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Abstract. The energetics of internal waves in the presencegon shelvesQarter et al.2005 Moum et al, 2007, in the

of a background sheared current is explored via nhumericabt. Lawrence EstuanBpurgault et al.2007), Massachusetts
simulations for four different situations based on oceano-Bay (Scotti et al, 2006 and in the South China Seldlymak
graphic conditions: the nonlinear interaction of two internal et al, 2006 as well as in laboratory studieslélfrich, 1992
solitary waves; an internal solitary wave shoaling through aMichallet and Ivey 1999. Recent theoretical and numerical
turning point; internal solitary wave reflection from a sloping studies have proposed the use of an available potential en-
boundary and a deep-water internal seiche trapped in a deegrgy (APE) density to calculate ISW energi&cétti et al,
basin. In the simulations with variable water depth using the2006 Lamb, 2007, 2008 Lamb and Nguyen2009.

Boussinesq approximation the combination of a background In this paper we investigate the energetics of ISWs prop-
sheared current, bathymetry and a rigid lid results in a changagating in the presence of a vertically-sheared background
in the total energy of the system due to the work done by acurrent. While many authors have investigated the vertical
pressure change that is established across the domain. A fpropagation of internal waves through a vertically varying
nal simulation of the deep-water internal seiche in which thebackground current, relatively little attention has been fo-
Boussinesq approximation is not invoked and a diffuse air-cussed on ISWs. Weakly nonlinear models of KdV type have
water interface is added to the system results in the energpeen derived for stratified fluids with background sheared
remaining constant because the generation of surface wavesirrents Benney 1966 Gear and Grimshawi983. Zhou
prevents the establishment of a net pressure increase acroaad Grimshaw(1989 extended these results to obtain evo-
the domain. The difference in the perturbation energy in thelution equations for weakly-nonlinear ISWs propagating
Boussinesq and non-Boussinesq simulations is accounted fahrough a slowly varying background state, including vari-
by the surface waves. ations of the stratification, currents and water depth. Higher-
order KdV-type models for ISWs in a non-Boussinesq strati-
fied shear flow with a free surface have also been investigated
(Grimshaw et a].2002. The properties of exact ISWs in the
presence of background currents were considerestagtna
r’;\nd Lamb(2002. None of these authors considered wave

1 Introduction

Soltary ke waves (15Ws) 1 the ocean i an mportant prob. "e10ISS, WHCh i the focus of tis paper.

lem th);t has received considerable attention " rimarilp be- In & turbulent flow or in the study of slowly varying wave
T - P y trains, a background flow is normally defined using some

cause of its implications for mixing. For exam@andstrom

. . f averaging. In i f turbulen n ensemble av-
and Elliott(1984) concluded that dissipation of ISWs consti- type o averaging St.Ud eso tl.J bulence a ' ense ble a

. L o .__erage is usually used in theoretical formulations, however

tutes the primary mixing mechanism inshore of the Scotian.

. . in field observations or laboratory experiments it is neces-
Shelf break whileleans and Sherwif2001) concluded that sary to use a spatial or temporal average. A similar ap-

ISWs on the_ F_’ortuguese Shelf provide an important ENeI9Y, vach can be used when studying slowly varying wave trains
source for mixing. The energetics of ISWs have been studie Bretherton and Garretl968 Bretherton 1969 Whitham

in many localities, including the Monterey Bay and Ore- 1974 Grimshaw 1985 Craik, 1985. Ifthé wave train varies
slowly in space one may choose to define an averaging op-

Correspondence taK. G. Lamb erator over several wave lengths. In the cases of turbulence
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(kglamb@uwaterloo.ca) and slowly varying wave trains the result is that the velocity
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field is split into a mean and perturbation via ontime (e.qg., it will change as two internal solitary waves in-
) ) teract). In this paper we use the far field state to define the
u=u)+u'=U+u', (1) background velocity fieldJ(z) which in the cases consid-

ered here is independent of time. The horizontal integral of

where (-) denotes the averaging 9perator./ The averagingpe horizontal velocity perturbation is no longer zero and the
operator has the property thau};) = Ui(u}) =0 sinceé e rhation kinetic energy includes a tefia’ which may
(u;) =0. Here the subscripts denote components of the vepe pegative. Because it is first-order in the perturbation ve-
locity vector. The consequence of the use of this type Oflocity «' it can dominate the second-order teafa’/2 with
averaging is that the mean kinetic energy per unit mass (thgne result that the contribution to the perturbation kinetic en-
Boussinesq approximation is used in this discussion) is ergy can be negative |7 +u’| < |U|. This paper explores

1 1 1 the implications of using the far-field state as the background

o7 B

(zuiu;) = zU Ui +{(zuju;) (2) velocity.

2 2 2 The numerical model used in this study can be run with
where repeated indices denote summation over the velocitgnd without making the Boussinesq approximation. It is de-
components. The first term on the right is the kinetic en-scribed in Sect. 2. Evolution equations for the perturbation
ergy density of the mean flow while the second term is themechanical energies are derived in Sect. 3. When the Boussi-
mean perturbation kinetic energy density (“wave” or “turbu- nesq approximation is made the perturbation kinetic energy
lent” kinetic energy in the context of slowly varying waves can be split into two-terms, these being first- and second-
or turbulence, respectively). Both terms are positive definite.order in the perturbation velocity fields. Both the total per-
Strictly speaking, for slowly varying wave traiisvaries on  turbation energy and the second-order perturbation energies
slow length and time scales in which Ce{ﬁeu’j) may notbe  are considered. This is done because the first-order term is
precisely zero. Such terms make higher-order contribution®ften not present because of the way the background veloc-
to the kinetic energy than the terms retained above. ity field is defined. While it is necessary to use the full per-

In the context of internal solitary waves one could like- turbation energy, consideration of both terms illustrates the
wise define a background flow via averaging. For examplesignificance of the first-order energy term. It is shown that
for a two-dimensional flow a background horizontal current the total perturbation energy is conserved in a flat-bottomed

U (z,t) could be defined as domain, however in a domain with variable depth a pressure
- drop can be formed across the domain which results in net

U(z,t)= l/ u(x',z,t)dx’ (3)  Work being done on the fluid within the domain of interest
x| and a concomitant change in energy. When the Boussinesq

approximation is not made the decomposition of the pertur-
bation energy into terms of different orders is more compli-
cated and in this situation we consider the total perturbation
energy only. The dependence of ISW energies on the strength
) L1, of the background current is discussed in Sect. 4. Hyperbolic
§U +Uu + St (4) tangent density and velocity profiles are used for four sets of
cases with differing depths of the pycnocline and shear layer.
Integrating over the domain of interest the integrated kineticin Sect. 5 we turn to time-evolving wave fields. Results from

where L = x; — x| is the length of the domain of interest.
Then the contribution to the kinetic energy density per unit
mass from the horizontal velocity component would be

energy per unit mass is four cases are presented. For these simulations the Boussi-
0 o0 nesq approximation is used and the model uses a rigid lid

