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Abstract. In order to get valuable information about the
scale invariance in the process of seismogeny of Lijiang
M 7.0 earthquake, the scaling property of the interevent
time series of the seismic sequences for Lijiang area in
China were studied by using the method of the local
scaling property, the generalised dimension spectrum, and
the correlation dimension. It is found that there is a clear
characteristic variation of local scaling property prior to
Lijiang M 7.0 earthquake while there is no characteristic
variation of the generalised dimension spectrum and the
correlation dimension. The reason for producing this
phenomenon is that the fractal seismic system is a complex
hierarchical system. For such a system, searching for a
relevant choice in application of the three methodologies is
needed. Compared with the generalised dimension spectrum
and mono-fractal dimension which focus on the global
description of the scaling properties of fractal objects, the
local scaling property emphasizes the local features, and
can give the local information of the singularity of the
fractal system, therefore, it is easier for us to get valuable
information from complex hierarchical structure with this
method.

1 Introduction

Recently, more and more attention was focused on the
study of the nonlinear characteristics of seismicity and
seismogeny. It has been shown in rock burst (Lu et al.,
2005), petrophysical experiments (Lei et al., 2003; Lei
and Satoh, 2007) and natural earthquake research (Murase,
2004; Roy and Nath, 2007) that the mono-fractal dimension
displays characteristic changes before a major rupture; it
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has also been shown in multifractal research on seismic
activity that the spectrum of generalised dimensions and the
singularity spectrum display characteristic changes before
large earthquakes (Caruso et al., 2006; Dimitriu et al.,
2000; Nakaya, 2005; Roy and Padhi, 2007). Some results
have confirmed that the decrease in fractal dimension, the
steepening of curves in the generalised dimension spectrum
and the broadening of the value range in the singularity
spectrum, can be taken as indicators of an unstable state of
an earthquake system before a large rupture (Carpinteri et
al., 2009; Goltz, 1997; Kiyashchenko et al., 2004; Lee et
al., 2008; Matcharashvili et al., 2000; Radulian and Trifu,
1991; Telesca et al., 2005; Telesca and Lapenna, 2006).
However, there are some shortcomings in the research:
the mono-fractal dimension is not sufficient to characterise
heterogeneous fractals (Grassberger and Procaccia, 1984;
Kentz and Schreiber, 1997), while the generalised dimension
spectrum and singularity spectrum can only represent a
global description of the scaling properties (Chhabra and
Jensen, 1989; Grassberger, 1983). As a result, there is
the possibility of losing valuable information on the fractal
properties and the universality of such research results is in
dispute.

On the other hand, the fractal seismic system is a complex
system (Chelidze and Matcharashvili, 2007; Kagan, 1994;
Keilis-Borok, 1990), and it is hierarchical in structure. In
order to get valuable information about scaling property
from this hierarchical structure, we use the method of local
scaling property in addition to the method of the generalised
dimension spectrum and the correlation dimension. Because
the local scaling property can help us to analyse the minute
local features of a fractal, obtaining local information of the
singularity of the fractal system makes this meaningful.
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2 Method

2.1 Local scaling property

The method of local scaling property is as follows (Arneodo
et al., 1988; Liu and Cheng, 1999; Yang, 2003).

A typical property of fractals is that they are asymptoti-
cally self-similar at small length scales. Let us consider a
fractal represented by a real functionf . Looking near an
arbitrary pointx0 at different scales, we always find the same
function up to a scaling factor. Defining

fx0(x)= f (x0+x)−f (x0), then we have

fx0(λx)= λ
+α(x0)fx0(x) (1)

Here, α(x0) is the local scaling exponent (also called the
singularity exponent or Ḧolder exponent), representing the
singularity strength at positionx0.

