu. For the comparison O_f the dl_fferennal Sens't'ency (multifractal characteristics). As— 1, the variance

tivity of metrics to the presence of multifractality (Sect. 6.2), ot i (pider series tends towards that for the original data.

using correlation, non-linear association by phase synchrog . oraqual wavelet reconstruction of the turbulence data in
I’HS?IIOI’], and on the variance of .the eshmatg(jt), as d?' Fig. 1 is based on 19 surrogates and compares the sensitivity
scribed t_;_elow), WE TEqUIre a precise and consistent estimatoft e metrics to the presence of (multifractal) nonlineari-
for t.he Holder regularity. . . ties: correlations between the velocity seri®su1u2), and
__Flgure 10 evaluates different methods for calcglan_ng Holder seriesR(e,u,), the phase synchronisation between
Holder exponents and supports the use of the oscillationy,qge respective serigg: (u1uz), andy? (@uu,), and the av-

based method. Figure 10a shows the power spectral dengaqe standard deviation of thelder series across the two
sity for a fractional Brownian motionN = 4096) and the

fitted slope (red line) from this plot is shown as @Ilder

exponent in Fig. 10b with a black dotted line. The DWT 4 = [0 (tuy) + 0 ()]/2 (14)

(see Appendix A) wavelet-based method using a Daubechies

wavelet with 8 vanishing moments is clearly the least precisePhase synchronisation is a nonlinear method of association
method. The accuracy and precision of the oscillation-basedbetween data series and the procedure we adopted for its cal-
method increases as the size of the bins used to estiimateculation is given in Appendix B.

increases. The results are much more sensitive to this than These results are shown in Fig. 11. The surrogate tests
the particular method used to fit the log-log regression line.show that the two velocity series in this region of turbulent
Figure 10c shows a sinusoidal curve in blue that was used tonixing appear independent as no significant difference be-
prescribe the variation ai(r) for a multifractional Brown-  tween data and surrogates occurs for either their linear corre-
ian motion. This signal itself is not shown but attempts to lation or their phase synchronisation. This also shows that, as
back-estimate the:(r) from this signal are given in black expected, linear correlation does not contain information on

components:
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Fig. 12. Modulus maxima of wavelet coefficients for the time seriesi#pare shown ia) and(d) at j = 1 and;j =4, respectively. The data
in (b) and(c), as well age) and(f) show the difference (indicated by a prime) betwgen | and the values from a wavelet decomposition
of a surrogate data series (fee=0.99 in (b) and (e), and shown in red; for=0.999 in (c) and (f), and shown in blue).

57% and 68% of wavelet coefficients fixed for=0.99 and
o =0.999, respectively, while the equivalent percentages are
26.1% and 401% for u1, and 174% and 308% for u. In-
creasingo to 0.9999 still only fixes 58.% and 451% of the
coefficients, respectively. This is why a sparse, wavelet rep-
resentation of a turbulence signal is such an effective descrip-
tor (half the coefficients contain 99.99% of the energy).
Figure 12 shows, for two wavelet scales, the modulus max-
i ima of the wavelet coefficients for the data (black) and the
1500 2000 2500 3000 3500 4000 difference between this series and that for surrogates gener-
e ated atp = 0.99 (red) andp = 0.999 (blue). Note that while
the values in Fig. 12d are roughly double those in Fig. 12a,
Fig. 13. Two realisations of thenzi et al (1993 process are given  the errors are an order of magnitude lower. Hence, for both
in black, with their stationary variants in red. From the 50 datasetschoices forp there are a number of features at the finest
generated, the data if@) had the median value for the standard wavelet scales whose energy is too small to be fixed, yet
deviation ofe () and(b) had the maximum. which contribute actively to the singularity structure of the
time series, affecting the values for thélHer series in the
surrogates and the value fey, for these data.
the multifractal characteristics of the signal. However, when However, it is also the case that:
the Holder series are examined, both of these two measures
show significant differences for < 0.40. The null hypothe- 1. Determining the multifractal properties of a signal is a
sis is rejected at all our choices fprusing the average stan- difficult task Lux, 2004 Seuret2006);
dard deviation measure, indicating that this is the most sensi-
tive to the multifractal characteristics of the two series. Our
technique permits the relative sensitivity of different metrics
to be determined empirically for particular data and it is in-
teresting here that the sensitivity of the correlation and its

nonlinear, phase synchronisation counterpart appears to beg pitarent realisations of a stochastic multifractal pro-

approximately the same. cess will lead to intrinsic variability in the estimated
From Fig. 11e it follows that intermittency in the surro- values fora ().

