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Abstract. We give an overview of a novel lattice-based
avalanche model that reproduces well a number of observed
statistical properties of solar flares. The anisotropic lattice is
defined as a network of vertically-connected nodes subjected
to horizontal random displacements mimicking the kinks in-
troduced by random motions of the photospheric footpoints
of magnetic fieldlines forming a coronal loop. We focus here
on asymmetrical driving displacements, which under our ge-
ometrical interpretation of the lattice correspond to a net di-
rection of twist of the magnetic fieldlines about the loop axis.
We show that a net vertical electrical current density does
build up in our lattice, as one would expect from systematic
twisting of a loop-like magnetic structure, and that the pres-
ence of this net current has a profound impact on avalanche
dynamics. The presence of an additional energy reservoir
tends to increase the mean energy released by avalanches,
and yield a probability distribution of released energy in bet-
ter agreement with observational inferences than in its ab-
sence. Symmetrical driving displacements are in better con-
ceptual agreement with a random shuffling of photospheric
footpoint, and yield a power-law distribution of energy re-
lease with exponent larger than 2, as required in Parker’s
nanoflare model of coronal heating. On the other hand, mod-
erate asymmetrical driving generate energy distribution ex-
ponents that are similar to those obtained from SOHO EUV
observations.

1 The solar corona: a magnetized environment

The sun is a magnetic star. Although its magnetic field has
little influence on the sun’s internal structure, it becomes a
dominant dynamical player from the photosphere up to the
outer corona. The solar magnetic field is also the energy
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source and engine of all geoeffective eruptive phenomena
that collectively make up solar activity. In addition, it modu-
lates the sun’s radiative output, especially in the short wave-
length range of the electromagnetic spectrum.

In the solar photosphere the energy density is dominated
by the plasma, except in regions of strongly concentrated
magnetic fields such as sunspots, faculae, and some small
magnetic flux concentrations. Rising to the lower corona,
these roles are reversed, and the plasma becomes channeled
and confined by the coronal magnetic field. This is am-
ply demonstrated by observations of the sun in ultravio-
let and soft X-Rays (for example inLopez Fuentes et al.,
2006; De Moortel et al., 2003), which show the corona to
be an assemblage of magnetic loops and arcades of various
sizes and shapes, anchored in the photosphere and filled with
∼106 degree Kelvin plasma intermittently heating up to tem-
peratures sometimes reaching 107 K.

Given photospheric temperatures of some 6000 K, and in
view of significant coronal conductive and radiative energy
losses, an efficient heating mechanism is needed to sustain
these high coronal temperatures. The physical nature of this
mechanism has remained a puzzle for now over half a cen-
tury (seeAschwanden, 2006; Klimchuk, 2006; Mandrini et
al., 2000; Gomez, 1990for examples on the diversity of mod-
els proposed). What appears certain is that the mechanical
energy of photospheric convective motions gets transferred,
somehow, to the coronal magnetic field, where it accumulates
gradually until it is released through MHD or plasma insta-
bilities to heat the coronal gas. Because the latter is a good
electrical conductor, the coronal magnetic field has been ar-
gued to reach a highly tangled, topologically complex state
in response to stochastic motions of its photospheric foot-
points. Energy release would then take place in a large num-
ber of small electrical current sheets forming spontaneously
in regions of magnetic tangential discontinuities. Two pa-
pers from E. N. Parker (Parker, 1983, 1988) give a succinct
overview of this idea, together with estimates of the energetic
and dynamical requirements.
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The reconnection presumably taking place at such small
current sheets alters the physical conditions in the vicinity of
the reconnection site, which may push other neighboring cur-
rent sheets beyond their stability threshold and trigger more
reconnection events, in classical avalanching style. The re-
sulting energy release can then be interpreted as a solar flare.
This idea, first proposed and explored byLu and Hamilton
(1991) using a sandpile-like cellular automaton (CA) driven
to a state of self-organized criticality (SOC), naturally yields
a scale-free distribution of released energy. This provides
a natural explanation for the observationally-inferred power-
law distribution of flare energy, which spans some eight or-
ders of magnitude (seeAschwanden et al., 2000).