£f Uzdz+/ r/ }<u/2+w2> dzdx, (5)  atthe water surface. The cases are based on oceanographic

2)-n x J-m2 conditions however the parameters are typical of laboratory

experiments. The first three cases involving internal solitary

where the fluid is assumed to lie betweea —H andz =0, waves: the nonlinear interaction of two ISWs; an ISW pass-

because ing through a turning point as it shoals onto a shelf; and ISW
o X reflection from a sloping boundary. The interaction of two
/;q Uuwdx = U/;q udx =0, (6) ISWs is considered because it is a wave field undergoing sig-

nificant evolution in a flat-bottomed domain for which the to-
by definition. Herew is the vertical velocity with zero mean. tal pertubation energy is conserved. In contrast, in the other
With this formulation the integrated kinetic energy has two cases the total energy changes because of the variable water
parts, a “background” kinetic energy and a “perturbation” ki- depth. The fourth case considered is a deep-water internal
netic energy, both of which are positive definite. seiche trapped in a bottom basin. The mechanism behind the
In the context of internal solitary waves the definition of energy change is discussed in Sect. 6. Results from a single
a background current via horizontal averaging is problematiaun of the deep-water seiche case which relaxes the Boussi-
because it depends on the length of the domain and it dependgesqg approximation, making it possible to add a diffuse free
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surface, are presented in Sect. 7. Conclusions are presentade calculated by solving the Dubreil-Jacotin-Long (DJL)
in Sect. 8. equation, extended to include background curreBtadtna
and Lamb 2002 Lamb, 2003, to find the vertical displace-
ment,n(x,z) of streamlines passing through, z) relative to

its far-upstream height in a reference frame moving with the
wave. The DJL equation is

2 Numerical model

The Internal Gravity Wave (IGW) model is the two-
dimensional, non-hydrostatic, nonlinear model used in this_, U'(z—n)
work. It was first introduced in Lamb (1994) to investigate V 7+ m
the generation and evolution of internal gravity waves in the 5
ocean and has been extended to solve the non—Boussinesqunzo, (11)
equations. The governing equations we consider are the in- (c_ U(c_n))z

compressible Navier-Stokes equations

(n2+@-n?-1)

which is solved with boundary conditions=0 atz =0, —H

p(us+u-Vu) = -Vp— ﬁglg +uVu, (7a) andn =0 at the lateral boundaries of the subdomain in which
r+u-Vp=kvVap, (7b) the waves are computed. For a sufficiently wide subdomain,
Vou=0 (7c) 8 used here, these are equivalent t80 asx — +oo, as

appropriate for solitary waves. The propagation speed of the
Hereu = (u,w) is the velocity in the verticatz-plane,p is solitary wave relative to the background fldi(z), ¢, is an
the densityp is the pressuregy the viscosity and the diffu- eigenvalue which is found as part of the solution. The DJL
sivity. The equations are solved by first splitting the density equation is solved using an iterative method based on a vari-

and pressure into two parts via ational formulation of the problenir(rrkington et al. 1991,

. Stastna and LamIi2002. This method yields an ISW with a
p = po(1+p), specified available potential energy.

p = —pogz+pop, 8

wherepg is a reference density. In the following the scaled 3 Energy conservation and energy flux
non-dimensional density will be referred to simply as the

density. The governing equations become Neglecting viscous and diffusive effects the pseudo-energy
R 2 equation is
(14+€p)(u;+u-Vu) = —Vp—pgk+vV-u, (9a)
. — V2 ad
prtu-Vp=kVp. OB (Bt E) + V- (u(Ext Eat pa)) =0, (12)
V.u=0. (9c) 0t

The parameter which has been introduced is set to zero where pq is the pressure disturbance relative to the hydro-

if the Boussinesq approximation is made and is set to one @i pressure of the undisturbed flge),
otherwise.v = 1/ pg is the kinematic viscosity.

1
The equations are solved using a second-order projectiodk = 5,00(14-6,0) <M2+w2), (13)
method Bell et al, 1989 Bell and Marcus 1992 Lamb,
1994 on a domain is the kinetic energy density and
7% (x,2,1)
D:{(LZ)HXISX er,—H(X):_H‘f‘h(x)SZEZtop}a Ea(x,z,t):pog/ (p(s) —p(x,z,1))ds, (14)
(10) ’

) is the available potential energy density. Hgre) is the ref-
There is no normal flow through the upper and the lowergrence density an (x, z, 1) is the height of the fluid particle
boundaries. Atthe left boundary the inflow is specified while 5 (. , 1) in the reference stratificatiorS¢otti et al, 200§
a radiation condition is applied at the right boundary. For| amp 2007 2008 Lamb and Nguyen2009. In the fol-
these simulations there is a steady background cutrént  |owing we use the background stratification as the reference
which is confined to a surface layer of thicknéss The  gensity which is appropriate for calculating the available po-
background current does not interact with the bathymetryential energy in an infinitely long domalramb (2008.

The domain is sufficiently long that no perturbations reach | the cases considered here involve a steady background
the boundary. The numerical model uses a quadrilateral gri¢,rrenti7. Let

constructed using vertically stretched terrain-following coor-

dinates. u=U@)+u, (15)
Some of the model simulations which use the Boussinesq

approximation are initialized with exact ISWs. These waveswhereu’ is the horizontal velocity perturbation.
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3.1 Energy equations under the Boussinesq
approximation

K. G. Lamb: Internal solitary waves in sheared current

layer. The reason is that is the horizontal velocity pertur-
bation relative to the background flobi(z). When a fluid
particle moves vertically, with constant velocity through

If the Boussinesq approximation is made the kinetic energya depth where the background flow has strong shear, the ki-

density (per unit volume) can be split into three terms

Ex=Exw+ Ex1+ Ex2, (16)
where
£0 ~2
Exo= —=U",
ko= 7
Ex1 = poUu’,
£0
Exo = E(M’Z—sz), 17)

are the contributions to the kinetic energy density which are

netic energy of the fluid particle may not change but/as
changes so doeg and there can be large changeip.

In the following we will use bars over the various energy
densities to indicate values integrated over the dorfaiim
the simulations initialized with ISWs considered below the
initial wave energies are based on integrals over a subdomain
containing a single ISW.

Integrating 2) overD gives the energy balance equation

d

_ Xy
d_ pseudo— (Ki+APE+W)| (23)
t Xr

of order zero, one and two in the perturbation velocities. WeWhereEpseudo: Ea+ Ey is the total pseudo-energy density,

will refer to
Exp= Ex1+ Exo, (18)
as the perturbation kinetic energy density.

