Nonlin. Processes Geophys., 17, 4841 2010 4 "* .
www.nonlin-processes-geophys.net/17/431/2010/ GG Nonlinear Processes

doi:10.5194/npg-17-431-2010 in Geophysics
© Author(s) 2010. CC Attribution 3.0 License. -

Stochastic resonance: from climate to biology

R. Benzi
Dipartimento di Fisica and INFN, Univeraidi Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma, Italy

Invited contribution by R. Benzi, recipient of the EGU Lewis Fry Richardson Medal 2006
Received: 8 April 2010 — Revised: 19 July 2010 — Accepted: 31 July 2010 — Published: 10 September 2010

Abstract. In this lecture, | will review some basic aspects We were, and we still are, convinced that Stochastic
of the mechanism of stochastic resonance, first introducedResonance is a rather new and conceptually important
as a possible mechanism to explain long term climaticphenomenon in science. For almost a decade, only
variation. Since then, there have been many applicationgew colleagues were sharing with us the same feeling.
of stochastic resonance in physical and biological systemsEventually, after the paper dfloss and Wiesenfel@ 995

I will show that in complex system, stochastic resonanceand some new theoretical workiENamara and Wiesenfeld
can substantially change as a function of the “system1989 stochastic resonance became a fashionable and
complexity”. Also, | will briefly mention how to apply interesting research topic in many different scientific areas
stochastic resonance for the case of Brownian motors. from Climate to Biology, seeBulsara et al.(1993 and
Giammaitoni et al(1996 for a review.

Resonance is a kind of magic word in physics and there it
is not surprising that a new resonance mechanism can excite
1 Introduction the scientific community. In our case, the name stochastic

resonance was introduce because of a short discussion with
The first numerical simulation providing strong evidence of John Imbrie in March 1980. Just a few days after our first
Stochastic Resonance was performed by Angelo Vulpiannumerical simulation, | participated in a climate meeting in
and myself on a rather exciting night in February 1980. Erice where | gave a short talk on our results. John Imbrie,
Together with Alfonso Sutera and Giorgio Parisi, we were one of the most famous scientist working on paleoclimate,
trying, at that time, to understand whether a relatively asked whether what we found was somehow similar to
small periodic forcing can be amplified by internal nonlinear a resonance and my answer was: “not exactly! It is a
stochastic dynamics, leading to a possible understanding dfind of stochastic resonance!”. This is how the name was
the 100Ky cycle observed in climate records. The firstintroduced. In some sense, we can think of a “resonance”
version of our paper was not accepted for publication byas follows. In the standard resonance mechanism, think for
Science and Journal of Atmospheric Science. Eventuallyinstance of a damped harmonic oscillator, the amplification
the paper was published in Tellus in 198Befzi et al, of the external forcing can be related, mathematically, to a
1982 together with a similar paper by Catherine Nicolis singularity in the complex plane of the Green function of the
(Nicolis, 1981, 1982 who, independently, was proposing problem. The real part of the singularity is, of course, the
the same mechanism for climatic change. Shortly after thatesonance frequency. In chaotic or stochastic systems, there
February night in 1980, we were able to provide a quiteare singularities in the complex plane but on the imaginary
general understanding of how the mechanism works andxis. The mechanism of stochastic resonance provides a
how to generalize it for chaotic systems. Both theory andway to shift the singularity in the complex plane. This
generalization appeared as a letter in J. Phys A in Ba81zi rather cumbersome view of stochastic resonance may not be
et al.(198)), i.e. one year before the Tellus paper! entirely clear but it tries to justify why the word “resonance”
can still be used besides any historical reason.

In this paper, | will review the main idea of stochastic

Correspondence taR. Benzi resonance with emphasis on climate research, where it
BY (benzi@romaz2.infn.it) was originally proposed. | will also show how stochastic
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resonance is still an interesting subject to work on and in R_out ntiared emission R.out R_in
particular | will discuss some new findings in simple and + P

complex systems. Finally, | will mention how mechanisms
related to stochastic resonance are of interest in the wide

research field of Brownian motors. C’\%
\\\\\
2
2 The mechanism of stochastic resonance in climate S |
theory P T

