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Abstract. In this lecture, I will review some basic aspects
of the mechanism of stochastic resonance, first introduced
as a possible mechanism to explain long term climatic
variation. Since then, there have been many applications
of stochastic resonance in physical and biological systems.
I will show that in complex system, stochastic resonance
can substantially change as a function of the “system
complexity”. Also, I will briefly mention how to apply
stochastic resonance for the case of Brownian motors.

1 Introduction

The first numerical simulation providing strong evidence of
Stochastic Resonance was performed by Angelo Vulpiani
and myself on a rather exciting night in February 1980.
Together with Alfonso Sutera and Giorgio Parisi, we were
trying, at that time, to understand whether a relatively
small periodic forcing can be amplified by internal nonlinear
stochastic dynamics, leading to a possible understanding of
the 100 Ky cycle observed in climate records. The first
version of our paper was not accepted for publication by
Science and Journal of Atmospheric Science. Eventually
the paper was published in Tellus in 1982 (Benzi et al.,
1982) together with a similar paper by Catherine Nicolis
(Nicolis, 1981, 1982) who, independently, was proposing
the same mechanism for climatic change. Shortly after that
February night in 1980, we were able to provide a quite
general understanding of how the mechanism works and
how to generalize it for chaotic systems. Both theory and
generalization appeared as a letter in J. Phys A in 1981Benzi
et al.(1981), i.e. one year before the Tellus paper!
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We were, and we still are, convinced that Stochastic
Resonance is a rather new and conceptually important
phenomenon in science. For almost a decade, only
few colleagues were sharing with us the same feeling.
Eventually, after the paper ofMoss and Wiesenfeld(1995)
and some new theoretical work (McNamara and Wiesenfeld,
1989) stochastic resonance became a fashionable and
interesting research topic in many different scientific areas
from Climate to Biology, seeBulsara et al.(1993) and
Giammaitoni et al.(1996) for a review.

Resonance is a kind of magic word in physics and there it
is not surprising that a new resonance mechanism can excite
the scientific community. In our case, the name stochastic
resonance was introduce because of a short discussion with
John Imbrie in March 1980. Just a few days after our first
numerical simulation, I participated in a climate meeting in
Erice where I gave a short talk on our results. John Imbrie,
one of the most famous scientist working on paleoclimate,
asked whether what we found was somehow similar to
a resonance and my answer was: “not exactly! It is a
kind of stochastic resonance!”. This is how the name was
introduced. In some sense, we can think of a “resonance”
as follows. In the standard resonance mechanism, think for
instance of a damped harmonic oscillator, the amplification
of the external forcing can be related, mathematically, to a
singularity in the complex plane of the Green function of the
problem. The real part of the singularity is, of course, the
resonance frequency. In chaotic or stochastic systems, there
are singularities in the complex plane but on the imaginary
axis. The mechanism of stochastic resonance provides a
way to shift the singularity in the complex plane. This
rather cumbersome view of stochastic resonance may not be
entirely clear but it tries to justify why the word “resonance”
can still be used besides any historical reason.

In this paper, I will review the main idea of stochastic
resonance with emphasis on climate research, where it
was originally proposed. I will also show how stochastic
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432 R. Benzi: Stochastic resonance: from climate to biology

resonance is still an interesting subject to work on and in
particular I will discuss some new findings in simple and
complex systems. Finally, I will mention how mechanisms
related to stochastic resonance are of interest in the wide
research field of Brownian motors.

2 The mechanism of stochastic resonance in climate
theory

Climate is one of the most complex system in Nature
and it is a major scientific challenge to understand the
basic mechanisms leading to climate changes. In the past,
climate showed quite remarkable changes over all times
scales. In particular, one of the most striking aspects
of past climate changes is the so called 100 ky cycles
observed in paleoclimatic records. The cycle itself is not at
all periodic, showing sudden warming phases followed by
gentle decreases of temperature. This behaviour is in phase
with the so called Milankovitch cycle, i.e. to the change of
global radiation of the Sun due to astronomical change in the
Earth orbit. This is the only global (i.e. averaged) change
experienced in the incoming radiation. Is that possible
to relate the astronomical forcing to the observed climate
change? This is the basic question which puzzles scientific
research since many decades. A simple computation shows
that it is not easy to guess the correct answer.