SinceU is independent of timel (Ex) = £ (Ex1 + Ex2).
Now

iEkl = poUu,
ot r
= —poUV - (uu)—UV -(pg.0),
- - dU
= —V-(pouUu-i—(de,O))—i-pouwd—Z. (29)

Rewriting the last term using

auv dU+U au
Uuw—— =u w— w—,
d dz dz
dU 1-
=uw—+V-(Z0%), 20
uwdz+ (2 u) (20)

allows us to write the evolution equation fék1 as

B] . . dU
o7 BtV - (u(Eiot Ekw) + (paU . 0)) —u'w——=0. (21)

Subtracting this fromX2) results in
ad
o7 (Eke+ Ea)+V - (u(Eie+ Ea) + pa(u', w)

—i—pou’wd—U =0. (22)
dz

uExdz,

0
Ki = /
—H(x)

0
APE; = / uEadz, (24)
—H(x)

are the vertically integrated kinetic and available potential
energy flux densities, and

0
W:/ upddz, (25)
—H®)

is the rate work is done by the pressure perturbation. The
total energy flux through a horizontal locatiens Ef = K+
APE+W.

By definition Eg is constant in time so

d , - _ xg
E(Ekp-l‘Ea) = (Ki+APE+W)| (26)

To further simplify the energy equation we assume that
no waves arrive at the boundaries in the time of interest.
In particular we will assume that' = w =0 at the lateral
boundaries. As we will see below we will have to allow for
a change in the pressupg. Thus atx = x; andx;, APE =0
and

0
K= / %U%dz. (27)
_H(x)

This integral has the same value at the two lateral boundaries,
hence

This equation says that the second-order perturbation energy 0
is not conserved: it can change due to the shear productiorﬁ(ékarEa) :/ () pa idz. 28)
H

X,
Xr

termu/w% which is familiar from turbulence theory. It acts dr -

to exchange energy between the first- and secon.d—order €Kt the boundaries the pressure is in hydrostatic balance with
ergy terms. Note however that the shear production term 1$he undisturbed density fielez) and hence is given by

non-zero only in regions Wher% is non-zero, i.e., at the
depth of the shear layer in the background flow which does o
not necessarily coincide with the depth of the perturbed sheaf = p5+/2 pogp(2)dz, (29)
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whereps is the surface pressure, so where
d - _ dUu
—(Ekp+Ea) Z—ApsM, (30) P :// pou/w—dzdx (38)
dt D dz
where is the (integrated) shear production term.
0 Subtracting this from30) gives an evolution equation for
M =f U(z)dz, (32) the second-order energy perturbation
—H
. . ) d - —
is the volume flux associated with the background current— (Ex2+ Ea) = —P. (39)

entering through the left boundary angs = ps(xy) — ps(x1)
is the change in the surface pressure across the domain.  In this equation each term is second-order in the perturbation.

Since the volume flux
3.2 Energy equations without the Boussinesq

/0 wdz (32) approximation
] .H(X) If the Boussinesq approximation is not made then it is less
is independent of ands convenient to separate the kinetic energy into terms of dif-
0 0 ferent order in the perturbation quantities as there are many
0=/ poudz = —/ V- (pouu+(pd,0))dz, more terms and there is in addition a third-order term. Thus,
—H() —H(x) if the Boussinesq approximation is not made we only con-
= _?ﬁ(,,d,o) -fds, (33)  sider the perturbation kinetic energy density which now has
the form
_sinceu -n =0 along the lower and upper boundaries anq the po(145) -5
integrals ofu -/ along the left and right lateral boundaries, £kp=FEk————U" (40)
whereu = U, cancel. _ S
If the water depth¥ is constant this gives The integrated energy equatid3() is still satisfied.
0
0= —f pdly dz, 4 Energetics of internal solitary waves under
*: the Boussinesq approximation
= —/ Apslyidz, B . - '
_H efore considering evolving internal wave fields some results
= —ApsH. (34) on the energetics of internal solitary waves are presented.

_ ) ) ) Further properties for linear and hyperbolic tangent back-
Hence, if the depth is uniform the change in the surface PreSground currents can be found $tastna and Lamg2002).

sure across the domain is zero af)(reduces to We consider background stratification and velocity fields
d - _ of the form
— (Exp+Ea) =0. (35)
dt _ Ap Z—Zpyc
- - _ _ p=p(z)=——rtanh| ——=], (41)
If the water depth is not unlform\pS is not necessarily zero 2 dpyc
and the perturbation ener@,+ Ea is not necessarily con- and
stant in time.
) . . ) U _
Integrating the evolution foEy; gives Gy= <1+tanh(z z3>>. (42)
dEk]_ _ _ 2 ds
—_— = "u-nds — 0)-nd . . .
dt %'OOUM onds %U(pd’ )-nds and focus on wave energies for cases with waves propagating
P against a surface current, that is, tgf, < 0 and wave prop-
+//D'00” wU'dzdx. (36) agation speeds> 0. A water depth off =1 m is used and
] ) ] .- R the reference density is taken @s= 1000 kg nr3. )
The first term on the right is zero because eithor u - n In Fig. 1 the integrated available potential enetfy and

are zero on the domain boundary. The second term is alSgeyrpation kinetic energiesy, are plotted as a function
zero along the upper and lower boundaries since the backss \yave amplitude map| for four sets of cases. They all

ground current is assumed to be confined to a region abovgge 4 density jump ohp = 0.04 across the pycnocline and

the bottom. Thus the thickness of the pycnocline and shear layer are fixed at
dEx dpyc = 0.05m andds = 0.03 m, respectively. Note that scal-
7 = ApsM+P, (37)  ing Ap andU,, by factors ofr and./r respectively yields
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120
100¢

120 ten in the centre and broaden as the energy in the waves is in-

creasedTung et al, 1982 Turner and Vanden-Broeck988
Lamb and Wan1998. When there is no background current
the maximum ISW amplitude is-0.32 m (negative imply-
ing a wave of depression), slightly larger than the distance
of the pycnocline from the mid-depth. For a two layer fluid
the maximum displacement would be0.3m but because

of the relatively thick pycnocline the maximum amplitude is
slightly larger. Wave propagation speeds increase from 0.253
to 0.296 ms? as the wave amplitude increases. The kinetic
energy of the wave is slightly larger than the available po-
tential energy (it must always be larger in the absence of a
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o
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120 120 (d)‘ i i i / )
100t 100t ] background current — s@airkington et al(1991); Lamb and
Nguyen(2009).
4 8ot & 8o} N . . .
E £ The limiting amplitudes increase linearly &g, decreases
w 60¢ W 60¢ which is consistent with theoretical predictions for conjugate
< 40 < 40 flows. Conjugate flows for two- and three-layer flows were
Y ot g 0t explored inLamb (2000. There it was shown that under the
ot ot Boussinesq approximation the conjugate flow amplitude for
20 L 20 == a two layer flow with coincident density and velocity jumps
00 01 02 03 04 OF 00 01 02 03 04 OF is
Inl (m) Inl (m)
Fig. 1. Ekp (dashed) andt; as a function of wave amplitude Neonj= —2pyc+ 0.5 —H + iUm , (43)
using hyperbolic tangent stratifications withp = 0.04, dpyc = Apg