It can be proven that the wavelet transform coefficient
of f (x) aroundx0 also displays a similar property of scale
invariance. Define

T (a,x0+b)=
1

√
a

∫
f (x)ψ

(
x−x0−b

a

)
dx

as the wavelet transform aroundx0, and

T (λa,x0+λb)=
1

√
λa

∫
f (x)ψ

(
x−x0−λb

λa

)
dx

as the form of the wavelet transform coefficient aroundx0
when the scale varies. This transformation can be seen as a
mathematical microscope whose position and magnification
areb and l/a, respectively, and whose optics are given by the
choice of the specific waveletψ . Then, we have

T (λa,x0+λb)= λ+α(x0)+
1
2T (a,x0+b) (2)

Therefore, based on the Eq. (2), we can obtain local
scaling exponentα of the fractal objects by analysing the
scaling property of the wavelet transformT (a,b). In actual
application of the case, we can study the local scaling
property of the fractal by transforming the parameters 1/a

and b. For example, we can observe the variation of the
transformT (a,b) with the magnification 1/a by plotting
ln|T (a,b)| versus lna with a fixingb. For pointb at different
positions where there is asymptotic self-similarity at small
length scales, the plot of ln|T (a,b)| versus lna is a straight
line with slopeK. The local scaling exponentα at that point
can be easily calculated from the following equation:

K =α+
1

2
(3)

In our study, we need to know the local scaling exponentα

of every point in series. Through the change of parameterb,
we can obtain the local scaling exponentα at each point.

2.2 The generalised dimension spectrumDq and
correlation dimensionsD2

The generalised dimension spectrumDq is analysed by a
method based on the correlation integral (Grassberger, 1983).
The calculation ofDq using the correlation integral method
(Nakaya, 2005) is performed using

Dq = lim
r→0

logCq(r)/logr , (4)

whereCq(r) is the qth-order generalised correlation func-
tion, given as

Cq(r)

=


1

N

N∑
j=1
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i= 1
i 6= j

2
(
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∣∣Xi−Xj ∣∣)

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1
q−1

(5)

with r as the scaling radius,2(s) as the Heaviside step
function,N as the number of data points and

∣∣Xi−Xj ∣∣ as
the distance between the two pointsXi andXj . If the series
has a fractal structure, thenCq(r) is represented by a power
law. TheDq value is determined by the slope of the linear
segment in the graph of logCq(r) versus logr.

As for the correlation dimensionD2, it is the special case
of generalised dimension. Lettingq=2 in Eqs. (4) and (5),
we can easily getD2.

3 Data

The data consist of interevent times between successive
earthquakes exceeding a threshold magnitude. Our choice
was made by considering that the earthquake occurrence time
is one of the most reliable and accurate parameters that define
a seismic event (Enescu et al., 2006; Telesca et al., 2004).
Also, our choice was based on the correlation of earthquake
recurrence times.

The data adopted are from a very seismically active area
of Lijiang in China. The area around Lijiang was struck
by a violent earthquake (M=7.0) on 3 February 1996. The
epicentre distribution of events occurred from 1984 to 2000
in the Lijiang area (total 2296 earthquakes) is shown in Fig. 1
(data extracted from the earthquake catalogue of the China
Earthquake Administration). The earthquakes are located
in a circular area centred on the epicentre of the above
violent earthquake, with a radius of about 160 km. The
interevent time series of the seismicity with a logarithmic
scale is shown in Fig. 2 (the order number of the main
shock is 1601). The completeness magnitude estimated after
performing Gutenberg-Richter analysis is 2.4 (see Fig. 3).
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Fig. 1. Epicentre distribution of the seismicity in Lijiang area during
the period 1984–2000.

4 Results and analysis

4.1 Local scaling property

On the basis of Eq. (2), the ln|T (a,b)| versus lna plot
with different positionsb can be obtained by using the
Mexican hat wavelet. The plots are two different types:
one approximates a straight line while the other fluctuates
considerably. For an approximate straight line, we can get the
slopeK by using a least squares fit with a check value(F=21
for a F-test at 99% confidence level), thus, we can calculate
the local scaling exponentα at that point from Eq. (3), which
means that the interevent time series is singular at that point
(we call this point a singular point). For a “non-straight
line”, we can get neither the slopeK through fitting nor the
local scaling exponentα, which means that the series is not
singular at that point. As a result, some points in the series
are singular while others are not.

Figure 4 shows the local scaling exponentα versus the
pointn of the series: points with missing data in the abscissa
represent that the series are not singular at these points.
We note that singular points are dense in some periods
of the series while sparse in others, which means that the
distribution of singular points at different seismogenic stages
displays different characteristics.