Climate is one of the most complex system in Nature
and it is a major scientific challenge to understand the
basic mechanisms leading to climate changes. In the past,
climate showed quite remarkable changes over all times
scales. In particular, one of the most striking aspects Temperature

of past climate changes is the so called 100ky cycles

observed in paleoclimatic records. The cycle itself is not atFig. 1. The energy balance climate model. In the upper layer we
all periodic, showing sudden warming phases followed byshow the basic variables of the model: the incoming radialign
gentle decreases of temperature. This behaviour is in phastnd the outcoming radiatioRout and the infrared emission. In
with the so called Milankovitch cycle, i.e. to the change of the lower panel we show the alb(_ado asa function of temperature
global radiation of the Sun due to astronomical change in thefin — Rout= (1—a(T))Rin. The thick line represents the infrared
Earth orbit. This is the only global (i.e. averaged) change®M'sS'o":

experienced in the incoming radiation. Is that possible

to relate the astronomical forcing to the observed climate

change? This is the basic question which puzzles scientific | et us concentrate on the present (stable) climate. The
research since many decades. A simple computation showgypital forcing, discovered by Milankovitch, is a small

that it is not easy to guess the correct answer. amplitude modulation oRj, in time, i.e.
Let us consider the simplest possible climate model. We
consider the averaged Earth temperat@ireas the basic Rm(t)zRiﬁJrAcos(a)t) (2)

variable we want to describe, the precise meaning of average

is of marginal interest for the time being. We know how Let us consider the effect of the Milankovitch forcing in
much radiation is incoming, let us s&,. The outcoming  Ed. @). If 7' is always quite close to the stationary (present)
radiationRoy: depends on the earth’s temperatiirénfrared  climateTo, we can estimaté? =7 — T by:

emission) and reflection from the surface, which can be

written as aRj,. Denoting by Cg the Earth’s thermal d(S—T = —EST + Acoqwt), 3)
capacity, we can write the energy balance model as: dt T

daT where Yt is the relaxation time of the present climate. More
CEI = Rin — Rout 1) preciselyr can be estimated by the equation:

whereRqyt= o Rin+ E) and E being the infrared emission. 4 1 [Ei—(1—a(T))Rin]
What we might call Earth’s climate is just the stationary —=——~— I7=10
. . . T Ce dT
solution of Eq. 1). While Rj, is independent of’, both«
andE| should be dependent on the Earth’s climate which, inAfter an appropriate estimate of, one can easily show
our simple case, is described by the averaged temperatungsing @) that the effect of the orbital forcing on the present
T. In a first approximation, we can think thdf, is climate is of orderAt ~ 0.5K, much smaller than the 10K
linearly dependent ofi (a more complex behaviour does not observed in paleoclimatic records. Thus, it seems that orbital
substantially change the results). The so called alletto  forcing can hardly explain the glacial/interglacial transition
also aT-dependent quantity. More specifically, we expect experienced by the Earth climate.
« to be quite large for ice regions. An appropriate way to In order to make progress we need to supply our simple
think of the functionu (7)) is shown in Figl. Following the = model by new features (for a detailed definition of the model
cartoon shown in the same figure, it is clear that there exisseeBenzi and Suteral985. An important feature is to
more than one stationary solution of Ed),(corresponding assume that there exist more than one stable climate state
to three different possible Earth climates. The coldest of theclose to our present valu®&. More precisely, we shall
possible climates is referred to as “ice cover earth” climate,assume that the albedo feedback mechanim can eventually
i.e. the case where almost all incoming radiation is reflectedead to a more complex behavior near our present climate,
back to the space. leading to two stable climate stat@s and Tp separated by
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about 10K see Fig2. This is a rather ad hoc assumption Infrared radiation
which is, at any rate, consistent with observations of albedo. ‘
Still, this feature does not really change our conclusion
since the orbital forcing is too small to provide a suitable
mechanism to produce transitions betw&gm@andT;.

The situation can improve dramatically if we consider the
following three non trivial statements:

R_in -R_out

Many complex systems can be described by means of
slow variables and fast variables, even if there is no

explicit time scale separation between the two kind of

variables. Fast variables may be considered as “noise”
acting on the dynamics of slow variables.

Temperature

T, Ti T,

For Earth C"m?tev the averaged temperature I ( Fig. 2. The albedo feedback for an energy balance model with three
should be considered as a slow variable with respect tQjimate states nedi. The model is conceptually similar to the one
the fast variables, due to weather variability. described in Figl with a change in the albedo.