0.05m and hyperbolic tangent shear layers with= 0.03m.
(a) Coincident pycnocline and shear layer near the surface withwhereH =1 m is the water depth. For the cases wih =

(zs,zpyc) = (=0.2,—-0.2)m. (b) Shear layer below the pycno- z4=—0.2m shown in Figla this gives
cline with (zs, zpyc) = (=0.3,—0.2) m. (c) Shear layer above the

pycnocline with (zs, zpyc) = (—0.2,—0.3) m. (d) Coincident py- Neonj= —0.340.7982,,. (44)
cnocline and shear layer near the mid-depth Wb, zpyc) =

(=0.3,-0.3)ym. In each plot the sets of curves are for different pqr U, =-02 ms! we haverlconj — —0.46m. For the
yalues ofU,, starting atU,,11 =0 (left most curvg) and decreasing by computed ISWs, the largest wave amplitude gy, =
increments 0f-0.05ms™*. Total water depth ig/ = 1m. —0.2ms1is —0.47 m. Differences can be expected because
the density and velocity profiles used to calculate ISWs un-
) ) _ ) dergo smooth transitions with a relatively broad pycnocline.

a wave with the same shape (i.g(x, z) is unchanged) with As U,, decreases the kinetic energy decreases, becoming
¢, u" andw increased by a factorgV? and £ and Exp in- negative for small amplitude waves, and then positive for suf-
creased by a factor of The density change corresponds 10 ficiently large waves. The kinetic energy is always less than
upper and lower layer densities of 1000 and 1040k§m  he available potential energy for the cases With< 0. The
typical of many laboratory experiments, using a referencenegativeEkp values occur because the wave induced veloc-
density of po =1000kgnT. Waves were calculated for a jyy is positive in the upper layer. Because it is in the opposite
range of available potential energies with varying from 1 girection to the background flow the result is a decrease in
t0 100J min increments of 1J mt using a KdV internal e horizontal velocity in the upper layer, i.60,+u'| < |0,
solitary wave withEa = 1JnT* as the initial guess for the it- yith 4 corresponding decrease in kinetic energy. Beneath the
erative solver. Thereafter @, is increased along each curve pycnocline, where there is no background flow, the wave in-
the previous solution is used as the initial guess. duced currents are negative and act to increase the kinetic en-

Figure1 shows results for four sets of values(@§,zpyc).  ergy. The reduction in kinetic energy above the pycnocline,
In each set waves are calculated for different values ofheing first-order in the wave amplitude for small waves, is
Un, starting atU,, =0 and decreasing by increments of |arger than the increase beneath it and the total kinetic energy

-0.05ms. in the system is reduced uniil +u’ becomes sufficiently
Figurela shows the results for a coincident shear layer andarge.
pycnocline using(zs, zpyc) = (—0.2,—0.2) m. The leftmost For U,, =0 the largest wave has a minimum Richardson

curves show the results féf, = 0. As Eqincreases the wave number Ri) in the pycnocline of 0.24. Fay,, = —0.2ms™1,
amplitude asymptotes to a limiting value. This is indicative the background state has a minim&iin the pycnocline of
of the conjugate flow limit being reached at which waves flat-0.35. For small waves the minimufi initially increases
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because the wave induced shear has the opposite sign to the 0.0
background shear, before decreasing as the wave amplitude
continues to increase. For the largest wave computed the 0.2 i

Richardson number in the pycnocline has two minimums:
0.4 atz=-0.61m and 0.28 at= —0.69m. WhenU,, is

decreased te-0.25ms ! the background state has a mini- _ o4 R - )
mum Richardson number in the pycnocline of 0.23. When E P ’T
Ea=2Jn7! the maximum of: exceeds the wave propaga- ™ —06 L |

tion speed of 0.11 N8 hence there is a wave induced crit- \ \
ical level where the horizontal velocity is equal to the wave Vi

propagation speed. FiguPeeompares the background veloc- 0.8 \, i i
ity profile with the wave induced velocity profiles down the | :

centre of the waves faE, =1 and 2 J ml. For the larger of 1ol o
these two waves there is a small density overturn in the pyc- =03 -02 -01 -00 01 02

A : : : /
nocline implying the formation of closed streamlines. Waves u(ms)

_ 1 i
aslarge a&’a =5 J 1~ were computed before the numerical iy 5 Horizontal velocity profiles for waves usingp = 0.04,

method failed to converge. Um =—025ms™L, (ds,zs) = (0.03,~0.2) m andzpyc = —0.2m.
When the pycnocline thickness is reduced the wave ampli-shown is the background velocity profile (solid). The other curves

tudes are smaller, becoming closer to the two-layer conjugat@re horizontal velocity profiles down the centre of an ISW. Two

flow values, while the integrated kinetic energy perturbationcases using/pyc = 0.05m are shown forEq =1 (dots) and 2

is almost unchanged. For example, gy, = —0.2ms?® (dashed) Jml. The dash-dot curve shows the velocity profile

whendpyc is reduced to 0.025 m the wave amplitude for the for a wave with a thinner pycnoclin@pyc = 0.025m, with Ea=

largest wave is reduced by 2.5% while the largest changa Jni 1.

(over the range of, values) of the integrated kinetic energy

perturbation is 1% of that of the largest wave. One significant

difference is that now waves fdr,, = —0.25ms ! can be =~ Mum Richardson numbers of 0.015 and 0.182 in the shear

computed up tdZ; =100 J T, Figure2 includes the wave layer and pycnocline, respectively. The wave amplitudes are

induced velocity profile down the centre of the wave with Smaller than in the previous cases because the pycnocline is

E_‘a: 1J rrrl_ Compared with the Corresponding case usingCloser to the mld-depth The maximum wave amplitude is

dpyc = 0.05m the positive velocity maximum is no longer —0.214m wheny,, =0.

present. FoU,, =—0.3ms! it reappears and waves with ~ When the shear layer and pycnocline are both centred at

Eq larger than 1 Jm! could not be computed. z=-—0.3m waves were obtained for all values Bf and
When the shear layer is moved below the pycnocline toUn. The largest negative integrated perturbation kinetic en-

zs = —0.3m, Fig. 1b, wave amplitudes are slightly smaller €rgy values are attained, and {6, = —0.25ms ! they are

and Eyp becomes significantly more negative over a wider negative for the largest wave computed, with a minimum of

range of wave amplitudes. Fdr, = —0.25mst waves —138JnTL

could be computed up t&, =68JnTL. The Richardson Figure 3 shows the shape of the isopycnal undergoing

number of the background state has a minimum of 0.0135maximum displacement for a series of waves with varying

in the shear layer and is extremely large in the pycnocline.U,, and Ej, fixed to 10Jmt. The stratifications and back-

For the largest wave computed the minimRis 0.03 inthe  ground currents used are the same as those irlLFig.

shear layer and 0.2 in the pycnocline. Whig is reduced

to 0.01m waves could be computed upAg=100Jn7?!