gates has yet to converge on the data at the highest choices

for p used in this paper. Part of the reason for this is theHence, the fact that Fig. 11e indicates that the multifractal

broad-band nature of the turbulence signal compared to theharacteristics are only preservedas> 1 may be due to

Lorenz attractor, for example. Table 1 has typical values ofthe nature of these particular data, or may be an artefact of

max)

benzi (¢

. .
0 500 1000

2. The variance measure given by Eq. (14) is more depen-
dent on the absolute accuracy of our method for eval-
uating Hilder exponents than the other metrics used in
Fig. 11; and,
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Fig. 14. Gradual wavelet reconstruction of the dataset giving the median value(d@g,) based on fifty realisations of the multifractal
process is shown in the right-hand figure. The left-hand figure is a boxplot giving the inherent variakility,gf,,) for the 50 datasets.

the finite precision of the 010 algorithm. A comparison with wavelet reconstruction for the dataset with the median value
another multifractal dataset helps to interpret these result$or o (apenz) (Shown in Fig. 13a) is then undertaken on the

appropriately. right-hand side of Fig. 14.
The first thing to note is that the multifractal properties
6.3 The standard deviation of Hlder exponents for of the time series are recovered some way before the limit
multifractal data of p — 1. Hence, the result from Fig. 11e is not generally

] ) true for all multifractal datasets. For tigenzi et al.(1993
We employed a wavelet-based algorithm for generating mulyrocess, IAAFT surrogates are able to match the values for

t?fractal _data due tdBenzi et al.(1993. This is a stochas- o (apenz) and, working from the right, the surrogates become
tic algorithm based on a discrete wavelet transform, Whereb)éignificantly different to the dataset at=0.95. Given that
wavelet coefficients are assigned and then the inverse wavelgla took care to minimise variability in the calculation of
transform is used to construct the time series. Here we follow,, (. resulting from finite size effects, it is also note-

Benzi et al.(1993 and take an initial, arbitrary coefficient, \yorthy that the variability for the 50 realisations on the left
X0.0, representing the +1 wavelet scale, and then formthe f Fig 14 is greater than for even the IAAFT surrogates.
wavelet coefficients at scalgs= J, ..., 1, hierarchically ac-  Hence, the 010 algorithm used here would appear to be suffi-
cording to the recursion: ciently precise both in absolute terms (Fig. 10c) and relative
(15) to the intrinsic variation of similarly generated, sotchastic,
multifractal time series. Thus, the analysis of the turbulence
dataset in Sect. 6 shows that, is the measure most sen-

. . . 5 sitive to the presence of multifractality, but the observation
ity, and the random variabig; « here takes the values 2 that even whem = 0.999 the surrogates differ from the data

or 2-1/2 with probabilities of 0.875 and 0.125, respectively. - ; ) ;
. . 7" is not true in general for all multifractal series. l.e. gradual
Fifty datasets were generated and two example realisations

are shown in black in Fig. 13. vyavelet reconstruction can mimic relevant properties of mul-
To reduce the variability in the data that would contribute tifractal data at values fos < 1.

to changes in the variance of tlh@enz values for the 50

datasets, the stationarity of each realisation was improved by  The precision of our technique for evaluating Hlder

setting MODWT approximation and the detail coefficientsat  exponents

j=J—2,...,J to zero (the red signals in Fig. 13). Thus,

variability at scales that are affected by the finite length of The analysis in Sect. 6.3 implies that we can use gradual

the record (32 values) was removed. Furthermore, to elim- wavelet reconstruction to study the precision of our tech-

inate any problems due to end effects, the) values were  nique for evaluating (z). Multifractional Brownian motions

calculated over the central2values. The degree of vari- Wwere generated similar to those shown in Fig. 10c, based on

ability for o (apenz) for all 50 realisations based on this pro- the expression:

cedure is given by the left-hand boxplotin Fig. 14. A gradual

Xjk =€jkNjk Xj—s—l,k/

wherek’ = %k, €; « takes the values1 with equal probabil-
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Fig. 15. Gradual wavelet reconstruction of multifractional Brownian motions given by Eq. (16) fith0.005 (a), f =0.010 (b), and
f=0.015(c). The metric employed is the standard deviation of the calculatéddd exponents.

