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Abstract. The problem of the linear instability of quasi- ments and numerical simulations. These studies have how-
geostrophic Rossby waves to zonal flow perturbations is in-ever left largely open the question of the actual mechanism
vestigated on an infinitg-plane using a phase dynamics for- responsible for the channeling of the flow energy to the zonal
malism. Equations governing the coupled evolutions of acomponents.
zonal velocity perturbation and phase and amplitude pertur- Figurel sketches a conversion mechanism from waves to
bations of a finite-amplitude wave are obtained. The anal-zonal flow, originally proposed as a Rossby wave instability
ysis is valid in the limit of infinitesimal, zonally invariant mechanism byl(orenz 1972, and later mentioned as a pos-
perturbation components, varying slowly in the meridional sible forcing agency for jets bylanfroi and Young(1999.
direction and with respect to time. In the case of a slow sinu-A finite-amplitude Rossby wave interacts oglane with
soidal meridional variation of the perturbation components,a zonal flow perturbation. The surfaces of constant phase
analytical expressions for the perturbation growth rates aranove to the West. The zonal flow tends to distort them. At
obtained, which are checked against numerical codes basetlis point, it is easy to see that, the waves being transverse,
on standard Floquet theory. fluid particles, whose velocity is parallel to the wavefronts,
need to take a turn to the West, hence leave eastward mo-
mentum, when they cross the zonal flow perturbation. This
1 Introduction continuous deposition of eastward momentum by the wave
produces a positive feedback mechanism leading to exponen-
There has been in recent years growing recognition of thdial growth of the zonal perturbation. Thteeffect, which at
existence in the mid-latitude atmosphere and oceans of théirst seems not to play a key role in the mechanism, acts sub-
Earth as well as in the atmospheres of gaseous planets dly as a “detuning” influence, in allowing the amplitude and
large-scale persistent zonal je@alperin et al.2004 Maxi-  phase perturbations to propagate at the group velocity asso-
menko et al.2008. These features have also been observedtiated to the wave, and non-zonal flow perturbations at their
in a wide variety of numerical or analytical settinggafetta ~ own phase velocity. Only in the case of zonal perturbations
1993 Vallis and Maltrud 1993 Manfroi and Young 1999 growing on purely meridional wave fronts does its influence
Nakano and Hasumi2005 Thomson and Young2007  vanish.
Berloff et al, 2009 Dritschel and Mclintyre2008, which If quantitatively correct, this mechanism provides a very
seems to imply that their sustaining mechanism is extremelysimple framework in which to interpret the growth and sus-
generic, and has minimal dependence on details of the flowained existence of zonal jets. Indeed, very little require-
configuration. One essential requirement seems however thagents are imposed on the dynamical mechanisms respon-
a “g-effect” be present. sible for the propagation or forcing of the waves. It seems
The appearance of zonal jets as end-productg-pfane  actually possible that the same argument could be applied to
turbulence has also been predicted long ago in the pionee® population of such waves with very generic spectral distri-
ing studies Rhines 1975 1977), based on theoretical argu- bution.
A first consistency check of this idea is to try to use it in
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Fig. 1. Sketch of the Rossby wave instability mechanisthrep-
resents the zonal flow distribution. The dashed lines represent the
wave fronts, and the full arrows represent the associated flow veloc-
ities.
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The problem of the instability of a barotropic Rossby wave
to perturbations on g-plane has a long history. It has been Fig. 2. Sketch of the base flow Rossby wave in nondimensional
in particular studied byl(orenz 1972 Gill, 1974 Sivashin-  variables. The wavevector has unit length, and is at afgléth
sky, 1989, and in great detail byManfroi and Young2002  respect to the zonal direction.
and (ee and Smith2003. Many of these studies used trun-

cated Floguet expansions, which renders analytical Progress 1 mase flow and perturbations
difficult. '

Guided by the argument presented above, we have insteaghe flow whose stability we analyze in this section is a

decided to consider the instability as the growth of a phasenonochromatic Rossby wave, whose streamfunction is given
perturbation of the base pattern. This heuristic approach hagy:

the decisive advantage that the phase perturbation is uniform
in the zonal direction, and that its evolution is governed by v (x, y,t) = Re(ae"[’”‘”y“‘”]),
constant-coefficients equations. This simplifies the algebra
considerably, and permits us to obtain relatively easily ap-and whose dynamics on an infinigeplane is governed by
proximate analytical expressions for the growth rates, as welfhe two-dimensional barotropic vorticity conservation equa-
as to start investigating the (slightly) more realistic setting of tion:
the reduced-gravity quasi-geostrophic mod_el. _ B A+ o+ J (U, AY) =0,

In Sect.2 we develop the phase dynamics formalism in
the barotropic quasi-geostrophic dynamical framework. InwhereJ(f,g) =20, fdyg —dy fdxg denotes the Jacobian op-
Sect.3 we extend it to the reduced-gravity quasi-geostrophicerator. We defing = atar(//k) the angle the wavevector
setting, in order to study the effect of the introduction of a makes with the x direction, we choose as a length scale
stratification. In Sect4 we present a physical interpretation 1/vk?+12, and as a time scale’k?+1?/. With this
of the instability mechanism based on potential vorticity con-choice of scales we obtain the governing equation in non-
servation, which is thus valid in stratified settings. We finally dimensional form as:
conclude and present possible directions for future work in

Sect.5. Ay + 0 +MJ (Y, Ay)=0 (1)
and the base flow streamfunction, depicted in Bj@s:
2 Barotropic case Yo(x,y,1)= Re(ei [005(9)<X+l>+5in<9>y]).