at which point the minimum Richardson number in the py-5 Energy evolution for cases using the Boussinesq

cnocline is 0.042 while the Richardson number in the shear approximation

layer is extremely small due to the now very weak stratifica-

tion across it. We now turn to the results of numerical simulations. Using
For these caseékp becomes significantly more negative the Boussinesq approximation four different physical situa-

over a wider range of wave amplitudes compared with thetions are considered. The first three involve internal solitary

cases in Figla. waves while the fourth is a deep-water seiche. The first two

When the shear layer is above the pycnocliag,dpyc) = of these, the interaction of two ISWs and a shoaling ISW
(—0.2,—-0.3) m, limitations on wave amplitudes that could passing through a turning point, do not include viscous or
be calculated were encountered fér, = —0.15 and  diffusive terms. Nor does the deep seiche simulation. For

—0.2ms! (Fig. 1c). ForU,, = —0.2ms! the Richardson the case of an ISW reflecting off a sloping bottom viscosity
number of the background state has a minimum of 0.02 inand diffusion are included. A deep water depth/bt=1m
the shear layer. The largest wavé, =36 Jnt!, has mini- is used with the surface afp=0.

www.nonlin-processes-geophys.net/17/553/2010/ Nonlin. Processes Geophys., 56858610
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o6 06 Fig. 4. Contour plots of the density field (solid lines) and horizontal
6 4 2 0 2 4 6 e a2 0 2 4 & velocity field (colours) for two interacting ISWs with initial APEs
x(m) X (m) of 2.5 and 80 Jm?. Simulation is done in a reference frame mov-

ing with the average propagation speed of the waves. The horizontal
Fig. 3. Isopycnals undergoing maximum displacement for wavesye|ocity field shown is that in a reference frame fixed with the far
with Ea=10JnT?. Stratifications and currents as in Fiy. As  fie|d fluid below the surface currenta) Initial waves. (b) Waves
Un decreases from 0 the waves get narrower and the maximumyt middle of the interactiors & 3105). (c) # = 400s. The white
isopycnal displacement increases. The isopycnal undergoing maxiregions indicate regions whepg < 0.0013ms L.
mum displacements shifts downward except for the casgy,ifor
which it initially shifts downward and then upwards.
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5.1 ISW interaction

60— —

The first example is the interaction of two ISWs of differ- 0 100 200 300 400 500
ent amplitude. For this simulation the bottom is flat and as
shown above the pressure drop across the domain must be ,
zero. Hence the perturbation enerﬁprr E, is conserved.
The background density and velocity profiles are given by
(41) and @2) with Ap =0.04, (zpyc, dpyc) = (—0.2,0.03) m,
U, =—-0.1ms ! and(zs,ds) = (—0.3,0.03y m. These are
the parameters used for cases depicted inig.

Results from a simulation with waves having initial avail-
able potential energies @, = 2.5 and 80J m! are shown
in Fig. 4. The simulation is done in a reference frame mov-
ing with the average propagation speed of the two right-ward &
propagating waves. The figure shows the fluid velocity rel-
ative to the bottom layer. Initially the large wave trails the .
smaller wave (panel a). The initial waves have amplitudes offig. 5. Energetics for ISW interaction(a) Solid curve: Ea. Dots:
—0.11 and—0.38 m with corresponding initial perturbation Ekp- Dashed:Eyz. (b) Dashed:Eyp — Ekp(0). Dots: Ea— Ea(0).
kinetic energiesiyp of —2.0 and 464 JnT1. The waves at  Solid curve: their sum.(c) Dashed: Exz — Ex2(0). Dots: Ea—
approximately the mid-point of the interaction are showed in £a(0). Solid curve: their sum.
panel b while the two waves after they separate are shown in
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panel c.
The energetics for the interacting ISWs is shown in Big.  Fig. 5b. During the wave interaction the perturbation kinetic
The top panel shows the time evolution®, Ex, and Eyo. energy rises while the available potential energy drops. They

To more clearly show the relative changes the variation ofreturn to their original values after the interaction. The total
Eyp andE5 and their sum from their initial values is shown in perturbation energy stays constant during the interaction as
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Table 1. Change inEq andEkp during the interaction of two ISWs. In all casag = 0.04, (zpyc, dpyc) = (—0.2,0.05) m andds = 0.03 m.

Zs Un Ea1 Eap  %decrease Eyp(0) max|AExy| % increase
(m mshH @mld @am in Eq @Gmb  am in Eygp
-0.3 0.0 2.5 80 1.8 85.2 15 1.7

- -0.05 - - 1.8 63.0 1.5 2.3

- -0.1 - - 1.7 43.9 1.4 3.2

- - 5 - 1.7 44.8 1.4 3.1
-0.2 -0.05 2.5 - 1.7 61.8 1.4 2.3

— -0.1 — — 1.5 42.9 1.3 2.9

- -0.15 - - 1.3 27.6 1.0 3.8

- -0.2 - - 1.0 15.2 0.8 5.3

expected. In Fig5c the relative changes dfy, and £, and oF ‘ 3
their sum is shown. During the interactidfxs + E5 rises 3= I - 3
by about 1.2% above its initial value. During the interaction g i: / \\\ \\ 3
the increase irEy; is slightly more than twice the increase & g z . =

in Ekp. Figure6 shows the energy balance for the second- §-1f N N/ E
order wave energies. Shown is the time rate of change of the® = N \/ 3
Ex2 + Ea and the negative of the shear production tePm e E

along with their sum. Note values have been multiplied by o 100 200 300 400 500
10%. The sum is nearly constant but is noisy with fluctuations ‘e

with amplitude approximately 2.5% of the variations of the
largest term (i.e., with an amplitude of about 2 m1).
This plot illustrates that the 1.2% rise Bf,» + E5 during the
interaction is much larger than the numerical errors in the
simulation.

Percentage changes 6§ and Ekp for several cases are
given in Table 1. For the simulations that have been done
during the inter::lctionEkp increases by between 2.1 and
3.4%. It increases af,, increases in magnitudeE, de-

creases by between 1.1 and 1.7%. It decreasds$,as- L . o
t The energy evolution is depicted in Figy. Panel a shows

creases in magnitude. Only runs with waves of very differen X _ = = _ X
amplitudes have been done, otherwise the difference in propl'€ ime evolution ofs, Eip and Ei. The perturbation ki-

agation speeds is very small and the interaction takes a lonf€lic €NergyEiy is initially negative as the addition of the
time. wave decreases the kinetic energy in the system. As the

wave shoals bottikp and E, increase. This result can be
5.2 Shoaling ISW wave passing through a turning point ~ contrasted with the results bhmb and Nguyeif2009 who

found that for shoaling waves (in this case with the pycno-
The second case considered is that of an ISW shoalingline intersecting the sloping bottom), as waves shoaled the

Fig. 6. Second-order energy balance for ISW interaction.