ay (1) =0.33+ fsin(4rt) (16) simply structured, meaning that the precision of our 010 al-
gorithm is sufficient to detect variability indider exponents

wherer ranges from 0 to 1 and containé= 2048 values, ata value for M05< f < 0.01 and above.
and the amplitudef € {0.005,0.01,0.015}. Hence, the mean

value fore, equates to that for inertial range turbulence. As
f — 0 we should reach a value where imprecision in our

algorithm means thaj[ we cannot_discrim_inate between_a trulyl.hiS paper has presented a methodology for exploring prop-
(but weak) multifractional Brownian motion and a fractional erties of nonlinear time series through the systematic vary-

Brlownl?n rtr;]otlon t"\{'th a TULS: e?ﬁo?:’z::?rfo'%' T?at 'j’ theting of an energy threshold and the construction of surro-
values for the metric applied o the surrogates do no gate datasets that conform to this threshold using a wavelet

differ S|gr1|f|cantly than t_ha_t for the data._ . . transform. For a given threshold, either one realisation can
The Holder characteristics of the derived time series andpe gptained based on the wavelet coefficients fixed at that
their surrogates were evaluated using the O10 method. Fromgeshold, or the unfixed coefficients can be added back to the
Fig. 15, it is clear that ag" increasesp () for the data 5 elet template in an appropriately constrained, stochastic
(the dotted blue lines) also increases, as expected. Moving,ghion using the IAAFT algorithm to give multiple realisa-
leftwards from the right-hand side of these plots a significantijons. comparing the value of a metric with the values for the
difference emerges in Fig. 15aat= 0.95, while itoccurs at \yayelet reconstructed series at multiple choicegfpermits

p=0.97in Fig. 15b and c. Both of these values are lower cq14in properties of the signal or the metrics to be elucidated
than seen in Fig. 11e, while the results in Fig. 15a are VeNYincluding:

similar to those in Fig. 14. The variability when= 0 is rela-

tively constant for varyingf, meaning that, becausga, ) is 1. the parts of the signal that need to be preserved to give
lower in Fig. 15a, there is no significant difference between a value for the metric similar to the original data (laser
the observed value and those for IAAFT surrogates when data example in Sect. 4);

f =0.005. The complex nature of Fig. 15a (and Fig. 14)

shows that no significant difference occurs when the surro- 2. assessing how closely model results match the value for
gates are unconstrained, owing to the relatively large inher-  the metric for the data (Sect. 4);

ent variation in the time-series and the relatively weak ex-
pression of the multifractality. However, as~ 0.9, suffi-
cient energy has been fixed in place for the surrogates to be a
trained upon the original data, but with such random variabil- 4 the sensitivity of different metrics (turbulence example
ity thato (o) is too low. Itis only byp = 0.97 that sufficient in Sect. 6); and,

energy is fixed for no significant difference to occur again.

In contrast, the degree of multifractality in Fig. 15b and cis 5. the precision of a method for generatinglder expo-
sufficient for the gradual wavelet reconstructions to be more nents (Sect. 7).