Let us consider the simplest possible climate model. We
consider the averaged Earth temperatureT as the basic
variable we want to describe, the precise meaning of average
is of marginal interest for the time being. We know how
much radiation is incoming, let us sayRin. The outcoming
radiationRout depends on the earth’s temperatureT (infrared
emission) and reflection from the surface, which can be
written as αRin. Denoting byCE the Earth’s thermal
capacity, we can write the energy balance model as:

CE
dT

dt
=Rin −Rout (1)

whereRout=αRin +EI andEI being the infrared emission.
What we might call Earth’s climate is just the stationary

solution of Eq. (1). While Rin is independent ofT , bothα
andEI should be dependent on the Earth’s climate which, in
our simple case, is described by the averaged temperature
T . In a first approximation, we can think thatEI is
linearly dependent onT (a more complex behaviour does not
substantially change the results). The so called albedoα is
also aT -dependent quantity. More specifically, we expect
α to be quite large for ice regions. An appropriate way to
think of the functionα(T ) is shown in Fig.1. Following the
cartoon shown in the same figure, it is clear that there exist
more than one stationary solution of Eq. (1), corresponding
to three different possible Earth climates. The coldest of the
possible climates is referred to as “ice cover earth” climate,
i.e. the case where almost all incoming radiation is reflected
back to the space.

Fig. 1. The energy balance climate model. In the upper layer we
show the basic variables of the model: the incoming radiationRin
and the outcoming radiationRout and the infrared emission. In
the lower panel we show the albedo as a function of temperature
Rin −Rout = (1−α(T ))Rin. The thick line represents the infrared
emission.

Let us concentrate on the present (stable) climate. The
orbital forcing, discovered by Milankovitch, is a small
amplitude modulation ofRin in time, i.e.

Rin(t)=R
S
in +Acos(ωt) (2)

Let us consider the effect of the Milankovitch forcing in
Eq. (1). If T is always quite close to the stationary (present)
climateT0, we can estimateδT ≡ T −T0 by:

dδT

dt
= −

1

τ
δT +Acos(ωt), (3)

where 1/τ is the relaxation time of the present climate. More
preciselyτ can be estimated by the equation:

1

τ
= −

1

CE

[EI −(1−α(T ))Rin]

dT
|T=T0

After an appropriate estimate ofA, one can easily show
using (3) that the effect of the orbital forcing on the present
climate is of orderAτ ∼ 0.5 K, much smaller than the 10 K
observed in paleoclimatic records. Thus, it seems that orbital
forcing can hardly explain the glacial/interglacial transition
experienced by the Earth climate.

In order to make progress we need to supply our simple
model by new features (for a detailed definition of the model
seeBenzi and Sutera, 1985). An important feature is to
assume that there exist more than one stable climate state
close to our present valueT0. More precisely, we shall
assume that the albedo feedback mechanim can eventually
lead to a more complex behavior near our present climate,
leading to two stable climate statesT1 andT0 separated by
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about 10 K see Fig.2. This is a rather ad hoc assumption
which is, at any rate, consistent with observations of albedo.
Still, this feature does not really change our conclusion
since the orbital forcing is too small to provide a suitable
mechanism to produce transitions betweenT0 andT1.

The situation can improve dramatically if we consider the
following three non trivial statements:

Many complex systems can be described by means of
slow variables and fast variables, even if there is no
explicit time scale separation between the two kind of
variables. Fast variables may be considered as “noise”
acting on the dynamics of slow variables.

For Earth climate, the averaged temperature in (1)
should be considered as a slow variable with respect to
the fast variables, due to weather variability.

When there exist multiple equilibria, the noise can
introduce a long (random) time scale to switch from one
equilibria to another.

The three statements are not trivial and should be
explained carefully. For many decades, the splitting among
slow and fast variables have been considered a well known
feature of molecular motion. At the atomic scale, particles
continuously experience short time interactions with other
atoms while the hydrodynamic behavior (the slow variables)
is described by a suitable space average over the molecular
chaos. Looking at the fluctuating properties of a turbulent
flow, there exists a well defined scale separation (both in
time and in space) from molecular motion and hydrodynamic
flow. Nevertheless, in a turbulent flow, even when
disregarding any molecular motion, we can still distinguish
large and small scale fluctuations. In this case, however,
there is no spectral gap identifying any scale separation
among scales. Therefore, one may be tempted to state
that, in this case, the concepts of fast and slow variables
are poorly defined. It turns out that such a statement is
too limited. There exist experimental systems where the
large scale motion can be thought as the slow variable
superimposed to a noise (turbulent) small scale background
acting on the system. RecentlyBenzi (2005), it has been
shown that the above picture can explain qualitatively and
quantitatively the numerical results observed in a simplified
model of turbulence. Thus, in most complex systems the
separation of large scale, slow variables and small scales,
fast variables does correctly picture the dynamics in a self
consistent way.