Dots: d(Eyp + Ea)/dt. Dashed: P =ffDu’w%. Solid curve:
their sum. '

layer are at mid-depth, and the ISW is transformed into
a train of ISWs of elevation riding on a broad depression
(Grimshaw et a].1999 as depicted in FigZ for a wave with
initial APE of Ea=10Jn1L.

through a turning point. The bathymetry has the form kinetic energy dropped and the APE rose while the sum was
almost constant (it decreased slowly due to viscous losses be-
h(x)= 0.25(1+tanh(%)), (45) fore dropping rapidly when the waves broke). In the current

situation both rise. This can be attributed to a decrease in

the sheared current is the same as in the previous case, aM@ve induced currents> drops slightly, see panel c) dur-
the background density field is given by with Ap = 0.04, ing the early stages of shoaling which in this case results in
(zpye-dpyc) = (—0.3,0.025 m.  The pycnocline and shear &nincrease inkinetic energy. i

layer are now at the same depth and the pycnocline is slightly Figure8b shows the change ifi; and Ey, from their ini-
thinner than the shear layer. In the deep/shallow watettial values along with their sum. In panel ¢ the change in the
the shear layer and the pycnocline are in the upper/lowesecond-order kinetic energsk, and E, along with their sum
half of the water column, hence ISWs are waves of depresis shown. Both the total perturbation energy and the second-
sion/elevation. As an ISW shoals from deep water it passesrder perturbation energy rise as the waves shoal. After the
through the turning point, where the pycnocline and sheamwaves are on top of the shelf the total perturbation energy
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Fig. 9. Energy balance for an ISW shoaling through a turning point.
(a) Dots: d(Exp+ Ea)/dt. Dashed: ApsM. Solid: their sum.

Fig. 7. Contour plots of the density field (solid lines) and horizontal (b) Dots:d(Eyo+ Eg)/dt. Dashed:ffpu’w%. Solid: their sum.
velocity field (colours) for an ISW shoaling through a turning point. Note different scales used in each panel.
(a) Initial wave ¢ =0). (b) t =150s. (c) t =300s. The white

ions indicate regi h 0.0013ms1, . . .
regions indicate regions whepef < ms mulation is conserving energy to high accuracy and that the

changes in the total and second-order perturbation energies
shown in Fig.8 are accurate. It also shows the importance of
the pressure work and shear production terms in maintaining
the energy balance.

Results from several simulations are shown in Fiif3.
and 11 Three runs, using initial available potential ener-
gies of 10, 20, and 30 J™ were done for/,, = —0.1 and
—0.2m s 1. The simulations using the largest waves were
discontinued part-way through because of strong overturn-
ing. One run using an initial APE of 103 for a surface
current flowing on to the shelf, witl,, =0.1ms!, was
also done. Figur&0 compares the evolution df,, Ekp and
their sum. For the cases with flow off the shelf both the avail-
able and perturbation kinetic energies increase initially as the
waves shoal. The increase becomes larger as the wave am-
Bt el plitude and strength of the counter-current increase. For the

case with an on-shelf current boffy, and Ekp decrease as

the wave shoals. This wave propagates faster than the oth-
ers and reached the right boundary shortly before the end of

Fig. 8. Energetics for an ISW shoaling through a turning point. the run. This accounts for the slight dip in values starting at
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(a) Solid curve: Ea. Dots: Eyp. Dashed:Eyp. (b) Dots: Ea— aboutr = 360s.
Ea(0). Dashed:Ey,— Eyp(0). Solid curve: their sum(c) Dots: Figurellshows the relative change in the total energy. For
Ea— E(0). Dashed:Eyo — Exo(0). Solid curve: their sum. the cases witll/,, = —0.1 m s~! the total energy increases by

a factor of about 2.2 for the smallest wave and by about 1.5
for the largest wave. For the case with an on-shelf current

decreases. The increase in the total perturbation energy i§'€ total energy decreases by about 50%. For the case with

approximately double that of the second-order perturbationthe stronger off-shore currents the total energy increases by a
energy. factor of about 35 for the smallest wave. This strong increase

The energy balance is shown in F&. The top panel com- occurs because the initial perturbation kinetic energy is neg-

pares the terms in the perturbation energy balance equatioﬁt've with almost the same magnitude as the initial available

(30), while the lower panel shows the terms in the Second_potential energy, making the total initial energy perturbation
order energy balance equatidg). These show that the si- V€'Y small.
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100 E R N S 1 Fig. 11. Evolution of total perturbation energy normalized by the
0 100 200 300 400 0 100 200 300 400 initial energy. Same cases as in Fi. (a) U, = —0.1ms™ 1.
‘e ‘e (b) Un =—0.2ms"L
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Fig. 10. Evolution of the perturbation energy for simulations of in-
ternal solitary waves passing through a turning pofat.b) Avail-
able potential energ¥a. (c, d) Perturbation kinetic energEkp

(e, f) Total perturbation energffa+ Ekp (a, ¢, e) and (b, d, f) are
for U, =—0.1 and—0.2ms™1, respectively. Curves are for dif-
ferent initial wave amplitudesEa(0) = 10 (solid), 20 (dots) and 30
(dashed) Jml. Dash-dot curve in panels (a, c, e) are for wave with
Ea(0)=10JnT1andU, =01ms?

5.3 ISW reflection

We next consider the case of an ISW reflecting from a sloping

boundary. Because strong wave breaking occurs in this casgig. 12. Contour plots of the density field (solid lines) and hor-
we solve the Navier-Stokes equations with constant viscosityizontal velocity field (colours) for a shoaling ISW with the py-
and diffusivity (107 and 10°m?s~1, respectively) lamb  cnocline intersecting a sloping bottom boundarfa) ¢ = 25s.
and Nguyen2009. The choice of these sub-molecular val- (b) t=45s.(c) = 60s. The white regions indicate regions where
ues is explained below. A no-slip bottom boundary condition |4/ <0.0013ms’

is used. The bathymetry for this case is given by a smoothed

iecewise-linear topography of the form
P pography cases the background current is given by

Ss . .
h(x)= ES (inttanh(x, x1, w) — inttanh(x, x2, w)), (46) U(Z) — —0.16_400Z2 msL (48)
where which has a negligible value of4x 10-°>ms™1 at the top
. , of the shelf. The background density is the same as that used
inttanh(x, xo, w) = / (1+tanh<x —x0)> dx’ in the shoaling ISW case. The pycnocline now intersects the
” —oo w ' slope. The initial wave, located at= —10 m, has an APE of

X—Xxo 10Jn7! and an amplitude of 0.15m. As the wave shoals it
= x—xo+wln <2C°S"( )) (47)  breaks and some of its energy is reflected and the rest is lost
to viscous dissipation and mixing. The wave breaking and
is a function whose slope varies smoothly from 0 to 2 atreflection process is shown in Figj2 while the evolution of
x = xg over a length scala. Thus, the slope of the topo- the wave energies is shown in FiB. As the wave shoals the
graphyi(x) smoothly changes from 0 t& at x = x1 and APE increases while the perturbation kinetic energies (both
then smoothly decreases to zeraxat For this simulation  Eip and Exp) decrease, before returning to close to their ini-
Ss=0.2, w=0.1m andx; =0. The value of> is chosen so tial values. The total perturbation energy increases during the
that the height of the shelf is 0.85m. In contrast to previousbreaking/reflection process after which it decreases slightly

www.nonlin-processes-geophys.net/17/553/2010/ Nonlin. Processes Geophys., 56858610
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Fig. 13. Energetics for a shoaling ISW undergoing reflection.
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-30.0

Fig. 14. Contour plots of the density field (solid lines) and hori-

(2) Solid curve: Ea. Dots: _Ekp- Dashed: Exo. (b) Dots:  zontal velocity field (colours) for the deep seich@) Initial state
Ea— Ea(0). Dashed: Exp — Egp(0). Solid curve: their sum.  (+ =0). (b) t =60s. (c) r = 120s. The white regions indicate re-
(c) Dots: Ea— Ea(0). Dashed:Eyo — Exo(0). Solid curve: their  gions whergu| <0.0013ms 1.

sum.