In subsequent years many CA for solar flares were pro-
posed. Although different in many details most of them
shared the same common characteristics (for reviews on the
subject seeCharbonneau et al., 2001; Podladchikova and
Lefebre, 2006). Although such models can reproduce certain
aspects of observed solar flares statistics, their simplicity of
design led to ambiguous or problematic interpretative scenar-
ios when attempting to link the model back to magnetohydro-
dynamics. For example, if one associates the nodal variable
in the Lu and Hamilton(1991) CA with the magnetic field,
then the condition∇×B=0 ends up violated; if the nodal
variable is instead identified with the magnetic vector poten-
tial, then ambiguities appear in the calculation of magnetic
energy release. Such physical considerations motivated us
to design a novel SOC model for solar flares (Morales and
Charbonneau, 2008), in which the dynamical elements are
linear strands of interconnected nodes representing magnetic
fieldlines, rather than isotropic nodal sampling of magnetic
field intensity. Forcing takes place by introducing horizontal
displacements (δ− to the left orδ+ to the right) at randomly
selected nodes. We could show that this model produces spa-
tially and temporally intermittent, avalanche-like release of
magnetic energy with frequency distributions of avalanche
size parameters in the form of power laws with indices com-
paring to observationally inferred values. Moreover, and un-
like in most of previous models, avalanches liberated a sig-
nificant fraction of the total energy stored in the lattice.

One of the most natural geometrical interpretation of our
2-D anisotropic lattice is that it represents the cartesian map-
ping of the outer magnetic flux surface of a straightened coro-
nal loop, with the vertical direction on the lattice correspond-
ing to the direction along the loop axis, and the horizontal to
the azimuthal direction along the perimeter of the loop cross-
section. Reconstructions of synthetic flare images under this
geometrical Ansatz have been found to compare favorably to
observations, in the sense that the size distribution and frac-
tal indices of the flaring areas matched reasonably well with
values inferred from UV and EUV imaging of flaring coro-
nal loops (Morales and Charbonneau, 2009). Any asymme-
try in forcing displacements in the horizontal direction would
then amount to a systematic sense of twisting of the magnetic
fieldlines around the loop axis. Such a systematic, large-scale

twist should then result in buildup of large-scale net electrical
current density flowing along the loop axis. What is then the
impact of such a twist on the avalanching dynamics? This is
the primary question addressed in this paper.

We begin (Sect.2) with an overview of the several ele-
ments of the CA, and associated avalanching dynamics, fo-
cusing in particular on the avalanching characteristics that
can be compared to solar flare observations. In Sect.3 we
systematically explore the effect of asymmetric forcing on
the characteristics of the statistical properties of avalanches,
and offer a well-defined physical interpretation for the results
obtained, grounded in magnetohydrodynamics. In Sect.4 we
offer a speculative but physically plausible scenario linking
our model results to observed patterns of energy release in
the solar corona.

2 The new cellular automaton

We begin this section by introducing the new SOC model
for solar flares whose main statistical properties we studied
in Morales and Charbonneau(2008). The model consists in
a 2-D lattice of sizeN×N that (initially) forms a network
of equally spaced vertically interconnected nodes represent-
ing a magnetic flux strand. Periodic boundary conditions are
applied in the horizontal direction. The driving process is
performed by introducing horizontal displacements at ran-
domly selected nodes. The associated lengthening of the flux
strands amounts to injecting energy into the lattice. Even-
tually, crossings between two or more flux strands at cer-
tain lattice sites will occur. The angle2 subtended by such
crossing strands is a measure of the local intensity of elec-
trical current density (J=

1
µ0

∇ ×B), so that the magnitude
of 2 is used as a stability criterion (Parker, 1988; Dahlburg
et al., 2005); whenever2 exceeds some preset value2c, we
mimic magnetic reconnection through a cut-and-splice oper-
ation on the two flux strands, and displace one of the two
nodes away from the unstable site, so as to lower the mag-
netic energy and restore local stability. This, in turn, can
produce new unstable crossing angles at neighboring lattice
sites, which are then themselves cut, spliced and displaced,
producing a typical avalanche. Driving is suspended during
avalanches, as in classical stop-and-go CA. The implied sep-
aration of timescales between driving and forcing is well sup-
ported in the solar coronal context, with photospheric fluid
motions having typical timescales ranging from tens of min-
utes to days, and flare onset taking place on timescales of
seconds.