If we apply the above discussion to the Earth climate
(second item), then on the time scale corresponding to the
orbital forcing, the day-by-day weather fluctuations should
be considered as noise (fast) variables acting on the climate
system. This is not just a way of thinking. Disregarding the
effect of noise is a major limitation for a correct description
of the physical properties of climate. It took a long time,

Fig. 2. The albedo feedback for an energy balance model with three
climate states nearT0. The model is conceptually similar to the one
described in Fig.1 with a change in the albedo.

and it is still ongoing, for the scientific community to accept
that noise is not a measure of our “ignorance” but a physical
feature of most complex systems.

The third item is more delicate and needs to be explained
in details. Let us assume that our climate system (although
the discussion is true for any system) shows two stable
equilibria whose temperature difference is 21T . In this
case, it is well known that the effect of the noise can induce
transitions between the equilibria. The characteristic timeτL
for the transition can be estimated as:

τL ∼ τ exp
(
1T 2/στ

)
(4)

where, as in Eq. (3), τ is defined as the (fast) relaxation time
over one of the stable equilibria andσ is the variance of the
noise (weather fluctuations) acting on the system. Thus our
year-by-year temperature is assumed to be decomposed into
the climatic componentT and a fast noise component. In
Eq. (4), τL should be considered an average time to switch
from one equilibria to another. In other words, the transition
time between the two equilibriaτeq is a random variable
with average valueτL . Actually, under some quite generic
conditions, we can predict the probability distribution ofτeq
which is

P(τeq)=
exp

(
−τeq/τL

)
τL

(5)

Let me summarize the new feature we have introduced in the
simple energy balance model (1). We have assumed a new
form of the albedo which is providing three different climate
states aroundT0, let us call themT1 (stable),Ti (unstable)
andT0. The shape of the new albedo is shown in Fig.2. We
assume thatT0 −T1= 10 K andT0 −Ti = Ti −T1. Next we
have introduced an external noise which takes into account
the dynamics of the fast variables, whatever they are, not
represented by the slow componentT . We can rescaleT
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nearTi and simplify the equations by usingT = Ti +1TX

with 1T =5◦ K:

dX

dt
=X−X3

+
√
ση(t) (6)

whereη(t) is a Gaussian random variable with unit variance
(〈η(t)η(t ′)〉 = δ(t− t ′)) andσ is the noise strength. Notice
that we have also rescaled the time unit.

In order to do some computation what we still need is the
strength of the noise. We can obtain some information by the
following argument. In our present climate (i.e.T0) we have
observational data which tell us about average temperature
fluctuations. Also, we know from General Circulation
Models, which is the time correlation for temperature
fluctuations. Thus, we can estimate the strength of the noise
by linearizing our climate model aroundT0 and using the
fluctuation-dissipation theorem, i.e.temperature variance
= noise strength/(2 relaxation time). Once we know the
noise strengthσ we can compute the average switching time
from T0 to T1. It turns out that, by using (4) the average
transition time between the two stable states of our climate
model is close to 50 000 years! This is a rather surprising
and interesting result because it tells us that there exists
a rather long time scale (50 000 years) introduced by the
nonlinearity in the modeland the noise, to be compared
against the quite short time scale of the model, namely the
deterministic relaxation time towards one of the two stable
equilibria which is of the order of 10 years. However, this is
not enough because the characteristic time of 50 000 years is
a random time with an exponential probability distribution.
Therefore nonlinearity and noise are not enough to get a
periodic behavior of the temperature.

In order to get a periodic behavior, the idea is to introduce
the Milankovitch effect in the system. After a simple
computation one gets the following results:

dX

dt
=X−X3

+Asin(ωt)+
√
ση(t) (7)

An appropriate rescaling in terms of physical quantities gives
us the value ofA∼ 0.11 for the Milankovitch terms andω=

2π/105
×1/10. Without the noise, the value ofX changes

periodically in time with an amplitude orderA. Going
back to the temperature, this implies that, without noise,
we have a periodic behavior of temperature with amplitude
A1T ∼ 0.5 K. The situation changes completely when we
consider the effect of the noise. A correct understanding of
the noise effect can be achieved by considering the simplified
equation:

dX

dt
=X−X3

+A
√
ση(t) (8)

i.e. without any time dependency on the external forcing.
It is crucial to remember that for any stochastic differential
equation of the form:

dX

dt
= −

∂V

∂X
+

√
ση(t) (9)