When there exist multiple equilibria, the noise can
introduce a long (random) time scale to switch from one

equilibria to another. and it is still ongoing, for the scientific community to accept

that noise is not a measure of our “ignorance” but a physical
The three statements are not trivial and should befeature of most complex systems.

explained carefully. For many decades, the splitting among The third item is more delicate and needs to be explained
slow and fast variables have been considered a well known details. Let us assume that our climate system (although
feature of molecular motion. At the atomic scale, particlesthe discussion is true for any system) shows two stable
continuously experience short time interactions with otherequilibria whose temperature difference iA2. In this
atoms while the hydrodynamic behavior (the slow variables)case, it is well known that the effect of the noise can induce
is described by a suitable space average over the moleculdfansitions between the equilibria. The characteristic time
chaos. Looking at the fluctuating properties of a turbulentfor the transition can be estimated as:
flow, there exists a well defined scale separation (both in 2
time and in space) from molecular motion and hydrodynamic®™ ~ rexp(AT /‘”) (4)

flow. Nevertheless, in a turbulent flow, even when . . . . .
disregarding any molecular motion, we can still distinguish WNere, as in Eq.3), ¢ is defined as the (fast) relaxation time

large and small scale fluctuations. In this case, howeverOVer one of the stable equilibria andis the variance of the

there is no spectral gap identifying any scale separatiorPOise (weather ﬂuctuationg) acting on the system. Thus our
among scales. Therefore, one may be tempted to statgear—t_)y-ygar temperature is assumed tp be decomposed into
that, in this case, the concepts of fast and slow variabledhe climatic component” and a fast noise component. In
are poorly defined. It turns out that such a statement i&=d- @), 7 should be considered an average time to switch
too limited. There exist experimental systems where thef.rom one equilibria to anoth.e'r. I.n otherwords, the tra'msmon
large scale motion can be thought as the slow variabldiMe between the two equilibrizeq is a random variable
superimposed to a noise (turbulent) small scale background/ith average value, . Actually, under some quite generic
acting on the system. RecentBenzi (2009, it has been cor)d|t|pns, we can predict the probability distributionzgj
shown that the above picture can explain qualitatively andVNich is
quantitatively the numerical results observed in a simplified _

i eXp( Teq/TL)
model of turbulence. Thus, in most complex systems theP (teg) = —————
separation of large scale, slow variables and small scales,
fast variables does correctly picture the dynamics in a self_et me summarize the new feature we have introduced in the
consistent way. simple energy balance moddl)( We have assumed a new

If we apply the above discussion to the Earth climate form of the albedo which is providing three different climate
(second item), then on the time scale corresponding to thetates aroundyp, let us call themry (stable),T; (unstable)
orbital forcing, the day-by-day weather fluctuations shouldandTy. The shape of the new albedo is shown in RigWe
be considered as noise (fast) variables acting on the climatassume thafp — 71= 10K and7y— T; = T; — T1. Next we
system. This is not just a way of thinking. Disregarding the have introduced an external noise which takes into account
effect of noise is a major limitation for a correct description the dynamics of the fast variables, whatever they are, not
of the physical properties of climate. It took a long time, represented by the slow compondnt We can rescalg”

®)

L
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nearT; and simplify the equations by usiflg=T; + AT X a
with AT=5°K:
X

=X -X*4an) ©6) o W w

wheren(¢) is a Gaussian random variable with unit variance b
(n(H)n")) =8 —1)) ando is the noise strength. Notice
that we have also rescaled the time unit.

In order to do some computation what we still need is the
strength of the noise. We can obtain some information by thee
following argument. In our present climate (i&) we have
observational data which tell us about average temperature
fluctuations. Also, we know from General Circulation
Models, which is the time correlation for temperature
fluctuations. Thus, we can estimate the strength of the nois

by Ilnegrlzmg our (_:Ilmate model _arourﬂ?b and using the the upper panel, we show the solution with the noise anrd 0.
fluctu_atlon-d|35|pat|on the_orem, i.éemperature variance | e middle panel we show the perturbing forcingos2rwr)
= noise strengtif2 relaxation tim¢. Once we know the yhile in the lower panel we show the solution with=0.1. The
noise strengtlr we can compute the average switching time effect of the small periodic forcing is to synchronize the random
from Tp to Ty. It turns out that, by using4] the average  switching from one climate states to the other, i.e. to get a stochastic
transition time between the two stable states of our climateresonance.
model is close to 50000years! This is a rather surprising
and interesting result because it tells us that there exists
a rather long time scale (50000years) introduced by the
nonlinearity in the modeknd the noise, to be compared the “equilibria” probability distributionP (X) of X is given
against the quite short time scale of the model, namely theby:
deterministic relaxation time towards one of the two stable
equilibria which is of the order of 10 years. However, this is P(X) = Znexp(—2V (X) /o) (10)
not enough because the characteristic time of 50 000 years is ] o
a random time with an exponential probability distribution. Where Zn is a normalization factor. In our case(X)=
Therefore nonlinearity and noise are not enough to get a-1/2X*+1/4X*— AX (8) and we obtain from¥0)
periodic behavior of the temperature.