8 Conclusions

3. classification of time series complexity (Lorenz equa-
tions example in Sect. 5);
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With regards to the multifractal characteristics of geophysi-A2 The discrete transform

cal data, an alternative perspective on the methodology pre-

sented here would be to re-define the analysis such that th&s shown for the IAAFT method in Sect. 2, surrogate data
starting point is not a linear variant of the original signal, but algorithms involve a deconstruction of an original signal, a
a multifractal variant of the original signal. RecentBalus ~ manipulation and a subsequent reconstruction. The integral
(2008 has proposed a pertinent multifractal surrogate generin Eg. (A1) makes reconstruction using the continuous trans-
ation algorithm. This development would see the work pre-form problematic. The discrete wavelet transform (DWT)
sented herein take a new direction. In this paper, departurets based on a hierarchical set of filtering operations that can
from monofractality of increasing strength will correspond be readily used in signal reconstruction. Hence, the DWT
to increases in the value ferat which significant departures has been used in the past for generating surrogate data se-
are first detected (Sect. 7). Imposing the multifractal struc-ries Breakspear et al2003. While we prefer an alterna-
ture at the start would be potentially of interest if one wishedtive approach, the essence of the DWT is briefly explained to
to see how a metric that was not directly related to the multi-provide relevant context for our favoured transform. Results
fractality of the signal (e.g. Eq. 5) was conserved by the sur-using a DWT method are also given in Fig. 10b.

rogates as a version gfincreased but with the multifractal A DWT of a time series sampled & = 2’ points can
spectrum fixed in addition to the Fourier spectrum and his-be formulated over the dyadic scales p=1,...,J using
togram of values in the data, as is the case in this study. This filter bank of low and high pass quadrature mirror filters
alternative version of gradual wavelet reconstruction will be of even filter width,L, whereh;(I =0,..., L —1) is the high

explored in the future. pass (or wavelet) filterg; is the low pass (or scaling) filter
and
Appendix A gr=D" gy (AS)

At the first stage of the algorithmyj, = J, these filters are
circularly convolved withx(¢) and then downsampled by a
Al The continuous transform factor of 2 to give a set of wavelat;, and approximationd,
coefficients of lengthv /2:

Wavelet transforms

A continuous wavelet transform (CWTy(j,k) of a time N
seriesk () at a scalej > 0, and a positiork € %1, is given by Wik = x/iuvl,zﬂl k=0,...,—-1

the convolution of the time series with a wavelet functign, L 2
whose integral is zero, and whose square integrates to unity: /5 - —
g a ¢ Y2i16=Y hix,_ mody k=0...N—1 (A6)
1 oo =0
wiibr=—5 [ xwa—k/pa (A1)
Vit
wherex is the complex conjugate. An additional admissibil- Arx=v2A12%1 k=0,..., N_ 1
ity constraint on the form of the wavelet function, which per- L1 2
mits a reconstruction of the original signal, is that its Fourier 5: _ _
ransfarm V241 = l;)glx,_, mody k=0,..,N—1 (A7)
+00 )
Y(f)= W(t)e*Z”f” dt (A2) At subsequent stages of the algorithinthe approximation
- from the previous stage of the algoritha;_, ; is used in-
is such that 6< C, < oo, where stead ofx, in Egs. (A6) and (A7) to give Wavglet (‘toefficien.ts
over all scaleg =1,...,J and a final approximation coeffi-
00 2 cient.
sz/ WAL A3)
0

A3 The maximal overlap discrete transform
As such, it follows that
oo ot oo ' While the discrete transform gives a compact representation
/ 2201 dt = i/ [/ wz(j,k)dti| d_J2 (ag)  of the signal, it suffers from certain analytical limitations
oo Cy Jo —00 J (Percival and Walder2000, which are important in the con-

. _ _ text of surrogate generation:
which shows thaw?(j,k)/j2 is the energy function of the

signal decomposed over different scales and positions. This — Circularly shiftingx(¢) by some amount does not mean
is important in this study as the key paramejermay be that the corresponding wavelet and approximation coef-
defined in terms of the square of the wavelet coefficients. ficients are translated by the same amount;
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— Because the wavelet filters are not zero phase, alignRe-expressing Eq. (A9) in terms of Eq. (A10) gives
ing the coefficients with the original time series is not

N-1
straightforward,; o _ 7o
? Wik = Zhj,lxk—l modn
— Circularly shifting x(¢), taking the discrete transform I=0
and determining the wavelet power spectrum does not N-1
: A= 85X (A11)
necessarily return the same spectrum as foy. ik j k-1 mod N
1=0