We study in this section the linear instability of a plane . AS in (Gill, 1974, the non-dimensional number control-
Rossby wave in the two-dimensional barotropic model. Thelind the effect of non-linearity, has been defined as:
setting is the same as that @i(l, 1974, but we restrict our- a (k2+12)3/2

selves to perturbations containing a purely zonal flow com-M = ——— -2,
ponent. Our aim in this section is to work out an example B

of the phase-perturbation approach and show how it can eadé is easy to see that it is equal to the ratio of the velocity
the analysis with respect to the classical Floquet analysis. perturbation magnitude to the phase speed of the wave.
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L. Marié: Phase instability of quasi-geostrophic Rossby waves ofi-{flane 51

As is well known, such a pure wave is an exact solution of
the equation of motion for arbitrary values &f, but can be ant
unstable to perturbations. The standard analysis using Flo-
guet theory proceeds from there by linearizing the equation
of motion aroundyg, and studying the growth or decay rate Zn
of perturbations of the form

,(;(x’y’t)ze)utel'[KX-FLy]{b\(x’y)’ > 0f

with fi a function of period 2 in the base flow wavevec-

tor direction. This course of action, which we have usedto 27"

check the results of the phase dynamics analysis, is further

pursued in AppendiA. The relation between the Floquet _axt

and the phase dynamics approaches is investigated in detail

in AppendixC. -m6 0 w6 —4m  -2n 0 2n 4n
The insight provided by the instability mechanism alluded (2) 0 X

to above, though, entices us to introduce the perturbation in
the form of slowly varying perturbations in the phase of the

base flow Rossby wave. In order for the analysis to remain
tractable, we perform a multiple-scales expansion and con- <

4mr

sider the phase perturbations to be small (of oejeand to T n
vary only in the y-direction, over large length scales of or-

der 1/8. To account for the perturbation zonal mean velocity,

we introduce a separate slowly-varying component of theto- >0y

tal streamfunctiong W (§y,¢). The complete streamfunction

finally reads , n<
v(x,y,1)

=eW(8y,1) -4

+Re<ei[cos(@)(x+t)+sin(6)y+8¢(8y,t)+is§x(Sy,t)]) @) -6 0 W6 —4n

27 0 27 4n
X
and the dynamical variables considered arey andU =

—dy V. In the following we denote aB the slow space vari-  Fig. 3. Effect on the base flow Rossby wave of Fiyof (a) a real
ablesy. We emphasize that all three functiopsy andU phase anomaly#(# 0, the wave front shifts to the west fgr> 0).
are real. The influence af, (resp.x) perturbations on the (b) Imaginary phase anomaly & 0, the wave amplitude is low for
base flow stream function of Fi@ is depicted in Fig.3a x >0).

(resp.3b).

2.2 Zonal mean flow

The equation of motion for the zonal flow perturbation can be
obtained systematically by carrying the multiple-scales anal-
ysis to ordees3. This s rather tedious, and the end result can
be obtained much more straightforwardly by considering di-
rectly the zonal average of EdL)( Denoting zonal averages

by <- >, we have: QU =M0y <.y >=M < 0, Y.0y, ¥ > . (3)

we can integrate once with respecttto obtain:

<HAY >+ <y >+M < J(Y,AY)>=0 This equation expresses that the zonal mean flow is forced by
convergence/divergence of the Reynolds tensions associated
with the waves, or equivalently by meridional transport of
relative vorticity across latitude circles. Clearly, only com-
ryy W+ M0y < 3.0y, >=0 ponents ofyr with the same dependencies on the fast vari-

ables as the base flow waves can produce Reynolds tensor
Supposing the forcing mechanism of the flow to be steady, components at ordet.

Straightforward manipulations lead to the following equation
for the zonally averaged component of the flow:

www.nonlin-processes-geophys.net/17/49/2010/ Nonlin. Processes Geophys. 687 2090



52 L. Mariée: Phase instability of quasi-geostrophic Rossby waves ofi{flane

2.3 Multiple scales expansion, useful equalities 2.5 Order &4, phase evolution equation

At this point, we introduce the multiple time and space scalesat orderes, Eq. (1) reads:

expansion

Ly
W(X’y,t) =_8IX»(//-O

1 .

=eW (3y, t, 5:,5%) +C.Tw) [0r,¢ +SiN(20)dy ¢ — M coK0)dy W] dx o, (5)
—i—Re(ei[°°9(9>(X+f)+3in<9))’+8¢(5%%"52t)+i63)<(5>wf,5fv52f)]) where, is the operator governing the linearized evolution of

perturbations to the base flow, i.e.

2
+88w1(x,y,8y,t,8t,8 t) Lf= 3Af+0df+MJo,[A+1]f),
here spatial derivatives are understood as taken in the fast
52 ( .8 ,t,8t,82t). 9 W : aret nin

+ed™ye(x.y.dy “) space-variables only. It is quite easy to see thas anti-

This expression must be plugged into EB), &nd the sys- hermitian (its terms contain only odd numbers of partial
tems obtained at order (i.e. the linearized dynamics of in- derivatives off), and that the unperturbed streamfunction

finitesimal perturbations) for increasing orderssiare to be ~ and its x-derivative are in its kernel. For E§) o be solv-

studied. able foryrq, it is thus necessary that its right-hand side be
The following few identities are of frequent use in the Orthogonal toyo anddy o, which is only possible if
computations: dix =0 6)
— The fast spatial derivatives of all the quantities we ma- d;,¢ +Sin(26)dy¢ = —Mco6)U )

nipulate satisfy: . . o .
P fy We thus obtain a first equation linking the evolution of the

sin() phase perturbatiop on the slow time scale; with the zonal
O f=0xcf 0yf= maxf- velocity perturbatiorU. It is easy to recognize on the left-
hand side the propagation of a slowly varying perturbation

— This entails that jacobians systematically expand as: of the “carrier” wave with the associated group velocity. The
term on the right-hand side is also easily recognized as the

J(f,g) =5[0, fdyg —d:gdy f]. phase pe_rturbation due to the z_advection of Wavefronts _by the
perturbation zonal mean velocity, one of the essential ingre-
— Finally, dients of the physical mechanism presented in SkectAt

this point, we see that imposingand x to satisfy Egs. §)

and (7) renders Eqg.§) autonomous. This means that EB) (
describes the linearized evolution of a free perturbation to
Yo, i.e. the stability ofi/g. It is for instance the starting point
of the Floquet analysis of the problem, a path we have cho-
sen not to follow. It is thus unnecessary to add/asa new
J(f. =0 perturbation, and we set; =0.

Avo=[ 14280,y +5%yy | v,

— and obviously at all orders

2.6 Order 82, amplitude evolution equation
2.4 Low orders

Proceeding now to ordes? in Eq. (1), we obtain:

Ly

=—0yyV¥
This means that the phase perturbation depends on the slowa 3
time variablest; = ¢ and tp = 82 only: the base flow 102? cos6) Y0

Rossby wave satisfies the Rossby waves dispersion relation 3 : :
; ) o - +sin(20)dy x —2sin(9)a —cog6)0
and this absorbs all fast time-variations. [ uX (20)3y x 6)dyw ©) YY(/)WO

At ordere, Eq. () boils down to
d:¢ =0.