In order to get a periodic behavior, the idea is to introduce
the Milankovitch effect in the system. After a simple
computation one gets the following results:

dX

doidbonvron

L s N L L L N
1500 2000 2500 3000 3500 4000 4500 5000

bdhbonron

L L " L L 1 L '
0 500 1000 1500 2000 2500 8000 9500 4000 4500 5000

dbibomaroce
orTTrT T

L L L " L 1 " L n
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Eig. 3. Numerical simulation of Eq.7) in three different cases. In

P(X;A)=P(X;A=0)exp2AX /o) (11)

The probability distribution whem # 0 changes dramati-
cally the probability distribution wheA = 0. Even for small
ax . .3 . A the exponential factofexp(2A4/0) can be rather large,
dt =X — X"+ Asinon) + /o (1) (7) i.e. order 30 in our case. The consequence of this simple

An appropriate rescaling in terms of physical quantities givescalculation is that the probability to be near- 1 is 30 times
us the value oft ~ 0.11 for the Milankovitch terms and = larger than to be inX = —1. Now it is quite clear that if
27/10° x 1/10. Without the noise, the value &f changes A is slowly varying as caogt) in time than the probability
periodically in time with an amplitude orded. Going distribution is peakedperiodically in £1 with almost the
back to the temperature, this implies that, without noise,S@me period of 2/w. This is the very essence of stochastic
we have a periodic behavior of temperature with amplitude’®SONance. o _

AAT ~0.5K. The situation changes completely when we [N Fig. 3 we show the numerical simulation of)(and
consider the effect of the noise. A correct understanding of" Particular the upper panel i§ (z) for A =0, the pannel
the noise effect can be achieved by considering the simplified’ the center shows the behaviour 4tr) while the lower

equation: panel is the solution of7). As we can see, the effect

of the small periodic perturbation is to synchronize the
ax =X-—X3+AJon@) (8) “random” behavior ofX and to produce an almost periodic
dt output. In some sense, stochastic resonance is a counter

i.e. without any time dependency on the external forcing.intuitive phenomenon because without noise the system
It is crucial to remember that for any stochastic differential shows a small amplitude modulation around one of the two

equation of the form: stable steady stateis1, while adding the noise we obtain a
dx 9V large amplitude effect with the same period.
I=—ﬁ+ﬁn(t) )

Nonlin. Processes Geophys., 17, 4841, 2010 www.nonlin-processes-geophys.net/17/431/2010/



R. Benzi: Stochastic resonance: from climate to biology 435

T

One has to be a little careful in understanding the possible , , T

results of 7). As we said, the modulation efintime should ‘ t=0 | :: | t=TA |
be slow enoughin order to get a stochastic resonance. Weca |\ e | ok - i
be more quantitative using the following simple argument. | N \ | i -\\,/ \\./_
Let us go back to Eq.8). We can compute the probability | (% | kil |
distribution of therandomtime to go from+1 to —1 and we ) e ' b
already know that the probability distribution is exponential. ~ ™° alhetdl LB e
Let 71(+1) be the average exit time, then the variance of the
random switching time is alsq (+1). Finally we know how 04 tl= T C ] 04 T
to relater; (+1) to A, namely by using the expression: 02 | . 02} tm T2 4
2 ? \ £ /Z oK TN //‘
T1(+1) ~ exp(; (A Vo—i—A)) (12) 02 \@” LA 02 // «—
-04 E 04 - .

where in our caseé\ Vo = 1/4. Thus the requirementwe need ~ -8 -1 05 0 05 1 15 48108 0 &6 1 45

is thatr1(+1) « 27 /w andt1(—1) > 27 /w wherery(—1) is
the average exit timstarting with the initial conditionX =
—1. The two requirements imply

Fig. 4. A cartoon to explain the mechanism of stochastic resonance.
The period of the oscillation iF. At time ¢ =0 the climate states
has low probability to jump from1 to —1. Attimer=T7/2 the
situation is reversed: the probability no to jump is extremely small.
Attimer =T we start a new cycle.