Of these p0|r_1ts, itis thellast that is the most m_1portant fromWe may then evaluate Eq. (A11) from a recursion which
our perspective. Approximate preservation of linear features

of the original data, such as the power spectrum is an esstates that, given the approximatiory ,, we may obtain

sential part of an algorithm for generating surrogates for"Jj+Lk andAf,, , from

analysing nonlinear time series. However, the first point is -1
also relevant as it is de_swable that the e\_/alua_uon of_the Iocz_ih,j“yk = Zhl Aj,k72l'l mod
energy content of the signal has a certain universality and is =0

not altered by a circular rotation of the original dataset. L—1
.The translation invariant, stationary, or MaX|maI Overlgp A= ZgloA;,k—Zfl mod v (A12)
Discrete Wavelet Transform (MODWT) avoids the above dif- 1=0

ficulties. It is an undecimated variant of the discrete tranS'PercivaI and Walderf2000 prove that within a MODWT

form, which means that the downsampling undertaken in theye .o nosition framework, the discrete variant of Eq. (Ad)
DWT is eliminated. This is a disadvantage if one wishes toholds true

produce a compact representation of the signal, but has the

advantage for analysis of producing wavelet coefficients

at each scale, similar to the CWT in Eq. (Al). Appendix B
Effectively, a discrete transform is undertaken for Al

circular rotations ofc(r). For any given minimum rotation Phase synchronisation measure

of x(z) most coefficients will be identical to those at the pre-

vious iteration meaning that the computation of the MODWT The method for evaluating phase synchronisation in this pa-

is O(N log,N) and notO (N?) (Liang and Parks1996. per followsKreuz et al.(2007) based on a Hilbert transform
Defining the filter width at scalg asL; = 2/ —1)(L - approach. Defining the analytic signal of a time sefié&g

1) +1 and expressing th¢th level MODWT high and low  as

E)ass filters a/s2 X()+ik (1) =ay (1)t O (B1)
hji zhjgl/Zf
gj1=gj1/2'? (A8) .

. 1 . .
It is clear from Eq. (A5) that the MODWT filters are re- X(t) = —p.V. f x(f)/t—tdt (B2)
lated to those used in the DWT except for a rescaling to ac- -
count for the lack of downsampling. Hence, the MODWT here p.v. is the Cauchy principal value. From Eq. (B1) it then

wherex (1) is the Hilbert transform of (¢):

wavelet and approximation coefficients are givenRer¢i-  follows that the phase is given by
val and Walden2000: N
_1x()
Li-1 ¢x(t) =tan ) (B3)
Wik = hjix,_ d
! =0 Pk moanN and given the phases for time serigs) andy(z), the phase
Li—1 difference is
A= gi X A9
”" 1;, S modx B sp=6.0-8,00 (B4)

which may also be compared to the equivalent expressionand the mean phase coherence can be obtainedApm)
for the DWT in Egs. (A6) and (A7). Practical implementa- by averaging the angular distribution of phases on the unit
tion of the MODWT first requires periodization of the filters circle in the complex plane:
so that, instead of undertaking an explicit circular convolu- N
1 i A
= (1)
N Z;el
j:

tion with Eq. (A8), we perform implicit circular filtering us-
ing a standard convolution and a periodized filter, where
+00 ere . .
~; = Z ﬁj L +nN (A10) Ong d|f_f|cu!ty with applylng Eq. (B5) as ameasure of syn-
’ ’ chronization is that the distribution ¢f is not uniform. To

y= (B5)

n=—oo

Nonlin. Processes Geophys., 17, 6632 2010 www.nonlin-processes-geophys.net/17/615/2010/



C. J. Keylock: Gradual wavelet reconstruction 631

account for this, phase-shuffled data can be constructed fror@ottwald, G. A. and Melbourne, |.: Testing for chaos in determin-
one of the time series before the phase differences are cal- istic systems with noise, Physica D, 212, 100-110, 2005.
culated. The mean value gf for some finite number of Grassberger, P. and Procaccia, |.: Characterization of strange attrac-
phase-shuffled realisations (usuatyl0, which is the case ~ tors, Phys. Rev. Lett.,, 50, 346-349, 1983.

in this paper)ys, can then be used to normalise the value OfHuebtner,_ u., ';“bfhaltm'_'\'t' B.,_tand \lNeti_ss, Ci.noai: Sﬁ:g}g”;i;’(;‘es %r;d
. entropies or chaotic Intensity pulsations - -
v calculated from the data according to infrared NH3 laser, Phys. Rev. A, 40, 6354-6365, 1989.