Energy release at an unstable site within our pseudo-
coronal loop really represents the energy released at the re-
connection sites themselves, which in the case of real flar-
ing loops are indeed often located in the corona proper, and
usually visible in hard X-rays (see Figs. 13.25 and 13.34 in
Aschwanden, 2006 for schematics and observations). On
the other hand, the peak EUV emission produced by solar
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Fig. 1.— A two iteration-time lasting avalanche for a small lattice, with driving parameters

δ+ = 4 and δ
−

= −1. Strands are numbered from left to right and nodes along a given strand

from top to bottom. In panel (A) the strand 5 has suffered a perturbation to the left in node

(5, 5) now located at lattice site [4, 5]. In panel (A) node (2, 6) has been displaced four units

to the right. Open squares indicate the nodes where two or more strands meet and form an

angle. Θ[6,6] ∼ 2.65 is the angle formed by strands 2 and 6 at site [6, 6]. Θ[8,2]] = π
2

is formed

between strands 8 and 9 and Θ[4,5] = π
2

is formed by strands 4 and 5. Since for this example

ΘC = 2.25 the only unstable site is [6, 6]. In panel (B) site [6, 6] is no longer unstable. Strands

2 and 6 have reconnect-ed /and the node (6, 6) belonging to strand 2 has been displaced

to the left. With this displacement a new unstable site appears at [5, 6] with Θ[5,6] ∼ 2.35

formed by strands 5 and 6. In panel (C) the instability has been eliminated: strands 5 and

6 have reconnected and the node (5, 6) belonging to strand 5 has moved one unit to the left.

At this point there are no more unstable nodes in the lattice and perturbation re-starts.
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Fig. 1. A two iteration-time lasting avalanche for a small lattice, with driving parametersδ+=4 andδ−=−1. Strands are numbered from left
to right and nodes along a given strand from top to bottom. In panel(A) the strand 5 has suffered a perturbation to the left in node (5, 5) now
located at lattice site [4, 5]. In panel (A) node (2, 6) has been displaced four units to the right. Open squares indicate the nodes where two
or more strands meet and form an angle.2[6,6]∼2.65 is the angle formed by strands 2 and 6 at site [6, 6].2[8,2]]=

π
2 is formed between

strands 8 and 9 and2[4,5] =
π
2 is formed by strands 4 and 5. Since for this example2C=2.25 the only unstable site is [6, 6].

In panel(B) site [6, 6] is no longer unstable. Strands 2 and 6 have reconnected and the node (6, 6) belonging to strand 2 has been displaced
to the left. With this displacement a new unstable site appears at [5, 6] with2[5,6] ∼ 2.35 formed by strands 5 and 6.
In panel(C) the instability has been eliminated: strands 5 and 6 have reconnected and the node (5, 6) belonging to strand 5 has moved one
unit to the left. At this point there are no more unstable nodes in the lattice and perturbation re-starts.

flares usually originates from lower down, as charged parti-
cle accelerated at the reconnection sites are channelled down-
ward and thermalize in the lower corona and chromosphere.
Nonetheless, under the assumption that power radiated in
the EUV spectral range is proportional to the energization
at the reconnection sites, we expect that the statistics of en-
ergy release events extracted from our simulations can be le-
gitimately compared to those inferred observationally from
EUV and soft X-Ray flare observations (Aschwanden, 2006).

The manner in which displacements are introduced mer-
its further discussion, as it is central to the model results
to be discussed below. Once a node has been selected for
perturbation, it is displaced either to the right or left, with
equal probability, but the size of the left (δ−) and right (δ+)
displacements are not necessarily the same. If|δ−| = |δ+|,
then nodes execute an unbiased 1-D random walk, so that the
mean square displacement should increase linearly in time
but the mean displacement remains zero. If on the other
hand|δ+| > |δ−| (say), then a net mean displacement builds
up, which, under our geometrical interpretation of the lat-
tice, amounts to a net twist about the vertical direction corre-
sponding to the loop’s axis.