AV, 2
exp(Z—O) ~ (13)
o w
exp(E(AVo—A)) < 2_” (14) because the model so far used, namely the energy balance
o w model 6), includes only the simplest possible feedback due

éo radiation. More sophisticated effects, like the temperature-
precipitation effect, can change the situation. Based on the
above discussion we can make the following statement:

The meaning of the above inequalities is represented in th
cartoon of Fig4. The time increasesis clockwise, beginning
with the left top panel. We start & =1 and as time goes

by, the system at=7'/2 has a very high probability to jump stochastic resonance is able to show that the external
to X =—1if (14) is satisfied. Then at=T7 we have the “weak” forcing due to Milankovitch cycle can be
same effect for the transitioN = —1— X =1. The two amplified by internal non linear dynamics of the
conditions (3), (14) tell us that if the noise is too small then climate;

we will never see anything and, conversely, if the noise is

too large transitions will happen regardless of the external  climate dynamics shows a long time scale behavior due
periodic forcingA. Thus, there is a range of ( the resonant to non linear feedback;

range) where we obtain periodic transitionphasewith the
external forcing.

One can highlight the resonance effect also by using
another kind of variable. LeX (r) the solution of {) and The most important feature coming out of our analysis is
let us denote by y (v) its Fourier transform. ThepFy (v)|? that it is crucial to understand the non linear interaction
represents the power spectrumXf We should expect that between fast a and slow time variables in climate models.
| Fx (v =w)|? is a function of the noise with some maximum Time scales of order 1000years or more, do no rule out
value for the “resonant noisefr. This is indeed the case the importance of the dynamics of fast variables usually
as shown in Fig5, where| Fy (v = w)|? is plotted against, characterize atmospheric and/or oceanic circulations’. This,
while in the inset we showFy (v)|? for o =OlrmR- | think, is an important feature even in more sophisticated

Let us now returnto the climate. As we have seen, theand/or realistic climate models.
effect of a small periodic forcing in our “simplified” climate The mechanism of stochastic resonance has been recently
model is to produce a periodic glaciation-interglaciation invoked to explain the observed climate variation on a time
transition in phase with the Milankovitch forcing. However, scale short compared to Milankovitch forcing.During the last
the signal shown in Fig3 poorly compares against the 100 000 years, the earth climate exhibits abrupt changes from
observed behavior of the “proxy” earth temperature. Therelatively cold to warm states, different to those observed in
latter shows a kind of saw tooth behavior with strong the 100000 year cycles. AccordingAtiey et al, the climate
asymmetries between cold and warm periods. Thus it seemshanges occurred on time intervals which are multiples of
that our theory cannot represent the real climate. Such d500years, i.e. the time to switch from one climate state to
negative statement, however, is somehow misleading simplyhe other is either 1500 or 3000 or 4500 and so on. This

noise can develop long time scale behavior if there
exists multiple equilibria;
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Fig. 5. The figure shows the Fourier amplituggy (v = w)|? for Fig. 6. Probability distribution of the random switching tinzefor

the solution of Eq.7) for different values of the noise amplitude two different noise amplitude obtained as the solution of Ej. (

In the inset we showFx (v)|2 for o = oR, i.e. the optimal noise for  The amplitude and the period of the forcing is the same. Line refers

which the Fourier amplitude at= w is maximum. to oR (see Fig5) while symbols refer ta = 0.80R. In the inset we
show the probability distribution of the random switching time in
log-lin plot. It is evident that forr smaller tharor the probability

rather peculiar behavior calls for an explanation which, notdistribution ofz is “quantized” at integer values 2z +1)T/2.
surprisingly, can be given in terms of stochastic resonance.
As we previously discussed for Eqr)( the effect of the
periodic forcing is to decrease or increase (depending on th
time r) the probability of switching from a climate state to
the other. With reference to Fid, if at time+t=T/2 the
system does not switch, then it takes a full peribdfor
the possibility to make a jump. This is certainly the case3 Stochastic resonance in complex systems
if the noise intensity is smaller tharg. It follows that the
probability of the exit time is not peaked aroufigd2 but is In the last ten to fifteen years the mechanism of stochastic
guantizedvith maxima in2n+1)T/2,n=1,2,.... Toshow resonance has been widely applied to a number of different
that our analysis is correct, in Fi§.we plot the probability  physical and biological systems. Among them, the most
distribution of switching time foo = 0.80r (symbols) and  striking applications concern neural systems pioneered, by
for o = or (continuous lines). The quantization effect is Moss and collaboratoMoss and Wiesenfe]d995. In most
quite clear, as predicted by our simple analysis. cases, experimental results show a remarkable agreement
It appears that the observation Afley et al. may be with respect to the qualitative and quantitative picture
explained by the mechanism of stochastic resonance as fepresented in Fig6. Also, in many applications one
was pointed out by the these authors. Actually, a theoreticafloes not know the “equation of motions” for the system
analysis of a simplified ocean/atmospheric model, due to@nd, actually, periodic perturbations leading to a stochastic
Ganopolski and RahmstorftGanopolski and Rahmstorf resonance are used as a “measure” of non trivial cooperative
2002 shows that the effect of a periodic forcing in freshwater Phenomena in the system under study (this is certainly the
input over the North Atlantic Ocean combined with a case for most neurophysiological systems).
suitable stochastic forcing, produces stochastic resonance When dealing with complex systems, one can find non
in cold/warm climate changes as observed in real datatrivial behavior of the stochastic resonance. In this section
In the Ganopolski and Rahmstorft model, the two climate We show that this is the case for a network system composed
states, between which one has climate transitions, represeRY Some “node’;, i =1,...N, see Fig7.
two different thermoahline circulation in the Norht Atlantic ~ Just to simplify the discussion, let us assume that the