+2M Sin(0).dyy ¢ .Yo0.0x Vo, (8)

Again, this equation must be solvable f@s. It is easy from
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the definition ofL to see that its kernel contains not onty Replacingd,, ¢ by its expression obtained at orde, we
and d, o but also all the functions that are independent of obtain:
x andy. As L is anti-hermitian, we see that the solvability

conditions read: 9y x +iN(20)dy x
ByyW = 0 — —Msin(20)dy U +cog6) [1—4sir12(9)] dyy e 9)
9,0 =0

. . Equation B) is this time not autonomous when we impose its
Ory X +SIN20)dy x = 28INE) Iy, +COKO)dyy ¢ right-hand side to satisfy the solvability conditions. Itis clear
The first of these equations imposes the time-evolution offfom its right-hand side that the solution will vary with time
the meridionally varying component of the zonal mean flow and space as the produkt)o. o, i.e. twice as fast ago. As
to take place on slow time scale®. still enjoys some free- Mmentioned in Sect2.2, such components cannot contribute
dom on the fast time scale, however, in that we are still freeto the Reynolds tensor that drives the zonally averaged mo-
to add tow a component of the form(r)Y, corresponding  tion. Explicitly solving for v, though feasible, is thus not
to fast changes in the uniform component of the zonal velocN€cessary.
ity. This is so because the vorticity EdL)( which we have
chosen as the starting point of our study, filters out the uni-2.7 Zonal velocity perturbation evolution equation
form component of linear momentum. If this component of
flow motion is of interest, as for instance in studies of its re- At this point, we are still lacking a prescription for the slow
sponse to the growth of unstable disturbances, it is necessatyme-evolution ofU, the zonal mean velocity. This last piece
to complement Eq.1) with a second equation describing the of information can be obtained by carrying the multiple-
coupling of the system with the forcing mechanism responsi-scales analysis one order furtherdin The same answer is
ble for the basin-scale motion. Introducing such an equatiorhowever obtained much more easily by directly plugging the
provides a prescription for the time-variation of the uniform expression4) in the equation of motion for the zonally av-
component of linear momentum, usually imposing it to oc- eraged component of the flo)( and using the knowledge
cur on slow time scales. In the following we consider the about the solution gained at the previous orders. Keeping
system to be subject to time-independent forcing only, andonly terms of first order im one has
setd; W =0 altogether.

The third of the equations describes the slow time-9;U = M <0,v.0y,¥ >

variation of x, the imaginary part of the phase perturbation, =M < 3,Y0.0yy V0 >

which describes local amplitude modulations in the carrier 2 )

Rosshy wave. We see thatpropagates meridionally with =M [_S' ©) +5525'”(9)3Y¢] < yYo.Yo>
the relevant group velocity, and is coupled to the real part of o[ dyye 2sin®)

the phase perturbatiow, through the source terms on the +Mes ) —drx 0 < dxY0.0x Yo >

right-hand side. The first forcing term on the right-hand side

is not unexpected: the equation we have obtained is describNoting that products of terms whose fast spatial variations

ing the evolution of the wave amplitude. It is thus concep- are in quadrature cannot contribute to a zonal mean, one fi-
tually similar to the equations governing the Rossby wavesnally obtains

activity density used in the study of “wave-mean flow in-

teraction” (see e.gVallis, 2006§. A consequence of these M .

equations is that the mean squarsatential vorticity (and Oy U = 7(005(9)8yy¢>—sm(29)8yx)

not mean squareamplitudg present in wave packets is con-

served during their interaction with a zonal flooing and ~ We recognize in the first term of the right-hand side the cur-
Rhines 1980. This implies that the product of the fourth Vvature effect discussed in Sett.and in the second term the
power of the local wavevector length with the squared localéffect of local attenuations in the amplitude of slanted waves.
amplitude flows at the group velocity, and is to be conservedAt this point, condensing the notatidn+ 9., + ... back to

at lowest order in our system: whépg, which contributes ~ 9;, we can summarize the equations obtained for the time-
to the wavevector, varies with time, the amplitude must varydependencies af, x andV as:

simultaneously to keep the wave enstrophy density constant.

The second term on the right-hand side originates in the di-0:¢ = 8[—sin(20)dy$ — M cos6)U] + O (%)

vergence of the meridional component of the group velocity 3, y = §[—sin(20)dy x — M sin(20)dy U

due to changes in latitude 6§ ¢. +cos(9)[1—4sir?(9)]8yy¢] +O(53) (10)

U = 8% [cOS6)dyyd —Sin(20)dy x] + O(5?)

www.nonlin-processes-geophys.net/17/49/2010/ Nonlin. Processes Geophys. 687 2090
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2.8 Growth rates

0.05
We introduce in Eqg.10) the following ansatz for the pertur- 0.045
bation components: '
. 0.04
x = ellLY =] g ' 0.035
U U 003
_ o R 0.025 ¢
Equations 10) translate to the following eigensystem ipr 002
x, U andQ:
. 0.015
Q é?;L 0.01
1 X
L ﬁ/L 0.005
2sin(®) 0 M ip °
=cog) {[45#(9)—1] 2sin(9) 2Msin(9)j| x| /L (11)
—-M/2 Msino) 0 U/L 0.05
Q =0is an eigenvalue of systerh) for all values of9 (the 0.045
physical meaning of this is at present unclear. It is actually 0.04
true of the linearized equation of motioAZ), for zonal per- 0.035
turbations. The explanation is probably not straightforward, 0.03
as the structure of the associated stationary mode is highly a
non-trivial). The remaining two eigenvalues of the system - 0025°F
easily obtain as 0.02
0.015
Q4 =L[sin(Z@)iiMLs(G)\/l—4sinz(0)], (12) 0.01
V2
0.005
where the plus (resp. minus) sign corresponds to a growing
(resp. decaying) perturbation. 0
A graph of the perturbation growth rate obtained with
Eq. @2 for M =0.5 is presented in Figda, together with 0.05
the equivalent result obtained numerically via high-order 0.045
(Fig. 4b) and low-order (Fig4c) Floquet theory. We can see 004
that in its region of applicabilityl « 1), Eq. (L2) captures in '
a satisfactory way the dependence of the perturbation growth 0.035
rate with respect to the perturbation wavenumbeand the 0.03
primary Rossby wave directigh This proves that the phase 0,025
perturbation approach provides a sound framework for the 0.02 £
study of the problem at hand, and that it is worth extending '
to more complicated settings, as will be done in S&ct. 0.015
Equation (2) predicts that the largest instability growth 0.01
rates are obtained fer=0°, i.e. for Rosshy waves that have 0.005

a nearly zonal wavevector. It also predicts the sharp tran-
sition at® = 30° between instabilityq < 30°) and stability