In Fig. 1 we show an illustrative example of the model
in operation, more specifically the triggering and evolution
of a small avalanche produced in a 10×10 lattice. Nodes are
labeled using a vectorial indexk=(i,j), where the indexi la-
bels a magnetic flux strand and the indexj the position along
thei-th strand. Lattice sites are denoted by a pair of discrete
[x, y] cartesian coordinates. The Figure illustrates how a per-
turbative displacement, here of node (2, 6) relocated to lattice
position [6, 6] produces an unstable angle between strands 2
and 6 at that lattice site (panel A). Displacement of the node
back to site [5, 6] eliminates the unstable crossing angle, but

produces a new one, now between strands 2 and 5 (panel B).
Further displacement of node (2, 6) to the left finally restores
stability. Note that the lattice connectivity is now different
from what it was in A, and different from what it would had
been had node (2, 6) simply been displaced two lattice units
to the right on panel A.

In what follows we run simulations in order to exam-
ine the impact of different perturbation amplitudes over the
avalanche properties. In particular, we compare and contrast
avalanching behavior and energetics for the symmetric driv-
ing caseδ− = −1 andδ+ = 1 to that emerging in the case of
asymmetric driving, specificallyδ− = −1 andδ+=5, 4 and 3.

3 Model results

In Morales and Charbonneau(2008) we have shown that on
large enough lattices, statistical properties of avalanches do
not depend on the lattice size (N ) or the threshold angle
(2c). Accordingly, in this work we perform simulations us-
ing a fixed lattice sizeN=64 and fixed angle2c=2 rad. All
simulations begin with a configuration of vertically-oriented,
straight flux strands parallel to one another. In Fig.2 we
show the time series of lattice energy and energy release for
the symmetrical case and for an asymmetrical case (δ+=3
and δ−=− 1). Although the lattice energy is of the same
order of magnitude in both cases, the energy release is dra-
matically increased when the perturbation amplitude is non-
symmetrical. Moreover, the mean value of both the lattice
energy and energy release increases asδ+ becomes larger,
as illustrated in Fig.3. While this may have been expected
given that a higher displacementδ+ implies a greater rate
of energy input into the lattice, it is interesting that lattice en-
ergy and mean energy release do not simply scale up withδ+.
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Fig. 2. Time series of total lattice energy and energy released in
avalanches in a 64×64 node lattice with stability threshold angle
2c=2 rad. On the left side amplitudes combination wasδ+ = 1 and
δ− = −1, corresponding to symmetrical driving displacements, and
on the rightδ+ = 3 andδ− = −1, yielding asymmetrical driving.
Note the different vertical scales between panels(B) and(D).
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Fig. 3.— Mean value of the lattice energy versus right perturbation amplitude (δ+). Best

fit obtained by performing linear regression analysis are also shown. On the right the mean

value of the energy release versus δ+ and the quadratic fit performed.
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Fig. 3. Mean value of the lattice energy versus right perturbation
amplitude (δ+). Best fit obtained by performing linear regression
analysis are also shown. On the right the mean value of the energy
release versusδ+ and the quadratic fit performed.

This is shown on Fig.3, which reveals that the mean value of
the lattice energy grows linearly withδ+ (slope +0.43 and a
correlation coefficientr=0.995), while the mean value of the
energy release grows quadratically, i.e.,< Er/E0 >= aδ2

+,
with quadratic coefficienta=0.0022±0.0003. This indicates
that the lattice driven asymmetrically does not simply pro-
duce larger avalanches because it accumulates more energy;
something else is at play, relating to the avalanching dynam-
ics per se.

We now turn to the global characterization of avalanches.
We shall employ the typical quantities used in avalanche
analysis: the peak energy release (P ) which is the maxi-
mum energy released in a single iteration in the course of

Fig. 4. Probability distribution functions of avalanche size mea-
sures,E, P and T for two runs: δ+=5 (right) andδ+=1 (left).
Statistics is based on simulations spanning 106 iterations.

an avalanche; the total energy (E) which corresponds to the
sum of all energy released at every unstable site in the course
of an avalanche; and the duration (T ) which is the number
of iterations from the onset of the avalanche to the recovery
of stability across the whole lattice. We extract this quanti-
ties for each avalanche in the time series of energy release
produced by the model and build the probability distribution
functions (hereafter PDF) forE, P andT . In Fig. 4 we plot
the frequency distributions obtained for two extreme cases:
δ+=1 andδ+=5. In that figure it is apparent that the PDFs for
E, P andT all take the form of power-law:

PDF(X) ∝ X−αX , X ∈ {E,P,T } . (1)

in columns 2 to 4 of Table 1 we list the associated power-law
indices obtained for the all the simulations performed.