Ocean, which are responsible for sea ice growth anddynamics of each node is controlled by the same equation
destruction. and that the connectivity of the system is described by the

the last 100 000 years are hard to explain without the idea
Bf transition between multiple equilibria triggered by noise,
which is the basic feature of stochastic resonan8eitera
1981).

Itis unclear, at this stage, whether stochastic resonance i&1atixLi;:
or is not the possible explanation of tAley et al. dataand : s
more research is needed for a reasonable assessment. At any~ = my; — gy +Lijy; +on; (15)
rate, it is important to remark that abrupt climate changes,
such as those observed during the Milankovitch cycle or oveivherem > 0 andg are real constant. Also, | will assume
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that ) ;L;;¥; =0 which clearly can be done without lack
of generality, and finally, thad_,L; ;¥iy; > 0, i.e. the
connectivity matrix does not introduce any “instability” in
the dynamics of the system. The noigeis s-correlated in
time and(nl-r;j) =8ij-

The complexity of our problem, so to speak, is introduced
by the matrixL ;;. We want now to study the behavior df5)
when an external periodic forcing is added to the system, i.e.

%Zmlﬂi_glffi?"l‘l-ij‘/fj+\/E77i+AiCOS(ZCUt) (16)

In order to simplify our work, let us focus on the “average”

variable ® = N‘lzi ¥;. One should expect that for long Fig. 7. A cartoon of our “complex” system. Each node satisfies
enough periodl' = 27/w and a suitable noiseg(m,g) a Eg. (19). Lines describes the connectivity mattiy; .

stochastic resonance can be observed. Note that we defined

or as an explicit function of the variables and g. By

averaging 15) we obtain

Using £0) we can now estimatepl?). Let us define-A, the

Z—T =m® —g(y3) 4+ /en (17)  eigenvalues ok ;;. Then as simple computation gives:

where/e=N"1Y", /o and(.. 13 ... We assume  (¢?) :qul?:} > (22)
- 2 o+,

thate is independent oV, i.e.o |s chosen in such a way that i n

€ is a fixed quantity. The difficulty is to compute the term
(1//1.3). For this purpose, we defig such thaty; = © + ¢;,
i.e. ¢; are “deviation” ofy; from ®. Then we havewf) =
<I>3+3g<D(¢i2). This expression is correct as far as we canz_) /pr(k) (23)
neglect the term¢>i3) which, in most cases, is a good first

approximation. Putting all together, we obtain:

do
dr

As we can see, the effect of complexity, i.e. the connectivity

matrix Lj;, introduces a change in the linear term which Equation 4) is a non linear equation relating the value of
now become @ime dependent functiorit can happen that  (¢?) to the density of statep (%), i.e. to the connectivity
(m —3g($?)) < 0 and if this is the case, transition between matrix L;;. Once we have¢?) we can computby. The
the two states (whatever they are) occur with a mechanisntricky part of our problem is that we have comput@bf)
completely different with respect to what we discussed in thewhen (A) =0, i.e. with no external forcing. If we now
previous section. Is this the case? Everything depends on thieave an external forcing, all our computations fbg and

In the limit of large N, we can define the density of states
o (1) with the approximation:

Putting everything together, we finally have:

3
= (m—3g(#D)) ® — g%+ Ven (18 421 [ Py 1 [ PG (24)
2 a+ir, 2 2(m—3g(#?) +1

quantlty(¢ ) and therefore on the connectivity mattix;. « should change taking into accouat One can compute
In order to make progress, let us first discuss what are therturbatively the effect in powers of and take the first
“statistical stable” equilibria ofi8). Let us define order for smallA. The computation are done for a special
) case inBenzi(2004); Benzi et al.(1989. The final results is
®2= m—3g(¢7) (19)  thateverything goes as in the theory discussed in Sect. 2 but
g with a renormalized value of, i.e.
We should expect that the statistical stable equilibria are 3gD
+®o. Then fluctuations around the equilibria, which in first 4R= <1+ 1—2Dg) (25)
approximation we can describe @s satisfy the equation:
i, where
U = eHLig Vo @) pos / LY (26)
(ap+2)
where
andog correspondsql) for A =0. For any practical purpose
o= (m —3g(¢>l~2)) —3g 5= —2(m —3g<¢>i2)> (21)  our result means the following. Let us imagine a network
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Fig. 8. Numerical simulation of Eq.16) with the same parameters g, o and two different topology (shown in the figure): one dimensional
lattice (upper panel), two dimensional lattice (lower panel). The amplitude and the period of the periodic forcing is the same for both cases.
While the two dimensional lattice shows stochastic resonance, the same is not true for the one dimensional case.

described by Eq.15). Then the effect of a periodic forcing
with amplitude A on the averag® is equivalent to a one-
dimensional problem similar to6f with a renormalized
amplitude 25). The connectivity matrix fixes the value of
the renormalization by2@). Thus, depending oh;;, the
effect of stochastic resonance can be enhanced or depressed.
In Fig. 8 we demonstrate our result in a simple case. We hot
consider the same system (i.e. same value:pg, A and
o) for connectivity matrix topologically equivalent to a one-
dimensional lattice (upper panel), and a two-dimensional
lattice. In the latter case the system shows stochastic Sl
resonance while this is not true in the former case.

One main conclusion that we can outline from our o
discussion is particular relevant for climate theory. The
physical effect of an external forcing can be drastically

different depending on the feedback in the system (in OmFlg. 9. A simple model of Brownian motor. Going from the top to
case the matridl;;). There are cases, as we have Seenthe bottom of when the temperature is low (cold) a particle moving
ij)- ’

f hich I forci I . tri in the ratchet potential is trapped in one of the minima. Rising the
or W .IC a sma .orCIng or a_ small noise can rlgg'e.r temperature, the particle becomes almost free to move and, because
transitions and a naive computation of the relevant quantiti€ss initial condition (minimum) is close the maximum on its right,

(i.e. neglecting the effect discussed in this section) can leaghe particle has more probability to go towards the right minimum.

us to wrong results. We want to argue that the abovelfthe temperature is now decreased the particle has more probability
conclusions is relevant for other physical and biological to be trapped in the right minimum with respect being trapped in the
systems. minimum on the left.

cold

4 Brownian motors and stochastic resonance

Up to now we have discussed the case of stochastic resonanoeake work. This can be done, consistently with the law
in a more or less traditional fashion, i.e. when multiple of thermodynamics, if one considers a ratchet potential with
equilibria exist. We want now to understand whethera periodic time behavior of the temperature, see Big.
there are other physical problems where a stochastic-lik&soing from the top to the bottom of Fi®, we see that
resonance can be of interest. One possible candidate, thathen the temperature is low (cold) a particle moving in the
we discuss in this section, is the case of Brownian motors. ratchet potential is trapped in one of the minima. Rising
The very idea of Brownian motors goes backynman  the temperature, the particle becomes almost free to move
et al. (1963 (see alsoParrondo and Cisnerp2002 for and, because its initial condition (minimum) is close the
a review) and it can be summarized by saying that wemaximum on its right, the particle has more probability to
want to use the energy of the thermal noise in order togo towards the minimum on the right. If the temperature
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Fig. 10. The Brownian motor proposed in Sect. 4. The particle

moves in a periodic potential and noise is acting on it. A perturbingrig. 11. The effect of the perturbing potentig(x — vt). From

potential® (x —vr) localized in space is traveling in the system.  the top to the bottom, the particle can flip only in the positive x-
direction as the potential travels. The flip occurs only for a suitable
combination ofv and the noise amplitude.

00

is now decreased the particle has more probability to be ™
trapped in the right minimum with respect being trapped
in the minimum to the left. The overall picture is that of
a diffusion process with more probability to move to the
right than on the left. Thus, under the combined action o
periodic temperature variations and the ratchet potential, we
can have a non zero drift average velocity of the particle in 3% [
the right direction: we have been able to extract work from
the temperature field. 2000 -
There are many kinds of Brownian motoRi¢mann and
Hanggij 2002, the one shown in Fig0 is just an example. 1000 f
We will propose here a new kind of motors using the very )
same idea of stochastic resonance to produce a non zer 00" 500 1000 1500 2000 2500 3000 3300 4000
current using the noise. Instead of a ratchet potential, let %
us consider a particle which feel a space periodic potential of
periodL. In the limit of overdamped friction, the equation of Fig. 12. The figure showsc () with (straight line) and without

