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Abstract. Recently, new cycles, associated with periods
of 30 and 43 months, respectively, have been observed by
the authors in surface air temperature time series, using a
wavelet-based methodology. Although many evidences at-
test the validity of this method applied to climatic data, no
systematic study of its efficiency has been carried out. Here,
we estimate confidence levels for this approach and show that
the observed cycles are significant. Taking these cycles into
consideration should prove helpful in increasing the accu-
racy of the climate model projections of climate change and
weather forecast.

1 Introduction

Cycles associated with periods longer than one year in sur-
face air temperature data have been observed in several stud-
ies (see e.g.Palǔs and Novotńa, 2006; Nicolay et al., 2009;
Mabille and Nicolay, 2009; Matyasovszky, 2010). However,
there is no clear evidence concerning the efficiency of these
methods: Can we trust the results or is there a high prob-
ability that these oscillations occurred by pure chance? To
answer this question, we estimate such a probability for the
approach proposed inNicolay et al.(2009) and show that the
cycles are indeed significant.

This therefore shows that the results previously obtained
in this work are meaningful. In particular, it suggests that
a cycle of about 30 months is coupled with the Arctic/North
Atlantic Oscillation, while a cycle associated with a period
of 43 months can be affiliated to the El Niño Southern Oscil-
lation. In Nicolay et al.(2009), the temperature fluctuations
induced by such cycles are estimated to be about one-tenth
of the annual amplitude.
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2 Method

We first briefly describe the wavelet-based methodology used
in Nicolay et al.(2009) to study the existence of cycles in
climatic data. We then explain how to build confidence levels
for the observed cycles.

2.1 The wavelet spectrum

The wavelet spectrum is a tool designed for spectral studies;
it is described in further details inNicolay et al.(2009); Ma-
bille and Nicolay(2009) for example.

A waveletψ is a function defined on the real line which

– is integrable,

– is square-integrable,

– satisfies the relation
∫

|ψ̂ |
2
|ω|

−1dω <∞, whereψ̂ de-
notes the Fourier transform ofψ .

The wavelet transform of a square-integrable functionf de-
fined on the real line is the following function,

Wf (t,a)=

∫
ψ̄

(
x− t

a

)
f (x)

dx

a
,

with t ∈ R anda > 0, whereψ̄ denotes the complex conju-
gate ofψ . The wavelet transform can be seen as a math-
ematical microscope for which position and magnification
correspond tot and 1/a respectively, the performance of the
optic being determined by the wavelet (see e.g.Arneodo et
al., 1988; Freysz et al., 1990). The functionf can be re-
covered, in some way, from its wavelet transform (see e.g.
Daubechies, 1992for more details).
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If ψ is a wavelet such that̂ψ(ω)= 0 wheneverω≤ 0, the
wavelet spectrum3 of a square-integrable functionf is de-
fined as

3(a)=E|Wf (t,a)|,

whereE denotes the mean over timet . Let us remark that
our wavelet spectrum is not defined in terms of density, but
rather as a marginal spectrum (seeHuang et al., 1998). The
use of the mean, rather than the root mean square allows a
better balance between small and large values: small values
are less taken into account when using the root mean square.
This can be more rigorously stated, since the mean square is
equal to the square of the arithmetic mean plus the variance.
However, it can be shown (seeNicolay et al.(2009)) that
such a spectrum leads to frequential informations, in a way
analogous to that of the Fourier spectrum: ifa0 is a maximum
of 3(a), there is a higher likelihood for a sine (or cosine)
wave with perioda0 to have appeared locally (seeHuang et
al., 1998; Nicolay et al., 2009). This is therefore a “local
approach”; such a technique is thus different from the Fourier
spectrum, since this method is related to waves that persisted
through the whole time span. Moreover, unlike the Fourier
spectrum, the wavelet spectrum is not affected by trends.

The waveletψ used in this work is the accustomed Morlet
wavelet, whose Fourier transform is approximated by

ψ̂(ω)= exp(−
(ω−�)2

2
),

where�=π
√

2/log2. Such a tool is well designed for non-
stationary signals; it has been successfully applied to climatic
data, where it has lead to the detection of cycles in air tem-
perature time series associated with the periods of 30 and
43 months respectively (seeNicolay et al., 2009; Mabille and
Nicolay, 2009).

2.2 Construction of confidence levels
for the observed cycles

In order to test the significance of the detected cycles on
the whole planet, the NCEP/NCAR reanalysis time series
(Kalney et al., 1996) were selected as a gridded (2.5◦

×2.5◦)
data set. These signals present the state of the Earth’s atmo-
sphere, incorporating observations and global climate model
output. Let us notice that the data associated with the oceans
must be carefully interpreted, since the number of observa-
tions for such grid points is rather small. The signals are
monthly-sampled and start in 1948.

Let us first remark that since we are not using the accus-
tomed definition of wavelet spectrum, the usual significance
tests can not be applied here. Moreover, such methods have
many pitfalls, especially when the model is not a Gaussian
white noise (see e.g.Maraun and Kurths, 2004). Neverthe-
less, it could be interesting to adapt such methods to the def-
inition given here.