By using the concept of a sliding window (Telesca and
Lapenna, 2006), one can calculate the temporal evolution of
the distribution characteristics of singular points. In order to
evaluate the calculation results with one standard, we used

Fig. 2. The interevent interval time series of the seismicity shown
in Fig. 1 with logarithmic scale.

Fig. 3. Magnitude-frequency relationship of the seismicity in
Lijiang area during the period 1984–2000.

 16

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The local scaling exponentα versus pointn of the series.
Points with missing data in the abscissa represent that the series are
not singular at these points.
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Fig. 5. The variation ofSi versus time. In the figure, theSi value
for the original series (thick solid line), the average (fine solid line)
of theSi value obtained by 100 randomly shuffled versions within
their ±1σ range (fine dotted lines) and theSi value obtained by
synthetic data(fine dashed line) are plotted. The vertical arrow
indicatesM 7.0 Lijiang earthquake.

the same sliding window and the same shift between two
successive windows in the calculation made by using the
three above-mentioned methods. In our case, we considered
a sliding window of 200 events (the average duration of the
sliding window of 200 events for a point in time scale is
17.7 months, and the duration prior to the main shock is
21 months). The shift between two successive windows was
set to 50 events, in order to smooth the results and evaluate
the variation of the distribution characteristics of singular
points with good time resolution.

Next, we define parameterSi as the number of singular
points per unit sliding window length (i.e.Si=N/L). As
a result, high numerical value ofSi signifies a dense
distribution of singular points, while low numerical value
signifies a sparse distribution of singular points.

The time variation ofSi for the series is shown in Fig. 5
(thick solid line), and is obtained using the sliding window
method(the point of each sliding window is on the right side),
based on Fig. 4.

The most striking feature in the plot is the significant
change in parametersSi before the main shock. The
parameter shows an increase before the main shock, which
means that within the sliding window, the number of singular
points is larger than during normal periods. After the
main shock, the parameter shows a decrease, which means
that within the sliding window, the number of singular
points becomes smaller again. This result indicates that there
is a clear characteristic variation of local scaling property
prior to LijiangM 7.0 earthquake.

In order to verify that the variability of the parameter is
not random but significant, we performed the same analysis
on 100 randomly shuffled versions of the original series. We
calculated for each shuffled series theSi value varying with
time, and then we averaged them. In Fig. 5 we also plotted
the average (fine solid lines) within their±1σ range (fine
dotted lines; 1σ is called standard error). We can clearly
observe that theSi value calculated for the original series
differs significantly from those calculated for the shuffled
series: theSi value for the shuffled series has fluctuations in
a small range but has no characteristic variation in different
periods of time.

we know that usually a certain percentage of the catalog
consists of aftershocks triggered by larger magnitude events
with an Omori-type decay in time. Therefore, aftershocks
might dominate any measure applied to seismicity data.
In order to verify that the aftershocks are not responsible
for the drop ofSi after the main shock, the synthetic data
consisting of Poissonian background events plus aftershock
sequences (i.e. by applying the ETAS model by Ogata (1988,
l989)) are tested. According to the research on seismicity
and the features of ETAS model parameters in Lijiang
area of China (Jiang et al., 2007), we chose Poisson rate
λ=135 (an average of 135 earthquakes ofMl ≥2.4 per year
as Poissonian background events) and the suitable ETAS
model parameters (the decay ratio of the aftershockp=0.778,
frequency-magnitude distributionb=0.721, the ability of
sequences to generate high order aftershocksβ=0.993) for
the test. We calculated for the synthetic data theSi value
varying with time. In Fig. 5, we plotted the variation of
Si value for the synthetic data (fine dashed lines). We can
observe that the aftershock sequence is not responsible for
the drop ofSiafter the main shock.