. 0 ify<ys Jaffard, S.: Multifractal formalism for functions: Parts | and I,
Vs = { YIS if 3 > 7 (B6) SIAM J. Numerical Anal. 28, 944-998, 1997.
1=vs - Johnson, J. R. and Wing, S. A.: Solar cycle dependence of non-
AcknowledgementsThe author is grateful to K. Nishimura, M. linearity in magnetospheric activity, J. Geophys. Res., 110,

Nemoto and Y. Ito for assistance with the wind tunnel experiment A04211, doi:10.1029/2004JA010638, 2005.

that provided the turbulence data for this paper. This work wasKaplan, J. L. and Yorke, J. A.: Preturbulence: A regime observed in
supported by NERC grant NE/F00415X/1 and the assistance of afluid flow model of Lorenz, Commun. Math. Phys., 67, 93-108,
two referees and the editor in preparing this manuscript is also 1979.

gratefully acknowledged. Keylock, C. J.: Constrained surrogate time series with preservation
of the mean and variance structure, Phys. Rev. E, 73, 036707,

Edited by: D. Schertzer doi:10.1103/PhysRevE.73.036707, 2006.

Reviewed by: three anonymous referees Keylock, C. J.: A wavelet-based method for surrogate data genera-

tion, Physica D, 225, 219-228, 2007.
Keylock, C. J.: Improved preservation of autocorrelative structure
References in surrogate data using an initial wavelet step, Nonlin. Processes
Geophys., 15, 435-444, doi:10.5194/npg-15-435-2008, 2008a.
Bacry, E., Muzy, J. F.,, and A&odo, A.: Singularity spectrum of Keylock, C. J.: A criterion for delimiting active periods
fractal signals: exact results, J. Stat. Phys. 70, 635-674, 1993.  within turbulent flows, Geophys. Res. Lett., 35, L11804,
Barrio, R. and Serrano, S.: A three-parametric study of the Lorenz  doi:10.1029/2008GL033858, 2008b.

model, Physica D, 229, 43-51, 2007. Keylock, C. J.: Evaluating the dimensionality and significance of
Barrio, R. and Serrano, S.: Bounds for the chaotic region in the active periods in turbulent environmental flows defined using

Lorenz model, Physica D, 238, 1615-1624, 2009. Lipshitz/Holder regularity, Environ. Fluid Mech., 9, 509-523,
Basu, S., Foufoula-Georgiou, E., Lasheremes, B., anédda, A.: 2009.

Estimating intermittency exponent in neutrally stratified atmo- Khan, S., Ganguly, A. R., and Saigal, S.: Detection and predictive
spheric surface layer flows: A robust framework based on mag- modeling of chaos in finite hydrological time series, Nonlinear
nitude cumulant analysis and surrogate analyses, Phys. Fluids, Proc. Geophys., 12, 41-53, 2005.

19, 115102, doi:10.1063/1.2786001, 2007. Kolmogorov, A. N.: A refinement of previous hypotheses concern-

Benzi, R., Biferale, L., Crisanti, A., Paladin, G., Vergassola, M.,  ing the local structure of turbulence in a viscous, incompressible
and Vulpiani, A.: A random process for the construction of mul-  fluid at high Reynolds number, J. Fluid Mech., 13, 82—-85, 1962.
tiaffine fields, Physica D, 65, 352-358, 1993. Kolwankar, K. M. and [eévy Vehel, J.: A time domain characteri-

Borgnat, P. and Flandrin, P.: Stationarization via surrogates, J. Stat. sation of the fine local regularity of functions, J. Fourier Anal.
Mech., P01001, doi:10.1088/1742-5468/2009/01/P01001, 2009. Appl., 8, 319-334, 2002.