To check if the cycles appearing in the time series did not
occur by pure chance, the following methodology has been
applied to each grid point:

1. the linear trends are first removed,

2. the climatological anomaly time series is computed: for
each month, the mean temperature is computed from
the whole signal and the so-obtained monthly-sampled
signal M is then subtracted from the original one,

3. each anomaly time series is fitted separately using an
autoregressive model of the first order (AR(1) model,
see e.g.Percival and Walden, 1993):

xn=αxn−1+σηn ,

where ηn is a Gaussian white noise with zero mean
and unit variance. Such processes are present in many
climatic and geophysical data (see e.g.Percival and
Walden, 1993; Allen and Robertson, 1996) and are well
suited for the study of climatic time-series (Mann and
Lees, 1996; Mann et al., 2007),

4. the mean M is then added to the simulated noise in order
to obtain a simulation of the time series,

5. N=10 000 such simulations are computed,

6. the distribution of the highest maximumyM of the
wavelet spectrum of the data in the range of 26 to
47 months (in order to compare these maxima with the
ones detected inNicolay et al., 2009) is estimated from
these realizations, i.e. one computes the distribution of

yM = sup
26≤a≤47

3̃(a),

where3̃ is the wavelet spectrum of a realization,

7. the probabilityP to obtain a maximum of higher am-
plitude than the one corresponding to the period of
30 months (or 43 months) observed in the wavelet spec-
trum of the grid point is finally computed, using the dis-
tribution obtained in6.

Let us remark that the 30 and 43 months period cycles can
also be detected through the Fourier transform; however, the
signals have to be preprocessed first, since the lower ampli-
tude cycles are hidden by the dominating cycle correspond-
ing to 1 year. The two lower-frequency cycles are clearly
observed if

– the linear trends are removed,

– only the climatological anomaly time series is kept.
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Fig. 1. The probability values associated with the cycle of 30 months (see Sect.2.2). The cycles observed in a zone corresponding to the
colour white are not significant.

Fig. 2. The probability values associated with the cycle of 43 months (see Sect.2.2). The cycles observed in a zone corresponding to the
colour white are not significant.

The same methodology as above can then be applied to
such signals, replacing the wavelet spectrum with the Fourier
spectrum. The results are identical to the ones obtained with
the wavelet spectrum (data not shown). However, since the
Fourier spectrum is not well suited for non-stationary signals
and since one could claim that the so-detected periods could
result from the data preprocessing, the wavelet transform has
been preferred in the present study (see alsoNicolay et al.,
2009).

3 Results

First of all, we have to ensure that the distributions associated
to the highest maxima, obtained following the methodology
described above, yield reliable information. All the prob-
ability density functions (PDF’s) are unimodal and nearly
mesokurtic. Moreover, the skewness is always lower than

0.5 and the test of D’Agostino leads to the conclusion that
10% of these PDF’s are compatible with a Gaussian dis-
tribution (α=0.05). Finally, when comparing one of the
10 000 AR(1) realizations with the 9999 others, the probabil-
ity valueP is almost always higher than 0.5; indeed 0.3% of
the grid nodes only can be associated with a valueP lower
than 0.3.

The probability values concerning the 30 months cycle are
displayed in Fig.1; the probability values concerning the
43 months cycle are displayed in Fig.2. The coloured area
corresponds to regions where the cycle is significant (the
more the area is coloured, the more the region is signifi-
cant). These planispheres look very similar to the ones ob-
tained concerning the existence of the corresponding cycles
in Nicolay et al.(2009). In other words, the cycles associated
with the period of 30 and 43 months previously observed are
significant.
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The cycle associated with 30 months is mainly seen in Eu-
rope, Northern Asia, Alaska and Eastern Canada, while the
cycle associated with 43 months is principally observed in
Northern America, Peru and Equatorial Pacific. The exis-
tence of a cycle of period close to 30 months in Central Eu-
rope has already been shown inPalǔs and Novotńa (2006).
Moreover, these cycles seem to be related to climatic indices.
Most of the regions affected by the 30 months period cycle
correspond to the area under the influence of the North At-
lantic Oscillation, while the ones affected by the 43 months
period cycle coincide with the area affected by the South-
ern Oscillation. As a matter of fact, the wavelet spectra of
the related indices display the corresponding period: a cy-
cle associated with 30 months is significantly observed in the
AO/NAO (CPC) indices (P<0.01) and a cycle correspond-
ing to 43 months is detected in the global-SST ENSO and
ENSO MEI indices (P < 0.01). Let us also remark that a
30 months period cycle is observed in Australia and over
some parts of the oceans; this could be a byproduct of the
El Niño phenomenon, since a small maximum correspond-
ing to 30 months is also observed in the Southern Oscillation
(seeNicolay et al., 2009).

4 Conclusions

We have built confidence levels for the cycles correspond-
ing to the periods of 30 and 43 months previously ob-
served in NCEP/NCAR reanalysis data, using a wavelet-
based methodology (seeNicolay et al., 2009). To do so, we
have simulated the background noise with an autoregressive
model of the first order. From this point of view, the influ-
ence of these cycles is significant in each area where such an
oscillation is observed.

Following the observations ofNicolay et al.(2009); Ma-
bille and Nicolay(2009), these results suggest that the El
Niño Southern Oscillation is related to a cycle of period
of about 43 months in the near-surface air temperatures,
whereas a 30 months period cycle in these data can be as-
sociated with the Arctic/North Atlantic Oscillation. Some
regions of the globe (Equatorial Pacific, Canada, etc.) can be
associated to both cycles (seeNicolay et al., 2009).

Recent results (Smith et al., 2007) have shown that mod-
eling systems that predict both internal variability and exter-
nally forced changes forecast surface temperature with sub-
stantially improved skill. Climate models accounting for the
cycles associated with 30 and 43 months should therefore
predict surface temperature more accurately.
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