(6 > 30°), as well as the prefactor in the linear dependence
of Im(2) with respect to the perturbation wavenumber
for small L. In the picture of the mechanism proposed in rig 4. Growth rates obtained fa = 0.5, as a function of the pri-
Sect.1, the transition means that only Rossby waves whosemary Rossby wavevector directidnand the meridional wavenum-
wavevector make an angle below°3@ith the zonal direc-  ber of the phase perturbatiah. (a) Analytical results obtained
tion can provide a significant source of energy to zonal jets,using Eq. 12). (b) Numerical results obtained with the Floquet
the most efficient being those with=0°. (Other Floquet code described in AppendiA§, with high-order expansiom(e
resuh:s' not presented here, show that Rossby waves paktlﬁlG}) (C) Numerical results obtained with the Floquet code
6 = 30° are still unstable to long, but non-zonal, flow per- With low-order expansion(e {—1,0,1}).

turbations). The more complicated dependencyof$2) on
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L and6 observed for larger values éfremains out of reach, 1
but seems of lesser oceanographic significance. Some of itc ;4
features could certainly be reproduced by carrying the analy-
sis leading to Eq.12) to higher orders i, but it is doubtful

that a simple analytical expression for the growth rate such 0.7 1°®
as Eqg. 12) could be obtained. 06

The Floquet results extend the analytical expressi@ ( 06g
in an interesting way and provide insight into the behaviour E
of Im(2) for largeL. In particular, we see that the instabil- 04
ity mechanism is scale-selective in that an optimal value of
L exists, for which the perturbation growth rate is maximal.
The dependence of the optimalwith respect taV is stud- 02
ied below, but we observe that it remains of order 1, and that
the highest growth rate is achieved o 0°, i.e. for purely % 1 > 3 i
meridional primary Rossby waves. Another remark is that M

pastd = 30°, the base flow Rossby wave is no longer unsta- )
ble to long-wavelength perturbations, as Et)(indicates, ~ Fg: 5. Growth rates for =0 as a function ofi/ and the pertur-
but to perturbations whose wavenumber is more and morér;)atlon wavenumbekL, as obtained with the Floquet code. The full

. _ line marks the maximal value df for which instability is possible
;harply selected asincreases beyond.SOThe correspond as a function of\f. The dotted line marks the value bffor which
ing growth rates are clearly below optimal.

. - R the instability growth rate is maximal as a functiondf The lines
The dependence of the instability growth rate foe O L= % (optimal growth rate) and. = % (marginal stability line)

with respect toM and L is shown in Fig. §). We see that
for small values ofM the range of unstable wavenumbers
shrinks towards 0, being bounded belowby- 0 and above
by L= M/+/2. This indicates that the range of validity of the tions to the base wave, and not on changes on its planform
approximate expressions(@) also diminishes. At this point, gch as needed by a “varicose” mode of instability, for in-

however, we enter the range of validity of the approximategiance. This finding actually carries over to the case of non-
expression18), which is valid in the smalM, L limit. An- zonal perturbations (not shown).

ticipating on the results of the following section, estimates

of the optimal wavenumbek* and associated growth rate

Im(Q2*) inthe M <1 range are: 3 Quasi-geostrophic reduced gravity
(“one and a half layer”) case

have been marked to guide the eye.

M
L*=—
2 ) The phase dynamics approach has been applied to the study
Im(Q) = M- (13) of mixes of barotropic and baroclinic waves in the quasi-
4 geostrophic two-layers model setting. This work is heav-

A final remark is that the low-order Floquet approach pro- ily computational, and will not be presented here for the
vides extremely precise growth rate estimates. The systerfiake of brevity. We will instead sketch the study of the
can be solved analytically§X= 0 is again a solution of the reduced-gravity quasi-geostrophic “one and a half layer”
characteristic equation), but the expressions for the growtinodel, which captures, with more acceptable conciseness,
rates are cumbersome. The main motivation for the choice opome of the major differences with the purely barotropic case
the phase dynamics approach over its Floquet counterpart fdids for instance the introduction in the system of a length
the present study lies thus not in its accuracy, which is actuscale, the Rossby deformation radius, and the need to express
ally rather poor, but in the clear physical significance of the the physical mechanism underlying the instability in terms of
perturbation components, x, U, and the insight their ap- potential vorticity rather than linear momentum).
proximate equations of motion provide into the problem. The _ )
links between the phase-dynamics and low-order Floquet ap3-1  Equations of motion
proaches are analyzed in Appen@ixThere it is shown that . . . . .
a one-to-one mapping exists between the components of thI(Q Ith's s_e_ctlc_)nathf_e redduced-grawty quasi-geostrophic poten-
n =0,+1 Floquet perturbation angl, x andU. The Flo- tial vorticity Is defined as
quet expansion however makes no assumptions regarding the 12
scales of variations of the perturbations with respegtand ¢ =AY — ,—Hw,
yields more general equations of motion. The fact that it pro- &
vides very accurate estimates of the growth rates shows thathereg’ is the reduced gravity corresponding to the inter-
the instability indeed relies on phase and amplitude perturbaface bounding the active layer, aillis the active layer rest
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56 L. Mariée: Phase instability of quasi-geostrophic Rossby waves ofi{flane

thickness. We keep as a length scale the base flow wave3.2 Order 81, phase perturbation evolution equation
length divided by 2, in order to have a unit modulus base
flow wavevector. The non-dimensional potential vorticity At this order Eq. {4) reads:

then reads
g= Ay — By 0= L(Y1)
where —Boy ¥
2 KR .
B=7Eé%ﬁ3 —w;%UB+D%¢+WQ®M¢—MaHmMWL
4

is the inverse square of the non-dimensional Rossby deforwhere now

mation radius, and is a non-dimensional measure of strati-

fication. Small (resp. large} values correspond to a small Lf = 3 [A—B]f+0,f+MJo,[A+1] f).