Examination of Table 1 readily reveals that the values of
the α exponents decrease as the driving amplitude (δ+) in-
creases. Moreover this effect is more dramatic when com-
paring the symmetrical to any of the asymmetrical examples.
This result is produced because of the fact that symmetrical

Nonlin. Processes Geophys., 17, 339–344, 2010 www.nonlin-processes-geophys.net/17/339/2010/



L. F. Morales and P. Charbonneau: Self-organized criticality in solar flares 343

Table 1. Power-law indices for total energy (E), peak energy (P )
and duration (T ) of avalanches. Also mean vertical current density
(Jz) and its standard deviation(σJz).

Driving αE αP αT < Jz > σJz
δ+

1 2.09±0.03 2.17±0.03 2.16±0.09 –1.30×10−3 0.20
2 1.74±0.03 1.76±0.01 1.80±0.09 –2.56×10−2 0.23
3 1.54±0.02 1.72±0.02 1.77±0.07 –7.90×10−2 0.24
4 1.47±0.01 1.67±0.02 1.73±0.04 1.25×10−1 0.22
5 1.39±0.01 1.58±0.02 1.59±0.03 1.78×10−1 0.23

driving causes more crossings (per unit time) than asym-
metrical one, therefore the population of small energetic
short lived avalanches grows and, consequently, the PDFs are
steeper. When forcing is strongly asymmetrical, all lines tend
to stretch in the same direction, and therefore tend to cross
less often, but when they do, they liberate more energy since
they have been subjected to greater stretching. Moreover,
for larger values ofδ+ the generated avalanches are longer-
lived. This occurs because for larger values ofδ+ the process
of relaxation to an stable state will involve more cut-splice-
displace steps than with smaller values ofδ+; Fig. 5 offers a
simple example demonstrating why this is so.

Let us now return to our geometrical interpretation of the
lattice as representing the cartesian mapping of the outer
magnetic flux surface of a straightened coronal loop. As-
suming that the cylinder’s radius (R = N −1/2π ) is constant
and using cylindrical coordinates with origin in the center
and bottom of the cylinder; the magnetic field of each line
can be expressed as:

B = Bφ(φ,z)φ̂+Bz(φ,z)ẑ ; (2)

thus the z-component of the current is:

Jz ∝
1

R
Bφ(φ,z) . (3)

In a quasi-stationary MHD system Maxwell’s displacement
current can be neglected, and electrical charge conservation
implies∇×J = 0, so we simply evaluate Eq. (3) at the bot-
tom of the lattice, by projecting horizontally the fieldline seg-
ment connecting the first and second node along each strand.
We then compute the mean vertical current density< Jz > by
summing theJz so evaluated horizontally across the lattice:

< Jz >=
1

N

N∑
j=1

Jz (4)

We calculate this quantity at every time step in theδ− = 1
and δ+= 5, 4, 3, 2 simulation, and then perform a tempo-
ral average over the portion of the simulations in the sta-
tistically stationary state. These temporal means are listed
in the rightmost column of Table 1. The mean vertical cur-
rent< Jz > is found to increase significantly with increasing
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Fig. 5.— Simple scheme that explains how a driving of δ+ = 5 can generate in an otherwise

unperturbed strands an avalanche lasting at least three iterations. In (A) Θ[7,6] ∼ 2.75 rad

then being ΘC = 2rad the node [7, 6] is unstable so the redistribution rule is applied leading

to the configuration shown in (B). At that point [7, 6] is no longer unstable but Θ[6,6] ∼ 2.11

rad so redistribution goes on leading to a new unstable node [5, 6] with Θ[5,6] ∼ 2.03 rad