Borgnat, P., Flandrin, P., Honeine, P., Richard, C., and Xiao, J..Kreuz, T., Mormann, F., Andrzejak, R.G., Kraskov, A., Lehnertz,
Testing Stationarity With Surrogates: A Time-Frequency Ap- K., and Grassberger, P.: Measuring synchronization in coupled
proach, IEEE Trans. Sig. Proc., 58, 3459-3470, 2010. model systems: A comparison of different approaches, Physica

Breakspear, M., Brammer, M., and Robinson, P. A.: Construction of D, 225, 29-42, 2007.
multivariate surrogate sets from nonlinear data using the waveleKwasniok, F. and Lohmann, G.: Deriving dynamical models from

transform, Physica D, 182, 1-22, 2003. paleoclimatic records: Application to glacial millennial-scale cli-
Daubechies, I.: Orthonormal bases of compactly supported mate variability, Phys. Rev. E, 80, 066104, 2009.

wavelets: Il. variations on a theme, SIAM J. Math. Anal. 24, Liang, J., and Parks, T. W.: A translation-invariant wavelet repre-

499-519, 1993. sentation algorithm with applications, IEEE T. Signal Proces.,
FRACLAB: A fractal analysis toolbox for signal and image pro- 44, 225-232, 1996.

cessinghttp://fraclab.saclay.inria.fr2006. Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20,

Frascati, A. and Lanzoni, S.: Long-term river meandering as a part 130-141, 1963.
of chaotic dynamics? A contribution from mathematical mod- Lux, T.: Detecting multifractal properties in asset returns: The fail-
elling, Earth Surf. Proc. Land., 35, 791-802, 2010. ure of the "scaling estimator”, Int. J. Mod. Phys. C, 15, 481-491,
Frisch, U., Sulem, P. L., and Nelkin, M.: Simple dynamical model 2004.
of intermittent fully developed turbulence, J. Fluid Mech., 87, Mallat, S.: A wavelet tour of signal processing, Academic Press,

719-736, 1978. 637 pp., 1999.
Fritsch, F. N. and Carlson, R. E.: Monotone Piecewise Cubic Inter-Manneville, P. and Pomeau, Y.: Intermittency and the Lorentz
polation, SIAM J. Numerical Analysis, 17, 238-246, 1980. model, Phys. Lett. A, 75, 1-2, 1979.

Gagnon, J. S., Lovejoy, S., and Schertzer, D.: Multifractal surfacesMeneveau, C. and Sreenivasan, K. R.: Simple multifractal cascade
and terrestrial topography, Europhys. Lett., 62, 801-807, 2003.

www.nonlin-processes-geophys.net/17/615/2010/ Nonlin. Processes Geophys., $3262610


http://fraclab.saclay.inria.fr/

632 C. J. Keylock: Gradual wavelet reconstruction

model for fully developed turbulence, Phys. Rev. Lett., 59, 1424—Schmitt, F., Lavallee, D., Schertzer, D., and Lovejoy, S.: Empirical
1427, 1987. determination of unviersal multifractal exponents in turbulent ve-

Mormann, F., Kreuz, T., Rieke, C., Andrzejak, R. G., Kraskov, A., locity fields, Phys. Rev. Lett., 68, 305-308, 1992.

David, P., Elger, C. E., and Lehnertz, K.: On the predictability of She, Z. S. and Leveque, E.: Universal scaling laws in fully devel-
epileptic seizures, Clin. Neurophys., 116, 569-587, 2005. oped turbulence, Phys. Rev. Lett., 72, 336—339, 1994.

Muzy, J. F., Bacry, E., and Agodo, A.: Wavelets and multifractal Schreiber, T. and Schmitz, A.: Improved surrogate data for nonlin-
formalism for singular signals: Application to turbulence data, earity tests, Phys. Rev. Lett., 77, 635-638, 1996.