(resp. large) base flow wavelength with respect to the Rossby

deformation radius. The £ operator is as before anti-hermitian, possesses a sim-
We adapt the non-dimensionalization time scale so thealar kernel, and the solvability conditions are straightfor-

phase velocity is 1 in non-dimensional units, i.e. we use asvardly obtained as:

atime scale 02 y
__A+BVEEE 8fl¢+sl'9”(+l) Iy = — 5 COSON
B B, W =0
The non-dimensional measure of non-linearity then reads
) 032 The equation governing the evolution of the phase perturba-
Y (k*+15)""(1+B) tion is just the transposition to the one and a half layer setting
B of that obtained in the barotropic case: the phase perturbation

propagates with the group velocity associated to the carrier
wave, and is forced by a Doppler effect term. This part of
W[AY — BY]+(B+1)dy +MJ (Y, AYr), (14)  the analysis carries over just as straightforwardly to the two-
layer and actually to the continuously stratified case, though
in these cases all the normal mode components of the zonal
Yolx,y,1) = Re(eilcoie)(X+l>+5i"(9>y]) ) velocity perturbations induce Doppler effect terms, which all

possess different weighting factors. As regards the equation
The evolution equation for the zonal mean flow perturbationgoverning¥, we see that, in th@ 0 case (corresponding
reads to a Rossby deformation wavelength not infinitely large with
3, [8yy _ B]\I/—i-May < 8.8,y >=0. (15) respect tp the base flqw wavelength), the vo_rtex st_re_tching

term, which is the dominant part of the potential vorticity at
Due to the appearance of the vortex stretching term in the pothe y-dependence length scale, forbids the zonal flow pertur-
tential vorticity conservation equation, this equation cannotbation to evolve on the first slow time scate

and the quasi-geostrophic equation of motibnréads

while the base flow streamfunction is again

be straightforwardly transformed into one 1@r This entails We solve the autonomous equation by choosing 0. In
many differences in behaViOUr, which will be discussed aSmore Compncated Settings such as the tWO_|ayer or the con-
the analysis proceeds. tinuously stratified models, non-linear advection of potential
We finally use fory, the same multiple scales expansion yorticity perturbations in one baroclinic mode by the other
as before: mode velocities induces forced contributions at sum and dif-
W (x,y,1) ference frequepcigs, and with different vertical strugtgres. In
these casegy; is different from zero, and must explicity be
=&V (5%&5!,521) solved for. At the next order in the analysis, the forced com-
+Re<ei[Cosw)(x+t)+sin(9)y+g¢(5},,[,5,,az,)ﬂ.ssx(sy,,’s,,szt)]) ponents interact again with the original waves, forcing back
resonant terms which appear in the solvability conditions for

2 the £52 problems. This two-stage process permits back and
+edyn (x’y’csy’t’&’(S t) forth transfer of energy between modes of different vertical
+852w2(x,y,8y,t,5t,82t). structures, and thus affects their amplitudes. It is thus ex-

pected that terms responsible for these exchanges occur in
As before, the base flow streamfunction has been definethe orderss (creation of the forced contributions) amé?
such that the equation of motion is trivially satisfied at or- (back-effect on the free waves) expressions. Taking account
deres®. of these effects renders the analysis heavily computational.
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3.3 Order 82, amplitude perturbation evolution to orderesS.

equation

853313 [828” — B] v

At this order Eq. 14) reads: = —Mdy < 0Dy ¥ >
0= L(Y2) =—M0dy < 0y Y0.0yy Yo >

— B,V =—M3dy < d 0. [—sin(@)z—Zaésin(Q)am - aazayyx] Yo >

. M .
+[(B+1) 8z, x +5in(20)dy x —cog6)dyy _882005(9) 3y < 0x 0. [dyyd — 25IN(60)dy x] 9, Vo >
—25in6)dy+, ¢ ] Yo

Again, zonal averages can only contain contributions from
products of terms whose spatial variations are in phase. We
finally obtain:

_(B+D
cog0)

—2MSin(0)dyy . Vo.0x Vo.

at2¢~ax I/fO

M _ .
9y [azayy - B] W = = [sin@0)dyy x —cos0)dyyre]
This equation can be solved fgr, if the following condi-
tions are met: Though itis notimmediately apparent at first sight, this equa-
tion has a very different meaning from that obtained in the

B,V =0 pure barotropic case, as can be readily observed by express-
0,9 =0 ing it in terms of the zonal velocity perturbation. The dynam-
sin(29) sin(9) cog#) ical variable dominating the dynamics of the zonal flow per-
X+ 1 Iy x = ZB—+1 Iy ¢+ B—+18YY¢ turbation is now the vortex stretching component of the zonal

flow potential vorticity. The growth of the zonal flow pertur-
The meridional vorticity flux divergence due to the amplitude py5tion is dependent, not on a convergence of the linear mo-
and phase perturbations vanishes again at this order, whichhentum fluxes present in the base wave, which would force
prevents an evolution of the vortex stretching associated tQne orders? relative vorticity term on the left-hand side, but
the zonal velocity perturbation. The third solvability condi- 4, 5 convergence of the potential vorticity fluxes. This differ-
tion governs the evolution of the wave amplitude perturba-gnce js further discussed below. We recall here the equations

tion. We recognize again in the right-hand side forcing termsgs gjow evolution of the Rossby wave phase and amplitude
caused by wave enstrophy density conservation. The firsgpiained in this section:

term serves the purpose of preventing wave enstrophy den-

sity variations due to changes in the local wavevector length,3,¢ =3 [_ SRR oy e+ M L ayw] +0@8%)
and the second of preventing variations due to changes in sin
— 8| _sin20) cos6) _Asi
the local group velocity. Both these terms carry over triv- %% = 6[ 55D 0 X+ (e [BH1-4SIP©)]dyr (16)
ially to the two-layer and the continuously stratified case. As M (Sénfﬁ)z aYY\y] 1063

mentioned above, though, other forcing terms correspondinga 52900 BIW — $3M [Sin(20)8vs y — COSE) o
to non-linear transfer of energy between the different baro- /[5%0ry =] 2 [SIN@9)dyy x =CostO)dyyy 9] +OG).
clinic modes of the base flow wave mix appear in these Cases s C|ear|y apparent from the third equation’ the System
These terms scale &2, and could probably be neglected in changes behaviour in the — 0 limit. This limit corre-
a first approach to the problem. sponds to the situation in which the Rossby radius of defor-
In the present case, the remaining forcing terms are ormation becomes infinite with respect, not only of the base
thogonal toyro andd, Yo, and can only forcey, components  flow wavelength, but also with respect to the scale of slow
with the same spatial and temporal frequencies. The prody-dependence. In this case all flow structures are governed
uct of yr» with functions with the structure ofp anddxo by the requirement of conservation of relative vorticity, and

can thus not have non-zero zonal mean, and will thus not beghe vortex stretching term becomes unimportant. This is the
able to force the zonal flow perturbation. It is thus not nec-case we have studied in the previous section.

essary to solve forr, in the present reduced-gravity case.
Once again, this part of the argument does not carry over t®.5 Growth rates
multiple vertical modes settings.
Again, we introduce in Eqs16) the following ansatz for the
3.4 Zonal perturbation evolution equation perturbation components:

Again, we resort to the trick of plugging the expression | ¢
of ¥ directly into the zonally averaged equation of motion | y = ¢/lLY =]
(15), as a shortcut to pushing the multiple scales analysis v

)< S)
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Equations 16) translate to the following eigensystem fﬁr
X, U andQ:

0.8
a O.Ga
Q|ix 04E
v 0.2
2sin) 0 -M 0
_ 8090 | p[1_a8P@)  osing)  20M S
B+1) -
( 2 M(B+1) Msin©)(B+1) 0
2(L2+B) (L2+B) 05
¢ 0.4
X zj a7) 035
v 02E
Once again§2 =0 is an eigenvalue of the problem (the phy- 0.1
sical meaning of this has again not been investigated). The 0
remaining two eigenvalues can be easily obtained as:
Lsin(20) L ML2cog6) |[B+1-4sirt(®)] (18) 0.25
= 1
ST B+D T (B+Y 2(B+L12) 02
Figure6 displays the growth rates obtained with the Flo- _ ™~ 015g
quet numerical code in the& =0° case, for increasing val- o1 £
ues of B, i.e. for decreasing Rossby deformation radii mea- o2 0.05
sured with respect to the base flow wavelength. The main 0
characteristics of these growth rates in the> 0 limit are 0 1 1\24 3 4

well recovered by formulal@), except for the existence of

a threshold value OM-_ A deSC”pt'Pn of the behavngur near rig. 6. Growth rates obtained using the Floquet numerical code
threshold can be obtained by settibgto be of ordes<, and  in the reduced gravity quasi-geostrophic setting Bo& 0.1 (top),
pushing the analysis one order furthesinThe analysis in B =1 (center),B =4 (bottom), as a function of the non-linearity
the generad case is tedious. The= 0° special case is how- parameted and the perturbation meridional wavenumbierThe

ever fairly easy, and one obtains the frequency inithe> 0, 0 angle is held fixed toQ The full white line marks the limit of
L — 0 limit as the unstable region of the parameter space. The dashed white line

marks the maximum growth rate for fixed. The thin red line

o _ L? 1 M2(B+1) marks the analytically calculated threshold valuénf
=0~ 118 2(B+L?)°

which agrees well with the Floguet results. The thresh-

old valueM, = z(f;ﬁ)z) for instability in theL — 0 limit dimensional form (the time scale also increases Bitland

agrees closely with the observed behaviour. Another interthe change oM when B varies for fixed base flow velocities
esting point apparent in Fig.is the fact that the scale selec- is not sufficient to compensate).
tion is essentially independent 8fand M for M > 2. The Figure7 compares the growth rates obtained analytically
most unstable perturbation has a non-dimensional wavenumand with the Floquet code fa¥/ =2 and B =0.1, 1 and
berL ~ 0.7 in all cases, corresponding to a meridional length4, as functions of the angk and the meridional perturba-
scale roughly equal to 1.4times the base wavelength. Théion wavenumbeL. Figure6 showsM = 2 to be well above
introduction in the problem of an intrinsic length scale, the the instability threshold fof = 0° for all these values oB.
Rossby radius of deformation, seems to have a small influOnce again, we see that the growth rates and their depen-
ence in this respect. The length scale which dominates théencies with respect t6é are satisfactorily captured by the
scale selection pattern is clearly the base flow wavelength. approximate expression EdL8) for L small. The range of
The introduction of the stratification, however, has a clearunstable values af increases withB in the predicted way.
influence on the growth rates themselves, which have drhe growth rates are quadratic with respeck tim the vicin-
marked decreasing tendency Bgises (i.e. as the Rossby ity of the L =0 axis. The shape of the unstable regions of
radius of deformation diminishes for a fixed base flow wave-the, L parameter space becomes complicated for values of
length). This is consistent with the~! scaling expected at L larger than 2. In this region of parameter space, waves
large M from formula (L8). This decrease is genuine, in the that are very slanted with respect to the meridional direction
sense that it persists even if the growth rate is examined in it€an be unstable to very short-wavelength zonal perturbation.
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Fig. 7. Growth rates obtained for fixed non-linearity paramates 2, as a function of the angteand the perturbation meridional wavenum-
berL, for B=0.1 (top), B =1 (center),B =4 (bottom). Left: Floquet numerical code. Right: Equati@8)(

Equation (8) obviously fails at capturing these details. Fi-

nally, a general remark is that the system behaves regularly in | | |

the vicinity of thed = 0° axis, and that the results displayed \ | \
in Fig. 6 were indeed representative. \ | \

4 Discussion <vo>>0

We have mentioned above the failure of the barotropic mech-
anism to explain the instability in the stratified case. The
argument fails because in the stratified case the zonal flow / N !
perturbation reacts via the vortex stretching component of its

potential vorticity, which is absent from arguments based onFig. 8. Sketch of the stratified Rosshy wave instability mechanism.
linear momentum considerations. Fig@eketches a pos- U represents the zonal flow distribution. The dashed lines represent
sible replacement based on potential vorticity conservatiorthe wave fronts, and the full arrows represent the associated flow ve-
arguments and thus likely to be valid in more realistic set-locities. Relative vorticity anomalies are marked with grey patches.
tings.
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As in the original argument of Sect, a zonal velocity = crease in perturbation growth rate. Stratification also has the
anomaly distorts the wavefronts of a base wave. Vorticity effect of introducing a threshold in base wave amplitude for
is present in the undisturbed wave along the surfaces sepdastability, and to broaden the unstable wavevector direction
rating northward and southward velocities. This vorticity is range. Approximate analytical expressions for these differ-
in quadrature with the meridional velocities, and the zonalent features have been provided. Finally, the classical physi-
average of its transport vanishes. The relative vorticity per-cal interpretation of the instability has been extended to the
turbation due to the wavefronts distortion, in contrast, is incase of a simple stratified medium.
phase with the meridional velocities (northward-going parti-  The simple flow situation studied here needs to be genera-
cles have to turn to their left, and thus possess cyclonic voriized in many ways:
ticity as well as northward velocity), and a hon-zero merid-

ional flux thus occurs. Relative vorticity flows northward ;. 4o very specific case of one single base wave. Other re-

across an eastvyard Jet, as apparent_ on the graph_. Ina ,h%'ults, not reported here, have been obtained in the two-layer
mogeneous setting, the zonal flow will become ant'cydon'Cquasi-geostrophic model setting, but the waves in the two

northward of the jet, and gyclonig soqthward. The CUSp'“kebaroclinic modes had to possess colinear wavevectors. A
shape of the z_o_nal velocity profile wil s_tr_engthen, and WE closer approach to reality, however, would require the anal-
recover the original argument. In a stratified s_ettlng, for jet sis of a population of waves in statistical equilibrium and
length scales much larger than the Rossby radius of deform of their interaction with the zonal velocity profile. Whether

tion, the flow of relative vorticity can significantly force the such a study could benefit from the insight provided by the
vortex stretching term of the zonal flow, and tends to “pump” phase dynamics framework is not known

streamfunction to the right of the jet downstream direction, We h | idered | perturbai o the b
thereby strengthening it. We see that the interaction of a € have only considered zonal perturbations 1o the base
ave. This is justified by our focus on the instability as a