Fig. 3. Numerical simulation of Eq. (7) in three different cases. In
the upper panel, we show the solution with the noise andA= 0.
In the middle panel we show the perturbing forcingAcos(2πωt)
while in the lower panel we show the solution withA= 0.1. The
effect of the small periodic forcing is to synchronize the random
switching from one climate states to the other, i.e. to get a stochastic
resonance.

the “equilibria” probability distributionP(X) of X is given
by:

P(X)=ZNexp(−2V (X)/σ) (10)

whereZN is a normalization factor. In our caseV (X)=
−1/2X2

+1/4X4
−AX (8) and we obtain from (10)

P(X;A)=P(X;A= 0)exp(2AX/σ) (11)

The probability distribution whenA 6= 0 changes dramati-
cally the probability distribution whenA= 0. Even for small
A the exponential factor′exp(2A/σ) can be rather large,
i.e. order 30 in our case. The consequence of this simple
calculation is that the probability to be nearX∼ 1 is 30 times
larger than to be inX = −1. Now it is quite clear that if
A is slowly varying as cos(ωt) in time than the probability
distribution is peakedperiodically in ± 1 with almost the
same period of 2π/ω. This is the very essence of stochastic
resonance.

In Fig. 3 we show the numerical simulation of (7) and
in particular the upper panel isX(t) for A= 0, the pannel
in the center shows the behaviour ofA(t) while the lower
panel is the solution of (7). As we can see, the effect
of the small periodic perturbation is to synchronize the
“random” behavior ofX and to produce an almost periodic
output. In some sense, stochastic resonance is a counter
intuitive phenomenon because without noise the system
shows a small amplitude modulation around one of the two
stable steady states± 1, while adding the noise we obtain a
large amplitude effect with the same period.
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One has to be a little careful in understanding the possible
results of (7). As we said, the modulation ofA in time should
be slow enough in order to get a stochastic resonance. We can
be more quantitative using the following simple argument.
Let us go back to Eq. (8). We can compute the probability
distribution of therandomtime to go from+1 to−1 and we
already know that the probability distribution is exponential.
Let τ1(+1) be the average exit time, then the variance of the
random switching time is alsoτ1(+1). Finally we know how
to relateτ1(+1) toA, namely by using the expression:

τ1(+1)∼ exp

(
2

σ
(1V0+A)

)
(12)

where in our case1V0 ≡ 1/4. Thus the requirement we need
is thatτ1(+1)� 2π/ω andτ1(−1)� 2π/ω whereτ1(−1) is
the average exit timestartingwith the initial conditionX=

−1. The two requirements imply

exp

(
2
1V0

σ

)
∼

2π

ω
, (13)

exp

(
2

σ
(1V0−A)

)
�

2π

ω
. (14)

The meaning of the above inequalities is represented in the
cartoon of Fig.4. The time increasesis clockwise, beginning
with the left top panel. We start atX= 1 and as time goes
by, the system att = T/2 has a very high probability to jump
to X = −1 if (14) is satisfied. Then att = T we have the
same effect for the transitionX = −1 →X = 1. The two
conditions (13), (14) tell us that if the noise is too small then
we will never see anything and, conversely, if the noise is
too large transitions will happen regardless of the external
periodic forcingA. Thus, there is a range ofσ ( the resonant
range) where we obtain periodic transitionsin phasewith the
external forcing.

One can highlight the resonance effect also by using
another kind of variable. LetX(t) the solution of (7) and
let us denote byFX(ν) its Fourier transform. Then|FX(ν)|2

represents the power spectrum ofX. We should expect that
|FX(ν=ω)|2 is a function of the noise with some maximum
value for the “resonant noise”σR. This is indeed the case
as shown in Fig.5, where|FX(ν=ω)|2 is plotted againstσ ,
while in the inset we show|FX(ν)|2 for σ = σ|rmR.