Consequently, the above mentioned characteristic varia-
tion of local scaling property indicates a new mechanism
that traditional linear theory can not explain. According to
complex system theory (Xu, 2000), a system is composed
of many components. The components in a linear system
are independent. However, the components in a nonlinear
system are interdependent and interactive, so an increase in
the number of components will enhance the interaction
among components, thus, increasing the instability of the
system. In our nonlinear system of seismic activity
(interevent time series), the singular points are considered
to be the components of the fractal system. In this sense,
a different number of components (i.e. singular points)
can be attributed to the difference in system properties.
Before the main shock, the increasing number of singular
points (i.e. the increasing number of components) enhances
their interaction, thus, increasing the instability of the
seismic system. In normal times and after the main shock,
within the same window length, the number of singular
points remains at a smaller value, showing that the system
is in a state of stability.
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Fig. 6. The generalised dimension spectrumDq for q ranging
between−5 and 5.

4.2 Generalized dimension spectrum and correlation
dimension

Figure 6 shows the variation of the generalised dimension
spectrum of seismic series relevant to the case of seismic
interevent time series. The curve presents thatDq for
positive q decreases asq is increased and for negativeq
increases asq is decreased, which illustrates the multifractal
property. Some researches show that theDq − q curves
become steeper before a great rupture than during normal
periods (Hirabayashi et al., 1992; Nakaya, 2005; Zhu and
Chen, 2000), i.e.,Dq increases for negativeq and decreases
for positiveq. This change mainly occurs within the range
of −5≤ q ≤5.

In order to describe the variation of the generalised di-
mension spectrum mentioned above quantitatively, we define
h = Dq=−5 −Dq=5, which we use for the characteristic
parameter of the variation of the generalised dimension
spectrum. Besides, in order to show this variation before
and after LijiangM 7.0 earthquake, the concept of a sliding
window is used. We calculated the interevent time series of
the seismic sequences for Lijiang area. Figure 7 shows the
parameterh versus the time. The plot presents the parameter
h has fluctuations but has no characteristic variation in
different periods of time, which indicates that the generalised
dimension spectrum has no characteristic variation before
Lijiang M 7.0 earthquake. Therefore, we can not get any
valuable result from this analysis.

Now, let us see the result of fractal dimension. Some
researches show the decrease of the fractal dimensions
before a great rupture (Carpinteri et al., 2009; Goltz, 1997;
Kiyashchenko et al., 2004; Lee et al., 2008; Matcharashvili
et al., 2000; Radulian and Trifu, 1991). Because the
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Fig. 7. The variation ofh versus time. The vertical arrow indicates
M 7.0 Lijiang earthquake.
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Fig. 8. The variation of correlation dimensionD2 versus time. The
vertical arrow indicatesM 7.0 Lijiang earthquake.

correlation dimensionD2 is the most typical in the fractal
dimensions, we only researchD2 in this paper. In order
to show the variation ofD2 with the time, the concept
of a sliding window (Martin et al., 2000) is also used.
We calculated the interevent time series. Figure 8 shows
the variation ofD2 versus the time. The plot presents
the parameterD2 has fluctuations but has no characteristic
variation in different periods of time.

From the above study, we have the valuable information
about the scale invariance in the seismogenic process of
Lijiang M 7.0 earthquake with the method of local scaling
property, however, we can not get any valuable information
with the method of generalised dimension spectrum and
correlation dimension. The reason for producing this
phenomenon is related to the complexity of the fractal
seismic system.
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5 Discussion and conclusion

Our research on the scaling property of seismicity has
demonstrated that there is a clear characteristic variation
of local scaling property prior to LijiangM 7.0 earthquake
while there is no characteristic variation of the generalised
dimension spectrum and the correlation dimension. In fact, a
complex fractal system is hierarchical in structure (Badii and
Politi, 1999). It is composed of some components and they
are composed of some lower level components. Different
levels of components have their own local information.
However, the global description of the scaling properties
neglects this structure, and produces an effect of “smoothing”
of information. This effect of “smoothing” can result in the
loss of valuable local information. Compared with the global
description of the scaling properties (generalised dimension
spectrum and mono-fractal dimension), the local scaling
property emphasizes the local features, and can give the local
information of the singularity of the fractal system, therefore,
it is easier for us to get valuable information from complex
hierarchical structure with this method.

Besides, as can be seen from the above analysis, the
choice of suitable methods is needed for the purpose of
getting valuable information in application of the three
methodologies. If we have no search for a relevant choice,
we might not get any valuable result from this analysis.
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