Rossby wave with a zonal jet is an efficient and straightfor—W

ward way of generating a counter-gradient flow of potential feeding mechgmsm for zonal jets: Considering _non—zqnal
vorticity across the jet perturbations in the phase dynamics framework is feasible,

but the very convenierf2 = 0 solution does not exist in this

problem, and obtaining the growth rate estimates requires
solving a cubic, which leads to cumbersome expressions.
One of the referees remarked that our discussion of the physi-

The conclusions we can draw at the end of this study are of@l mechanism makes no explicit mentiorfofvhose role in
two different natures. the instability is thus unclear. Indeed, settifigo O does not

From a rather technical point of view, we have deveIopedChange the dimensional growth rate of the instability in the
and validated a phase dynamical approach to the problerﬁr_’ec'al case of zonal perturbations growing on a bas_e wave
of the evolution of a finite-amplitude Rossby wave on the With ¢ close to 0. Fop 30 and/or non-zonal perturbations,
B-plane and its interaction with an infinitesimal zonal flow. (he A-éffect however plays a clear “detuning” role, in that
The predictions have been quantitatively tested against nult induces propagation of the phase and amplitude pertur-
merical linear stability codes for the one base wave, zonaf@tions at the group velocity associated with the base flow
perturbations, inviscid, particular case of the instability stud-Wave: and of the/ perturbation at the (usually very differ-
ied by (Lorenz 1972 Gill, 1974 Sivashinsky1985 Manfroi ent) phase veIOC|ty associated with its wavelength. Gal_mng a
and Young 2002 Lee and Smith2003. The approach has better understanding of the role gfin thg angular selection
then been extended to the simple case of the reduced-gravifyf Pase waves and unstable perturbations could help under-
quasi-geostrophic model, and the differences between that@nd why the jets are actually zonal.
two settings have been discussed. Indications of the difficul- An interesting extension of the phase dynamical theory
ties to be expected in the extension of the method to multiplewould be to modify it to accommodate slowly growing
baroclinic modes dynamical frameworks have finally beenwaves, such as for instance baroclinic waves close to the on-
given. set of instability. A possible outcome could be a theory of the

From a more scientific point of view, we have provided complete chain going from an unstable mean flow, uniform
accurate approximate expressions for the growth rates Of th@ the meridional direction, to barOC|iniC waves, and to the
instability in both settings. The introduction of an intrin- zonal jets they feed in turn. Such a theory would be a very
sic length scale, the Rossby radius of deformation, to theich source of new insight.
problem, has been shown not to modify significantly the In numerical simulations of the oceaNdkano and Ha-
scale selection properties of the instability, the most unstablesumi 2005 as well as in observationdlaximenko et al.
length scale for the zonal perturbations remaining essentialll2008, the jets usually appear as rather faint features super-
marginally higher than the base flow wavelength. The growthimposed on a sea of coherent vortices rather than waves. A
rates have however been showed to be significantly affectedyossible direction for the future could be to make an analyti-
a decrease in deformation radius being associated to a deal study, similar in spirit to the numerical work djtschel

In particular, the results presented here have been obtained

5 Conclusions

Nonlin. Processes Geophys., 17, 832010 www.nonlin-processes-geophys.net/17/49/2010/



L. Marié: Phase instability of quasi-geostrophic Rossby waves ofi{flane 61

and Mcintyre 2008, of the interaction of an isolated coher- A2 Fourier expansion
ent vortex with an infinitesimal zonal flow perturbation.
To make progress in the study of E42), we introduce for
fa Fourier decomposition in andy.
Appendix A .
f= e KxtLy—ot] Z hnein[cos(é))x+sin(0)y] (A3)
Floquet analysis of Eq. () ne——oo

o o . Replacing f in Eq. (A2) by its expressionA3), perform-
Our aim in this appendix is to describe the Floquet code We the necessary differentiations, and collecting the result-

have used to check and extend the results obtained througlyg terms according to their spatial wavenumber, we obtain
the phase dynamics analysis developed in the main text. Afy, algebraic set of equations linking the amplitudgs,,z.
ter a description of the general problem settings, we preser\beﬂnmg forneZ

the algebraic system obtained through Fourier expansion of
the Floquet eigenmodes. I, =n?+2n[Lsin®)+ K cos®)] + L>+ K2,

we obtain the set of equations as:
Al Problem formulation
VneZ,0=[[ncog8)+K][l, — 1 —wl,]h,
The basic equation of motion is Eq){which we repeat here M .
for completeness: + > [co60) L—siNO)K][ln+1—1]hns1
=0. M .
GAY 0¥ +MJI (Y. AY) =0 + E[cos(@)L—sm(G)K] [lhi-1—1]h—1  (A4)

We now decomposg into a base flow streamfunction and a .
After truncation of the system te € {—N...N} for some

perturbation: . . ) : .
integerN, this set of equations can easily be solved numeri-
v = o+ f, cally for w as an algebraic eigenproblem. The results shown
in the main text have been obtained with= 16 (with the
with exception of Fig4c, which shows thatv = 1 actually gives a
very good approximation of the result in the barotropic case).
Yo =sin(cog0)(x +1)+sin@)y). (A1)

Introducing this decomposition in EdL)( using the fact that Appendix B
Yo alone is one of its solutions, and keeping only terms linear
in the perturbation streamfunction, we obtain that the perturFloquet analysis of Eq. (4)
bation evolves according to:

9 Af + 3y f+MJ (Yo, Af)+MJ(f, Arg) = 0. This section is complementary to the previous one, and
presents the Floquet analysis of E)

Performing the change of variabte— x 47, we change to _ _

a frame of reference in which the base flow pattern is sta-a’[A BlY +(B+ Doy +MJ (¢, a9) =0.

tionary. In this frame of reference, and using the fact thaty is decomposed into a base floyg, and a perturbationy,,

Ao = —1o, the equation of motion reads such that:

HAF 40 (Af+ f)+MJ (Yo, Af + f)=0, (A2) ¥ =vo+ f, Yo=sin(CogH)(x+1)+sin@®)y).