Let us now returnto the climate. As we have seen, the
effect of a small periodic forcing in our “simplified” climate
model is to produce a periodic glaciation-interglaciation
transition in phase with the Milankovitch forcing. However,
the signal shown in Fig.3 poorly compares against the
observed behavior of the “proxy” earth temperature. The
latter shows a kind of saw tooth behavior with strong
asymmetries between cold and warm periods. Thus it seems
that our theory cannot represent the real climate. Such a
negative statement, however, is somehow misleading simply

Fig. 4. A cartoon to explain the mechanism of stochastic resonance.
The period of the oscillation isT . At time t = 0 the climate states
has low probability to jump from+1 to −1. At time t = T/2 the
situation is reversed: the probability no to jump is extremely small.
At time t = T we start a new cycle.

because the model so far used, namely the energy balance
model (6), includes only the simplest possible feedback due
to radiation. More sophisticated effects, like the temperature-
precipitation effect, can change the situation. Based on the
above discussion we can make the following statement:

stochastic resonance is able to show that the external
“weak” forcing due to Milankovitch cycle can be
amplified by internal non linear dynamics of the
climate;

climate dynamics shows a long time scale behavior due
to non linear feedback;

noise can develop long time scale behavior if there
exists multiple equilibria;

The most important feature coming out of our analysis is
that it is crucial to understand the non linear interaction
between fast a and slow time variables in climate models.
Time scales of order 1000 years or more, do no rule out
the importance of the dynamics of fast variables usually
characterize atmospheric and/or oceanic circulations’. This,
I think, is an important feature even in more sophisticated
and/or realistic climate models.

The mechanism of stochastic resonance has been recently
invoked to explain the observed climate variation on a time
scale short compared to Milankovitch forcing.During the last
100 000 years, the earth climate exhibits abrupt changes from
relatively cold to warm states, different to those observed in
the 100 000 year cycles. According toAlley et al., the climate
changes occurred on time intervals which are multiples of
1500 years, i.e. the time to switch from one climate state to
the other is either 1500 or 3000 or 4500 and so on. This
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Fig. 5. The figure shows the Fourier amplitude|FX(ν = ω)|2 for
the solution of Eq. (7) for different values of the noise amplitudeσ .
In the inset we show|FX(ν)|

2 for σ = σR, i.e. the optimal noise for
which the Fourier amplitude atν=ω is maximum.

rather peculiar behavior calls for an explanation which, not
surprisingly, can be given in terms of stochastic resonance.
As we previously discussed for Eq. (7), the effect of the
periodic forcing is to decrease or increase (depending on the
time t) the probability of switching from a climate state to
the other. With reference to Fig.4, if at time t = T/2 the
system does not switch, then it takes a full periodT for
the possibility to make a jump. This is certainly the case
if the noise intensity is smaller thanσR. It follows that the
probability of the exit time is not peaked aroundT/2 but is
quantizedwith maxima in(2n+1)T /2,n= 1,2,.... To show
that our analysis is correct, in Fig.6 we plot the probability
distribution of switching time forσ = 0.8σR (symbols) and
for σ = σR (continuous lines). The quantization effect is
quite clear, as predicted by our simple analysis.

It appears that the observation ofAlley et al. may be
explained by the mechanism of stochastic resonance as it
was pointed out by the these authors. Actually, a theoretical
analysis of a simplified ocean/atmospheric model, due to
Ganopolski and Rahmstorft (Ganopolski and Rahmstorf,
2002) shows that the effect of a periodic forcing in freshwater
input over the North Atlantic Ocean combined with a
suitable stochastic forcing, produces stochastic resonance
in cold/warm climate changes as observed in real data.
In the Ganopolski and Rahmstorft model, the two climate
states, between which one has climate transitions, represent
two different thermoahline circulation in the Norht Atlantic
Ocean, which are responsible for sea ice growth and
destruction.

It is unclear, at this stage, whether stochastic resonance is
or is not the possible explanation of theAlley et al. data and
more research is needed for a reasonable assessment. At any
rate, it is important to remark that abrupt climate changes,
such as those observed during the Milankovitch cycle or over

Fig. 6. Probability distribution of the random switching timeτ for
two different noise amplitude obtained as the solution of Eq. (7).
The amplitude and the period of the forcing is the same. Line refers
to σR (see Fig.5) while symbols refer toσ = 0.8σR. In the inset we
show the probability distribution of the random switching time in
log-lin plot. It is evident that forσ smaller thanσR the probability
distribution ofτ is “quantized” at integer values of(2n+1)T /2.

the last 100 000 years are hard to explain without the idea
of transition between multiple equilibria triggered by noise,
which is the basic feature of stochastic resonance (Sutera,
1981).