4000 |
f

!

motion of the particle position is: (dotted line) @ (x — vr) for a properly chosen value aef. The
initial particle position is 300 and the initial perturbing potential
dx aV is localized inx = 0.
o =—a—+ﬁn(1), V(x)=Vpco2rx/L) 27)
X

We now introduce a time dependent forcifgx — vt) in the
form of a moving localized perturbation as shown in Ri@.
Actually we can think of F(§) as the effect of a moving If the speedv of the perturbing potentiad is properly

potential perturbation, i.e. chosen, then the particle has the possibility to jump to the
right but not to the left when the perturbing potentialis

F(x —vr) Z_BCD(x—Ut). (28) in a given position. Then the particle remains trapped in

0x the new minimum up to the time when the potential is now

shifted to the next minimum, and so on. In other words,
the particle remains trapped in the moving poten@aand

it moves “balistically” at the same speedbf the perturbing
é)otential. In Fig.12 we showx (¢) with and without® for

a properly chosen value of. The initial particle position is
300L and the initial perturbing potential is localizedin= 0.

Without the effect ofF, the particle performs a diffusive
process among the minima &f. The characteristic time
7L to jump to the right or to the left can be computed by
using the same method of Sect. 2. The action of the localize
potential can introduce a new feature which is illustrated in
Fig. 11
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1600 5 Conclusions

1400
In the last 30 years the scientific community did learn many

different features for complex systems, starting with the
pioneering works of Lorenz, Ruelle, Mandelbrot and others.
In many cases, new ideas and tools have been introduced in
order to “measure” complexity in an appropriate way. These
tools can be used to reveal different features of underlying
physical or biological mechanisms. In some sense, stochastic
resonance is also a tool because it allows us to understand
whether or not non linear effects can act in a cooperative way
with the complex and chaotic behavior of a given system.
Note that stochastic resonance is a mechanism in the full
meaning of the word because it allows to get large effect from
a small amplitude perturbation. There have been and still
are many applications of stochastic resonance to problems
dealing with the amplification of signal to noise ratio, a quite
traditional engineering problem.

In this paper, | have reviewed some known and less known

features of stochastic resonance. Some simple conclusions
can be made.
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Fig. 13. The quantity(D, ) as a function of.
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Stochastic resonance is a  counter-intuitive

phenomenon: it is not trivial that adding noise to

a system we can enhance the deterministic periodic
behavior.

£ 4000
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Stochastic resonance is a robust mechanism, observed
in many physical and biological systems. The notion of
stochastic resonance is now cross disciplinary and new
applications are found every year.
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Fig. 14. The quantity(Dy ) as a function ob.

We learn a lot by applying stochastic resonance in the
theory of climate change. As | mentioned in Sect. 2, it
is a crucial step to understand that fast variables cannot
simply be ignored in the study of long-term climatic
change, which is, overall, the basic idea introduced by
stochastic resonance.

When® is close tox = 300, the particle remains trapped
and it moves with the speed for a rather long distance.
At each step the particle is following the potential with a
probability close to 1 but not exactly equal to 1. It follows
that the particle is trapped in the potentilfor a distance
D, which is a random variable (it is the analogous of the
random timer, discussed in detail in Sect. 2). Acknowledgementd. would like to thank many friends and

As for the stochastic resonance, if the noise is too smallolleagues for their help in early days of my research in stochastic
or too large,® has no effect on the particle. The same resonance. Among them a special mention must be made to
is true if the velocity is too small or too large. We can Giorgio Parisi, Alfonso Sutera and Angelo Vulpiani. ~Also, |
check these qualitative statements in the following way. We@™ indebted to Micheal Ghil and U. Frisch for their helps and
consider an ensemble df particles and we study the average contributions. - This paper represents the talk | gave in april
distance(D, ) as a function of noise varianeeand the non 2006 for the L. F. Richardson lecture at EGU annual meeting in

di . | velocit I This is d in Ei 3 d Vienna. | would like to thank the scientific committee of the EGU
Imensiona ,Ve ocitwr /L. Is is done in Figs.13) an Richardson’s medal and in particular D. Schertzer for his help
(14), respectively.

] _and assistance. The paper has been written during a stay at the
In both cases, the effect of a resonant-like phenomenon ig)niversity of Chicago, Flash Center. | thank L. Kadanoff, D. Lamb,

quite clear. Only for properly chosen valuescofindv we
do obtain the maximum ofD, ). Some recent experimental
results Gchiavoni et a].2002 seem to confirm the numerical
analysis done in this section.
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