forcing another redistribution step. Finally, in (D) Θ[4,6] ∼ 1.892 so driving resumes.
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Fig. 5. Simple scheme that explains how a driving ofδ+=5 can
generate in an otherwise unperturbed strands an avalanche last-
ing at least three iterations. In panel(A) 2[7,6] ∼ 2.75 rad then
being 2C=2 rad the node [7, 6] is unstable so the redistribution
rule is applied leading to the configuration shown in panel(B).
At that point [7, 6] is no longer unstable but2[6,6] ∼ 2.11 rad so
redistribution goes on leading to a new unstable node [5, 6] with
2[5,6] ∼ 2.03 rad forcing another redistribution step. Finally, in
panel(D) 2[4,6] ∼ 1.892 so driving resumes.

δ+, going from∼− 1.3×10−3 at δ+ = 1 to ∼ 1.25×10−1

at δ+ = 4. This implies that a large-scale vertical electri-
cal current density does build up along the loop axis. Even
though the value of the mean current remains of the order of
the standard deviation even atδ+ = 5, the trend is clear, and
we expect that better statistics can be obtained by carrying
out longer simulation runs.

The presence of this current density has a significant im-
pact on the energetics of avalanches. Examination of the time
series of< Jz > reveals that this quantity tends to decrease as
the avalanches unfold, suggesting that the large-scale electri-
cal current gets tapped into as an additional energy reservoir
to enhance the magnetic energy liberated during avalanches.
This is illustrated on Fig.6, showing the correlation between
total liberated energyE, and the corresponding differential
in mean electrical current in the course of each avalanche.
A significant correlation (r=+0.6) is obtained in the case of
asymmetrical driving (Fig.6b), while the correlation is much
weaker for symmetrical driving (r=+0.33, Fig.6a).

4 Concluding remarks

In Morales and Charbonneau(2008, 2009) we have proposed
a new SOC model for solar flares, whose dynamical elements
could easily be interpreted in terms of the physical picture
of photospherically-forced coronal loops originally proposed
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Fig. 6. Correlation relation between the avalanche energy and dif-
ferential in mean electrical current< Jz > for two different values
of the perturbation amplitude (δ+). In panel(A) we show the result
obtained forδ+=1 characterized by a Pearson correlation coeffi-
cient of 0.33 while in panel(B) we show the corresponding results
for δ+=4 where correlation coefficient is 0.60.

by Parker(1983) in the context of the coronal heating prob-
lem, but later shown to be applicable to flare energy release
in general.

In the present paper we have modified the driving applied
to such model and study the properties of the lattice energy,
energy release and avalanche statistical properties. We ob-
served that when increasing the amplitude of the positive
driving the lattice energy increases slightly nevertheless the
energy release by the lattice increases dramatically. We trace
this behavior to the buildup of a net large-scale electrical cur-
rent density flowing along the pseudo-coronal loop we iden-
tify with our lattice.

Because this large-scale current can act as an additional
reservoir of energy, it is in retrospect perhaps not surprising
that the probability distribution of flare size measures are af-
fected by the presence of a systematic direction of twist in
the simulation (cf. Fig. 4 herein). Interestingly, the steeper
slopes in the probability distribution of total energy release
are realized when forcing is symmetrical; this type of forc-
ing is consistent with Parker’s idea ofrandomshuffling of the
photospheric magnetic footpoints of coronal loops, produc-
ing a population of nanoflares; whereas the more strongly
asymmetric forcing, yielding larger mean energy releases
(cf. Fig. 3) because of the availability of an additional energy
reservoir in the form of the mean loop-aligned current den-
sity, could be associated with higher energy flaring events,
whose frequency distribution of energy release does show a
power-law index of∼1.5, markedly smaller than the mini-
mal value of 2.0 required by Parker’s hypothesis of coronal
heating by nanoflares. On the other hand, for the moderate
assymmetrical forcing, the value of this index is very close
to the observational results inferred byUritsky et al.(2007).
Ultimately, the distinction between symmetrical and asym-
metrical forcing could hinge on the diameter of the loop, and
where it is anchored in the solar photosphere.

Edited by: A. Surjalal Sharma
Reviewed by: U. Vadim and another anonymous referee
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