3 Stochastic resonance in complex systems

In the last ten to fifteen years the mechanism of stochastic
resonance has been widely applied to a number of different
physical and biological systems. Among them, the most
striking applications concern neural systems pioneered, by
Moss and collaborator (Moss and Wiesenfeld, 1995). In most
cases, experimental results show a remarkable agreement
with respect to the qualitative and quantitative picture
represented in Fig.6. Also, in many applications one
does not know the “equation of motions” for the system
and, actually, periodic perturbations leading to a stochastic
resonance are used as a “measure” of non trivial cooperative
phenomena in the system under study (this is certainly the
case for most neurophysiological systems).

When dealing with complex systems, one can find non
trivial behavior of the stochastic resonance. In this section
we show that this is the case for a network system composed
by some “node”ψi , i= 1,...N , see Fig.7.

Just to simplify the discussion, let us assume that the
dynamics of each node is controlled by the same equation
and that the connectivity of the system is described by the
matrixL ij :

dψi

dt
=mψi−gψ

3
i +L ijψj +

√
σηi (15)

wherem>0 andg are real constant. Also, I will assume
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that
∑
iL ijψj ≡ 0 which clearly can be done without lack

of generality, and finally, that
∑
iL i,jψiψj > 0, i.e. the

connectivity matrix does not introduce any “instability” in
the dynamics of the system. The noiseηi is δ-correlated in
time and〈ηiηj 〉 = δij .

The complexity of our problem, so to speak, is introduced
by the matrixL ij . We want now to study the behavior of (15)
when an external periodic forcing is added to the system, i.e.

dψi

dt
=mψi−gψ

3
i +L ijψj +

√
σηi+Aicos(2ωt) (16)

In order to simplify our work, let us focus on the “average”
variable8=N−1∑

iψi . One should expect that for long
enough periodT = 2π/ω and a suitable noiseσR(m,g) a
stochastic resonance can be observed. Note that we defined
σR as an explicit function of the variablesm and g. By
averaging (15) we obtain

d8

dt
=m8−g〈ψ3

i 〉+
√
εη (17)

where
√
ε≡N−1∑

i

√
σ and〈...〉 ≡N−1∑

i .... We assume
thatε is independent ofN , i.e.σ is chosen in such a way that
ε is a fixed quantity. The difficulty is to compute the term
〈ψ3

i 〉. For this purpose, we defineφi such thatψi =8+φi ,
i.e. φi are “deviation” ofψi from 8. Then we have〈ψ3

i 〉 =

83
+3g8〈φ2

i 〉. This expression is correct as far as we can
neglect the term〈φ3

i 〉 which, in most cases, is a good first
approximation. Putting all together, we obtain:

d8

dt
=

(
m−3g〈φ2

i 〉

)
8−g83

+
√
εη (18)

As we can see, the effect of complexity, i.e. the connectivity
matrix L ij , introduces a change in the linear term which
now become atime dependent function. It can happen that
(m−3g〈φ2

i 〉)≤ 0 and if this is the case, transition between
the two states (whatever they are) occur with a mechanism
completely different with respect to what we discussed in the
previous section. Is this the case? Everything depends on the
quantity〈φ2

i 〉 and therefore on the connectivity matrixL ij .
In order to make progress, let us first discuss what are the

“statistical stable” equilibria of (18). Let us define

82
0 ≡

m−3g〈φ2
i 〉

g
(19)

We should expect that the statistical stable equilibria are
±80. Then fluctuations around the equilibria, which in first
approximation we can describe asφi , satisfy the equation:

dφi

dt
= −αφi+L ijφj +

√
σηi (20)

where

α≡

(
m−3g〈φ2

i 〉

)
−3g82

0 = −2
(
m−3g〈φ2

i 〉

)
(21)

Fig. 7. A cartoon of our “complex” system. Each node satisfies
Eq. (15). Lines describes the connectivity matrixL ij .