Introducing this decomposition in Eql4), using the fact
that v alone is one of its solutions, using the fact that
Yo = sin(cogB)x +sin(@)y). Ao = —Yo, keeping _only terms linear in the perturbation

streamfunction, and finally using the skew-symmetry of the
At this point, Floquet theory tells us that the eigenmodes ofJacobian with respect to its arguments, we obtain that the
Eqg. (A2) are of the form: perturbation evolves according to:

f = ollKx+Ly=0i 7y 1) 9 [A—Blf+(B+1)0, f +MJ (Yo.[A+1] f)=0.

here Fis a funct hich has th lenaths in th The change of variable— x +¢ makes the base flow pattern
wheref is afunction which has the same wavelengtns in estationary, and changes the equation to:
x- and y-directions as the base flow Rossby wave, but can

have a more complicated pattern. h[Af—Bfl+o(Af+ )+MJI (o, Af+ f)=0, (Bl1)

with ¢ now time-invariant
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with as:

Yo =sin(cog6)x +sin@)y). Y(x,y,t) = Yolx,y,t)

Once again, we remark that, once the proper scalings and teelLymeN [y

translations have been performed, the only difference be- 1 _

tween the problems in the barotropic and reduced-gravity 4 = pilcog®)x+sin®)y] (p+i%)
cases lies is the fact that in the later case the vortex stretching 2

term is the dominant va_riable at_ the sldmdepe_ndence scale +}e_,~[cos(9)x+sin(9)y] @_ ij(‘) ]
for non-zeroB. Introducing again the expansion ’

This expression can be recognized as the Floquet-Fourier

o0
f=eltKrtlymol 3"y ginleos®xtsin®n], expansion A3), restricted to thek=0 case, and to its €

n=-00 {—1,0,1} members, if the following identifications are made:
we obtain the set of algebraic equations forand the £ o~
(hn)nez hoi1 =5 (@—iX)
VneZ,0= [[ncosd)+ K], —1]—w[l, + B]] hy ho = eW
M e~
+ 5 [cost8) L —Sin®) K11+~ 1] hns1 hy =5 (9+iX)

M A straightforward mapping thus exists between the pertur-
+7[cos(9)L —sin(0)K] [ln_l— 1]hn_1 (B2) bation types handled by the two methods of approximation.
The Floquet-Fourier procedure, however, makes no assump-
Again, this system is solved numerically as an algebraiction about the slowness of the perturbations variations in the
eigenproblem after truncation toc {—N---N}, with N=16.  meriodional directions. The equations of motion fory,
ho and hj thus suffer no restrictions for large meridional

wavenumbelr..
Appendix C Replacingho, h—1 and h1 by their expressions in the
Floquet-Fourier equations of motioA4), developing, and
The phase dynamics approach as using the correspondence€w <> 9;, i L <> 95, one can ob-
an approximation of the truncated Floquet analysis tain the following equations of motion for the phase dyna-
(ne{-1,0,1}) mics variables in the barotropic setting:
One referee raised the issue of the relations between the dif- 8U = % [co8(6)d,yp—Sin(20)d, x |

ferent approximations schemes, and most importantly be-

tween .the Floquet analysis:, truncated tvoe({—lZ 0,1}), 3 (1—0yy) ¢ +5iN(20)dyp = —2SiN(6)d;y x —COKO)dyy

which is well known to provide very good analytic growth

rate estimates, and the phase dynamics approach, on which —Mcog6) [0y, +1|U

the present study is based. This section is devoted to a ded- (1—8 ) SIN20)9, x = 25iN0) ;. -+ COSO)D,

tailed investigation of this. ! yy) X X &4 e
Perturbing the base flow streamfunction of E&L{ with  These equations are more complicated than those derived by

amplitude, phase and zonal flow perturbations of the kindthe multiple-scales procedure discussed in the main text, but

used in the phase dynamics study, one obtains are valid without restriction on the variations@dfx, U with
respect toy. It is clear that they reduce to Eq4.0j in the

VX, y.0 ‘ _ ' limit of slow variations.

=e\lf(y,t)+Im(e’[COS(@)”S'”(Q))’“"’WH”X(y”)]) (C1) The equations of motion in the reduced-gravity setting
read:

Introducing forw, ¢, x their usual sinusoidal dependencies I

in y andz: O (B—dyy)W = = [c0s0)dyyy¢—sin(20)yy x]

é ¢ 3 (14+B—0yy) +SiN(20)dyp = —25in0)d, x —COKO)dyy x

zei[Ly—wt] =~ i
é % +Mcos(0)[dyyy +0y | ¥

3 (1+B—0yy) x+Sin(20)d, x = 2sin(0)d;y$ + oY) dyy .
one obtains after some algebra the perturbed streamfunctiont ( W) ! Y "
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These systems of equations remain approximations in th&eferences
sense that they are only truncated counterparts of the full sys-
tem (A4). As mentioned in the main text, the fact that the Berloff, P., Kamenkovich, I., and Pedlosky, J.: A mechanism of
truncation yields good results is indicative of the fact that formation of multiple zonal jets in the oceans, J. Fluid Mech.,

. . . . . . 628, 395-425, 2009.
the instability mechanism relies primarily on phase and am Dritschel, D. G. and Mclintyre, M. E.: Multiple jets as PV staircases:

plitude pgrturbatlons of the base ﬂO.W waves, and th&.lt the the Phillips effect and the resilience of eddy-transport barriers, J.
changes in the waveform are essentially limited to the intro- 5,06 Sci., 65, 855-874, 2008.

duction of the zonal flow component. More subtle changesgaiperin, B. H., Nakano, H., Huang, H., and Sukoriansky, S.:
in the waveform, which would require higher order harmon-  The ubiquitous zonal jets in the atmospheres of giant plan-
ics to be represented, do not seem to play a key role. This ets and Earth's oceans, Geophys. Res. Lett., 21, L13303,
finding turns out to be valid also for non-zonal perturbations doi:10.1029/2004GL01969, 2004.

in the barotropic case, but its validity seems restricted toGill, A. E.: The stability of planetary waves on an infinjieplane,

slow meridional variations in the reduced-gravity case (not Geophys. Astro. Fluid, 6, 29-47, 1974.
shown). Lee, Y. and Smith, L. M.: Stability of Rosshy waves in tBlane
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