(Fig. 13b). Atthe end of the simulation itis about 10% larger quarter of an internal seiche period, the pycnocline is hori-
than it was initially. The small values of the viscosity and dif- zontal. Associated with the relaxation of the pycnocline are
fusivity were used to illustrate the fact that the total pel’turba-rightward”eftward currents beneath/above the pycnocline. A
tion energy can increase after reflection in spite of the mixingshear wave can be seen propagating leftward onto the shelf.
and dissipation associated with the wave breaking processt r = 120 s the pycnocline is close to its maximum posi-
In contrast, the second-order perturbation energy decreasefe slope. Shear instabilities have formed in the shear layer

monotonically (panel c).

5.4 A deep water internal seiche

The final case considered is that of a deep water internal se

iche. The symmetric bathymetry consists of two hyperbolic-
tangent shelves at either end of the domain of the form

)l 52)

with shelf amplitudesz = 0.5m and withxg =15m and
d =2.0m. The left and right boundaries arexat =30 m.

hix)=—= <2+tanh< (49)

above.

To calculate the APE we us&(z) as the reference den-
sity If the shelf was given by step like topography (given by
— 0), this would be the sorted density field however be-
cause of the sloping sidewalls of the basin the sorted density
field will be slightly different. Thus there is a small time in-
dependent error in our calculation of the APE however we
are only interested in variations in the APE which are unaf-
fected by our choice of the reference density.

When the sloping pycnocline is released the internal se-
iche, confined to the basin, evolves as the initial APE is
converted to KE. Figurd5 shows the evolution of the in-

The initial stratification stratification consists of a sloping py- ternal seiche energy. In panel (a) the perturbation kinetic

cnocline specified by

p(x,2,0) = p(z—ax) (50)
wherep is given by @1) with Ap =0.04, zpyc=—0.8m and

dpyc =0.025m. The initial slope of the pycnocline is=

energyEkp, the APE Ea and their sum are shown. Since
u’' = 0 initially Ekp(O) It rises whileE, falls as APE

is converted to kinetic energy The total perturbation energy
Ep= Exp+ Eq is not constant, rising by about 70% after a
quarter of a seiche period after which it falls until the end of
the run (at approximately 5/8 of a seiche period). Panel (b)

—0.005. Above the shelves a surface trapped current of theshows the time evolution afyo, E4 and their sum. The to-

form (42) is added usind/,, = —0.1ms 1, zs=—0.2m and

ds=0.05m. U is effectively zero at the top of the shelves.
Figure 14 shows the density field and velocity fields at

t =0 and at two later times. At=60s, approximately a

Nonlin. Processes Geophys., 17, 5588 2010

tal second-order energy perturbation is almost constant over
the first 60 s after which it rises. It has doubled by the end
of the run. In panel (c) we verify the energy balance equa-
tion (30). This shows that the change in the total energy seen

www.nonlin-processes-geophys.net/17/553/2010/
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Fig. 15. Energetics for deep seiche caga) Dots: Ekp. Dashed: Fig. 16. Same as Figl5 except that surface current is in opposite
Ea. Solid: their sum(b) Dots: Ey,. Dashed:Ea. Solid: their sum.  direction.
(c) Dots: d(Exp + Ea)/dt. Dashed:ApsM. Solid: their sum.

in panel (a) is accounted for by the pressure drop across thl%]nt” the pynocline levels out at about=60s. Fluid above

domain which results in fluid outside the domain doing net e pycnocline is now accelerate(_j to the right. The pressure
drop across the basin reverses sign and the pressure exerted

work on the fluid in the interior. by fluid outside the d X et d th i th
Results for a case with the surface current in the oppositey uid-outside the domain acts to decrease the energy in the

: - P : L system.

irection are shown in Figl6. Th rturbation kinetic en- . . L . . .
direction are s own die € pertu bat'o et ce It is clear that this behaviour is associated with the choice
ergy decreases initially and becomes negative as the mducedf - ) ) )

. o of boundary conditions. One can imagine constructing a pe-
currents act to reduce the horizontal velocity in the Surfaceriodic series of shelves and basins. arranaed in an annulus
current. In contrast, the second-order energy rises monoton-. .~ ) . L 9 . '
ically as in the previous case with identically sloping pycnoclines in each basin. When

' released from rest the flow would be somewhat different be-
cause the pressure perturbation would have to be periodic.
Now as the pressure rises/falls above the depressed/elevated
edges of the pycnocline a rightward flow would be forced
across the tops of the shelves. Associated with the acceler-

ation of this rightward flow the pressure perturbation would

In the above cases that did not include viscosity we have seeq ;
. : ecrease across the tops of the shelves in such a way that the
that the change in the total perturbation energy can be ac-

counted for by the net horizontal pressure gradient that formés)rr]i?\?gsr‘e perturbation remains zero at the midpoints of the

across the domain. This is a consequence of the boundary TR - —
i . . . The use of arigid lid is an essential ingredient in the results
conditions used in the model. Consider the deep seiche, . : . o .
. . . of these numerical simulations because it is responsible for
When the pycnocline is released the fluid beneath it flows, . ' :
: . . forcing the pressure field to remain constant on the top of the
rightward as a consequence of a negative pressure gradien

As the left half of the pycnocline drops and the right half rises shelves. If ther_e was a free surface tr_u_s would not be possible.
. ; . In the deep seiche case we can anticipate that surface waves
the fluid above the pycnocline will be accelerated to the left.