Using (20) we can now estimate〈φ2
i 〉. Let us define−λn the

eigenvalues ofL ij . Then as simple computation gives:

〈φ2
i 〉 =

∑
i

φ2
i =

1

2

∑
n

σ

α+λn
(22)

In the limit of largeN , we can define the density of states
ρ(λ) with the approximation:∑
n

→

∫
dλρ(λ) (23)

Putting everything together, we finally have:

〈φ2
i 〉 =

1

2

∫
dλ

ρ(λ)

α+λn
=

1

2

∫
dλ

ρ(λ)

2
(
m−3g〈φ2

i 〉
)
+λ

. (24)

Equation (24) is a non linear equation relating the value of
〈φ2
i 〉 to the density of statesρ(λ), i.e. to the connectivity

matrix L ij . Once we have〈φ2
i 〉 we can comput80. The

tricky part of our problem is that we have computed〈φ2
i 〉

when 〈A〉 = 0, i.e. with no external forcing. If we now
have an external forcing, all our computations for80 and
α should change taking into accountA. One can compute
perturbatively the effect in powers ofA and take the first
order for smallA. The computation are done for a special
case inBenzi(2004); Benzi et al.(1989). The final results is
that everything goes as in the theory discussed in Sect. 2 but
with a renormalized value ofA, i.e.

AR ≡A

(
1+

3gD

1−2Dg

)
, (25)

where

D≡ σ

∫
dλ

ρ(λ)

(α0+λ)2
, (26)

andα0 corresponds (21) for A= 0. For any practical purpose
our result means the following. Let us imagine a network
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Fig. 8. Numerical simulation of Eq. (15) with the same parametersm, g, σ and two different topology (shown in the figure): one dimensional
lattice (upper panel), two dimensional lattice (lower panel). The amplitude and the period of the periodic forcing is the same for both cases.
While the two dimensional lattice shows stochastic resonance, the same is not true for the one dimensional case.

described by Eq. (15). Then the effect of a periodic forcing
with amplitudeA on the average8 is equivalent to a one-
dimensional problem similar to (6) with a renormalized
amplitude (25). The connectivity matrix fixes the value of
the renormalization by (26). Thus, depending onL ij , the
effect of stochastic resonance can be enhanced or depressed.
In Fig. 8 we demonstrate our result in a simple case. We
consider the same system (i.e. same value ofm, g, A and
σ ) for connectivity matrix topologically equivalent to a one-
dimensional lattice (upper panel), and a two-dimensional
lattice. In the latter case the system shows stochastic
resonance while this is not true in the former case.

One main conclusion that we can outline from our
discussion is particular relevant for climate theory. The
physical effect of an external forcing can be drastically
different depending on the feedback in the system (in our
case the matrixL ij ). There are cases, as we have seen,
for which a small forcing or a small noise can trigger
transitions and a naive computation of the relevant quantities
(i.e. neglecting the effect discussed in this section) can lead
us to wrong results. We want to argue that the above
conclusions is relevant for other physical and biological
systems.

4 Brownian motors and stochastic resonance

Up to now we have discussed the case of stochastic resonance
in a more or less traditional fashion, i.e. when multiple
equilibria exist. We want now to understand whether
there are other physical problems where a stochastic-like
resonance can be of interest. One possible candidate, that
we discuss in this section, is the case of Brownian motors.

The very idea of Brownian motors goes back toFeynman
et al. (1963) (see alsoParrondo and Cisneros, 2002 for
a review) and it can be summarized by saying that we
want to use the energy of the thermal noise in order to

Fig. 9. A simple model of Brownian motor. Going from the top to
the bottom of when the temperature is low (cold) a particle moving
in the ratchet potential is trapped in one of the minima. Rising the
temperature, the particle becomes almost free to move and, because
its initial condition (minimum) is close the maximum on its right,
the particle has more probability to go towards the right minimum.
If the temperature is now decreased the particle has more probability
to be trapped in the right minimum with respect being trapped in the
minimum on the left.

make work. This can be done, consistently with the law
of thermodynamics, if one considers a ratchet potential with
a periodic time behavior of the temperature, see Fig.9.
Going from the top to the bottom of Fig.9, we see that
when the temperature is low (cold) a particle moving in the
ratchet potential is trapped in one of the minima. Rising
the temperature, the particle becomes almost free to move
and, because its initial condition (minimum) is close the
maximum on its right, the particle has more probability to
go towards the minimum on the right. If the temperature
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Fig. 10. The Brownian motor proposed in Sect. 4. The particle
moves in a periodic potential and noise is acting on it. A perturbing
potential8(x−vt) localized in space is traveling in the system.

is now decreased the particle has more probability to be
trapped in the right minimum with respect being trapped
in the minimum to the left. The overall picture is that of
a diffusion process with more probability to move to the
right than on the left. Thus, under the combined action of
periodic temperature variations and the ratchet potential, we
can have a non zero drift average velocity of the particle in
the right direction: we have been able to extract work from
the temperature field.