Phys. Rev. Lett., 67, 3515-3518, 1991. Schreiber, T. and Schmitz, A.: Discrimination power of measures

Nakaya, S. and Hashimoto, T.: Temporal variation of multi- for nonlinearity in a time series, Phys. Rev. E, 55, 5443-5447,
fractal properties of seismicity in the region affected by the  1997.
mainshock of the October 6, 2000 Western Tottori Prefecture,Seuret, S.: Detecting and creating oscillations using multifractal
Japan, earthquake (M=7.3), Geophys. Res. Lett.,, 29, 1495, methods, Math. Nachr. 279, 1195-1211, 2006.
doi:10.1029/2001GL014216, 2002. Takens, F.: Detecting strange attractors in turbulence, Lect. Notes

Palus, M.: Bootstrapping multifractals: Surrogate data from ran- Math., 898, 366—-381, 1981.
dom cascades on wavelet dyadic trees, Phys. Rev. Lett., 101Tessier, Y., Lovejoy, S., and Schertzer, D.: Universal multifractals —
134101, doi:10.1103/PhysRevLett.101.134101, 2008. Theory and observations for rain and clouds, J. Appl. Meteorol.,

Pavlos, G. P, Kugiumtzis, D., Athanasiu, M. A., Hatzigeorgiu, N., 32, 223-250, 1993.

Diamantidis, D., and Sarris, E. T.: Nonlinear analysis of magne-Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., and Farmer, J.
tospheric data Part Il. Dynamical characteristics of the AE index D.: Testing for nonlinearity in time-series the method of surro-
time series and comparison with nonlinear surrogate data, Non- gate data, Physica D, 58, 77-94, 1992.

lin. Processes Geophys., 6, 79-98, doi:10.5194/npg-6-79-1999%ela-Arevalo, L. V. and Marsden, J. E.: Time-frequency analysis of
1999. the restricted three-body problem: transport and resonance tran-

Percival, D. B. and Walden, A. T.: Wavelet methods for time series  sitions, Classical Quant. Grav., 21, S351-S375, 2004.
analysis, Cambridge University Press, Cambridge, 594 pp., 2000Venema, V., Ament, F., and Simmer, C.: A Stochastic Itera-

Pikovsky, A. S., Zaks, M. A., Feudel, U., and Kurths, J.: Singu- tive Amplitude Adjusted Fourier Transform algorithm with im-
lar continuous spectra in dissipative dynamics, Phys. Rev. E, 52, proved accuracy, Nonlin. Processes Geophys., 13, 321-328,
285-296, 1995. doi:10.5194/npg-13-321-2006, 2006.

Pomeau, Y. and Manneville, P.: Intermittent transition to turbu- Venugopal, V. and Foufoula-Georgiou, E.: Energy decomposition
lence in dissipative dynamical systems, Commun. Math. Phys., of rainfall in the time-frequency-scale domain using wavelet
74,189-197, 1980. packets, J. Hydrol., 187, 3-27, 1996.

Roux, S. G., Venugopal, V., Fienberg, K., Arneodo, A., and Venugopal, V., Roux, S. G., Foufoula-Georgiou, E., and Arneodo,
Foufoula-Georgious, E.: Evidence for inherent nonlinearity in  A.: Revisiting multifractality of high-resolution temporal rain-
temporal rainfall, Adv. Water Resour., 32, 41-48, 2009. fall using a wavelet-based formalism, Water Resour. Res., 42,

Schertzer, D., Tchiguirinskaia, 1., Lovejoy, S., Hubert, P., Bend- doi:10.1029/2005WR004489, 2006.
joudi, H., and Larcheveque, M.: Discussion of “Evidence of WMTSA: Wavelet Methods for Time Series Analyskgfp://www.
chaos in the rainfall-runoff process” — Which chaos in the atmos.washington.eduwvmtsa/ 2006.
rainfall-runoff process?, Hydrol. Sci. J., 47, 139-149, 2002. Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. L.: Deter-

Schertzer, D. and Lovejoy, S.: Hard and soft multifractal processes, mining Lyapunov exponents from a time-series, Physica D, 16,
Physica A, 185, 187-194, 1992. 285-317, 1985.

Zeglache, H. and Mandel, P.: Influence of detuning on the proper-
ties of laser equations, J. Opt. Soc. Am. B, 2, 18-22, 1985.

Nonlin. Processes Geophys., 17, 6632 2010 www.nonlin-processes-geophys.net/17/615/2010/


http://www.atmos.washington.edu/~wmtsa/
http://www.atmos.washington.edu/~wmtsa/