This requires a positive horizontal pressure gradient, i.e th(\aNOUId be generated above the edges of the sloping pycno-
quires a p ntai p 9 L 70 cline beyond which the pressure field would be unperturbed.
pressure is higher above the right half of the pycnocline tha

it is over the left half. On the shelves the boundary condi-n]—hIS is verified in the next section.

tions used in the modekl( = 0) prohibit the fluid from ac-

celerating. Thus the pressure is horizontally uniform on the7 = The deep internal seiche with a free surface

shelves. The result is that the pressure is higher at the right

boundary that it is at the left boundary. Because the fluidTo further explore the mechanism behind the change in to-
enters the domain at the right boundary and leaves througkel perturbation energy we now modify the deep internal se-
the left boundary { is negative) the work done by the fluid iche case by adding a free surface. This is done by adding a
outside the domain, during the early stages of the flow evoludayer of air 0.5 m thick above the water column and solving
tion, acts to increase the energy in the system. This continuethe non-Boussinesq equations. The background density field

6 Mechanism for the change in total
perturbation energy
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consists of a layer of alr,W'th density 1 kg‘n’j a fresh wa- Fig. 18. Vertically integrated kinetic energy perturbation for the
ter surface layer of density 1000 kgthand a bottom layer deep seiche cases: comparison of Boussinesq and non-Boussinesq

of density 1040kg m®. A sharp interface has not been in- simylations. Solid line: Boussinesq (domain betwes80 m) us-
corporated into the model so the “free” surface is a diffuseing 5y = 1000 kg 3. Dots: Boussinesq using, = 1020 kg n3

surface of finite thickness. The background density is giver(virtually indistinguishable from solid curve). Dashed line: non-
by Boussinesq(a) t =10s.(b) r =20s.

_ Z—Zpyc
1 )) = 1040—20( 1+tanh| ———= . .
Po(l+p() < + < pyc )) of reference density. The results from the two Boussinesq

— simulations are indistinguishable in Fi@8. In the non-
999 ( 1+tanh(z zm)) kg m-3,

(51) Boussinesq case with a free surface the kinetic energy above
the basin is lower than in the Boussinesq simulations. In ad-
The free surface is atsurr = 0 with a thicknessdsyrr = dition there are negative values at the two sides of the basin.
0.002m. The pycnocline depth and thickness is the same a¥his is due to the presence of surface waves generated above
in the Boussinesq version of the deep seiche. The same backie edges of the pycnocline. At the right side the free sur-
ground velocity field is also used with the current extendingface is pushed up and a rightward propagating surface wave
up above the free surface. of elevation is generated. The currents induced by this wave
The non-Boussinesq simulation with a free surface is veryare negative above the free surface and positive below it. The
computationally demanding for several reasons. First theesultis that the horizontal velocity in the surface current be-
projection operator must be calculated at each time stepow the free surface is reduced with a concomitant reduction
which increases the run time by a factor of 4-8 per time stepin the kinetic energy since the kinetic energy perturbation
(depending on resolution). In addition a much higher verticalin the overlying air is negligible. At the other end of the
resolution was required to resolve the thin free surface. Therdasin the downwelling pycnocline results in the generation
is also a time step restriction associated with wave propaof a leftward propagating surface wave of depression. The
gation speeds. The use of a free surface introduces surfacessociated induced currents are again positive below the free
waves into the system and a concomitant reduction in thesurface and the kinetic energy perturbation is again negative.
time step is necessary. The presence of surface waves al®y r = 20 s (panel b) these surface waves have propagated
results in the requirement for a longer domain. Hence onlyfurther onto the shelves on either side of the basin with the
one simulation has been done and it was run for 40 s. leftward propagating wave having a faster propagation speed.
Figure 17 shows the time evolution ofyp, Ea and their An important question is how energy is split between the
sum. The total energy remains nearly constant (it decreasesurface waves and the internal waves. The energy in the sur-
by less than 1.2%). In comparison, in the Boussinesq caséace waves is dominated by the kinetic energy perturbation,
with a rigid water surface the total perturbation energy hadit being first-order in the wave amplitude while the potential
risen by about 50% in the same period of time. The fact thatenergy in the wave is second-order, which is negative. This
the total energy is constant in this case is a consequence @f illustrated in Fig.19 which compares the total vertically
the pressure rise across the domain being reduced by threategrated energy perturbation for the Boussinesq and non-
orders of magnitude. Boussinesq simulations at=20 and 40s. On the shelves
Figure18 compares the horizontal distribution of the ver- the perturbation energy in the non-Boussinesq simulation is
tically integrated kinetic energy perturbation for the deepnegative. Above the basin the energy is similar in the two
internal seiche cases. The Boussinesq case discusseadses, being slightly smaller in the non-Boussinesq simula-
above is obtained from the non-Boussinesq case by usingon. Both cases agree in some of the fine details, such as the
p0=1000kgnT?3 as the reference density. An additional feature betweem = —18 and—16 m atr =40s. In the non-
run usingpp = 1020 kg nT° as the reference density (giving Boussinesq simulation an increase in total energy above the
Ap =0.0392) was done to test the sensitivity to the choicebasin is compensated for by a negative energy perturbation

surf
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1o E if the water depth is not constant. This occurred in all three
€ o8- M E cases in which the water depth varied and which used a rigid
o o2F - 3 lid at the water surface. In the case of a flat bottomed domain

| - e E it was shown that the net pressure change must remain zero
e e x (m) “ % and hence the total perturbation energy remains constant. In
contrast the second-order perturbation enefgy+ E, need
_ o[ ® ] not remain constant. For the case of an ISW reflecting off a
”‘_s) oaE E sloping boundary it was demonstrated that it is possible for
wozm e E the total mechanical energy to rise after wave breaking oc-

02 0 5 0 o cured in spite of energy loss due to dissipation.

x(m) It was argued that the change in mechanical energy was a

Fia. 19, Verticallv i q bati for th consequence of the lateral boundary conditions which con-
9. 19. Vertically integrated energy perturbatiob + Ea, forthe o 0ina the inflow/outflow fluid velocity to be constant, the
deep seiche cases: comparison of Boussinesq and non-Boussmesg S . . . .
use of a rigid lid, and variable water depth which, in combi-

simulations. Solid line: Boussinesq (domain betwee30 m) us- . .

ing po = 1000 kg 3. Dashed line: non-Boussinestp) 7 = 20's. nation, can support a pressure change across the domain. To

(b) 1 = 40s. test this the deep internal seiche case was repeated by drop-
ping the Boussinesq approximation and adding a layer of air

above the water column, the air and water being separated

associated with surface waves. The similarity of the enerby a diffuse free surface. In this simulation the pressure drop
gies above the basin in the two simulations suggests that thacross the domain was reduced by three orders of magnitude
change in total perturbation energy in the Boussinesq simuand mechanical energy was almost constant (to within 1%).
lation may be a useful approximation of the change in theSurface waves were generated which carried energy away
baroclinic wave field in the non-Boussinesq case, howeveirom the basin containing the deep seiche. It appears that
this does not take into account the fact that some barotropi¢he absence of these waves in the rigid lid, Boussinesq simu-
energy must be present over the basin in the non-Boussinedgtion may account for the increase in energy in that case and
simulation. This needs further investigation. that the change in total energy in the Boussinesq simulations
may accurately predict changes in baroclinic wave energy.
The results highlight the need to investigate the role of a
8 Conclusions free surface in the context of shoaling ISWSs. This will be the
subject of future research.
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