There are many kinds of Brownian motors (Riemann and
Hanggi, 2002), the one shown in Fig.9 is just an example.
We will propose here a new kind of motors using the very
same idea of stochastic resonance to produce a non zero
current using the noise. Instead of a ratchet potential, let
us consider a particle which feel a space periodic potential of
periodL. In the limit of overdamped friction, the equation of
motion of the particle positionx is:

dx

dt
= −

∂V

∂x
+

√
ση(t), V (x)=V0cos(2πx/L) (27)

We now introduce a time dependent forcingF(x−vt) in the
form of a moving localized perturbation as shown in Fig.10.
Actually we can think ofF(ξ) as the effect of a moving
potential perturbation, i.e.

F(x−vt)= −
∂8(x−vt)

∂x
. (28)

Without the effect ofF , the particle performs a diffusive
process among the minima ofV . The characteristic time
τL to jump to the right or to the left can be computed by
using the same method of Sect. 2. The action of the localized
potential can introduce a new feature which is illustrated in
Fig. 11.

Fig. 11. The effect of the perturbing potential8(x− vt). From
the top to the bottom, the particle can flip only in the positive x-
direction as the potential travels. The flip occurs only for a suitable
combination ofv and the noise amplitudeσ .

Fig. 12. The figure showsx(t) with (straight line) and without
(dotted line)8(x − vt) for a properly chosen value ofσ . The
initial particle position is 300L and the initial perturbing potential
is localized inx= 0.

If the speedv of the perturbing potential8 is properly
chosen, then the particle has the possibility to jump to the
right but not to the left when the perturbing potential8 is
in a given position. Then the particle remains trapped in
the new minimum up to the time when the potential is now
shifted to the next minimum, and so on. In other words,
the particle remains trapped in the moving potential8 and
it moves “balistically” at the same speedv of the perturbing
potential. In Fig.12 we showx(t) with and without8 for
a properly chosen value ofσ . The initial particle position is
300L and the initial perturbing potential is localized inx= 0.
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Fig. 13. The quantity〈Dx〉 as a function ofσ .

Fig. 14. The quantity〈Dx〉 as a function ofv.

When8 is close tox = 300, the particle remains trapped
and it moves with the speedv for a rather long distance.
At each step the particle is following the potential with a
probability close to 1 but not exactly equal to 1. It follows
that the particle is trapped in the potential8 for a distance
Dx which is a random variable (it is the analogous of the
random timeτL discussed in detail in Sect. 2).

As for the stochastic resonance, if the noise is too small
or too large,8 has no effect on the particle. The same
is true if the velocity is too small or too large. We can
check these qualitative statements in the following way. We
consider an ensemble ofN particles and we study the average
distance〈Dx〉 as a function of noise varianceσ and the non
dimensional velocityvτL/L. This is done in Figs. (13) and
(14), respectively.

In both cases, the effect of a resonant-like phenomenon is
quite clear. Only for properly chosen values ofσ andv we
do obtain the maximum of〈Dx〉. Some recent experimental
results (Schiavoni et al., 2002) seem to confirm the numerical
analysis done in this section.

5 Conclusions

In the last 30 years the scientific community did learn many
different features for complex systems, starting with the
pioneering works of Lorenz, Ruelle, Mandelbrot and others.
In many cases, new ideas and tools have been introduced in
order to “measure” complexity in an appropriate way. These
tools can be used to reveal different features of underlying
physical or biological mechanisms. In some sense, stochastic
resonance is also a tool because it allows us to understand
whether or not non linear effects can act in a cooperative way
with the complex and chaotic behavior of a given system.
Note that stochastic resonance is a mechanism in the full
meaning of the word because it allows to get large effect from
a small amplitude perturbation. There have been and still
are many applications of stochastic resonance to problems
dealing with the amplification of signal to noise ratio, a quite
traditional engineering problem.

In this paper, I have reviewed some known and less known
features of stochastic resonance. Some simple conclusions
can be made.

Stochastic resonance is a counter-intuitive
phenomenon: it is not trivial that adding noise to
a system we can enhance the deterministic periodic
behavior.

Stochastic resonance is a robust mechanism, observed
in many physical and biological systems. The notion of
stochastic resonance is now cross disciplinary and new
applications are found every year.

We learn a lot by applying stochastic resonance in the
theory of climate change. As I mentioned in Sect. 2, it
is a crucial step to understand that fast variables cannot
simply be ignored in the study of long-term climatic
change, which is, overall, the basic idea introduced by
stochastic resonance.
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