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Abstract. The aim of this paper is to find a convenient and
effective method of displaying some second order properties
in a neighbourhood of a selected point of the process. The
used techniques are based on very general high-dimensional
nonparametric smoothing developed to define a more gen-
eral version of the conditional intensity function introduced
in earlier earthquake studies byVere-Jones(1978).

1 Introduction

This paper is concerned with the second order properties of a
multidimensional point process in contexts where some fea-
tures of a given point (e.g. location, depth, magnitude) play
a dominant role in determining the local behavior of the pro-
cess in a neighbourhood of the selected point. The aim of
the paper is to describe a convenient and effective method of
displaying second order properties of counts in a neighbour-
hood of a selected point of an observed point process and to
examine how those properties are affected by the features of
the fixed point. In particular we would like to display second
order properties of counts in a neighbourhood of the initial
event in an aftershock sequence or swarm in a seismic active
area. For instance, the way these properties change with the
magnitude of the initial event tells us something about the
physical processes governing the numbers and distributions
of the aftershocks respond to the size of the initial event.
Similar issues arise in the discussion of medical epidemic
data, where the size and severity of the epidemic overall may
be related to characteristics of the initial recorded infection.

To look at second order properties, the counts need to be
averaged over both the choice of a selected point and over
the events in its neighbourhood. Ripley’s K-function (Ripley,

Correspondence to:G. Adelfio
(adelfio@unipa.it)

1976) is commonly used for such a purpose in discussing the
cumulative behavior of interpoint distances about an initial
point. It is defined as the expected number of events falling
within a given distanceδ of the initial event, divided by the
overall density (rate in 2-dimensions) of the process, sayλ.
Since it is defined as an average over many initial points, the
K-function cannot be used to distinguish processes with the
same (average) second order properties. As an alternative,
Getis and Franklin(1987) suggested examining the behavior
of the occurrence patterns in the neighbourhood of selected
initial points developing a second order neighbor analysis of
mapped point patterns. However, this method is not use-
ful for determining whether a given pattern is random, clus-
tered or regular (Doguwa, 1989). Adelfio and Schoenberg
(2009) suggested using a weighted version of some second
order statistics to provide diagnostic tests. InAdelfio and
Chiodi (2009) weighted second order statistics are used to
assess the fitting of seismic models to real catalogs.Gril-
lenzoni(2006) focussed on the conditional intensity function
of a space-time process, where conditioning is made on the
basis of past events only.

Second order statistics, such as the Ripley’s K-function
(Ripley, 1976), are useful to describe observed point patterns
characterized by high correlation structures both in space and
time and are also designed to test the randomness hypoth-
esis often based on the Poisson distribution. For this rea-
son second order statistics are crucial to study and compre-
hend seismic process and its realization, since description of
seismic events often requires the definition of more complex
models than stationary Poisson process and the relaxation
of any assumption about statistical independence of earth-
quakes. Indeed, a more realistic description of seismicity of-
ten needs the study and the interpretation of features like self-
similarity, long-range dependence and fractal dimension.
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In this paper a nonparametric estimation of the second or-
der conditional intensity function (CIF) introduced byVere-
Jones(1978) is provided, by making use of kernel intensity
estimators. The nonparametric second order CIF is here in-
troduced to analyze the influence in a neighbourhood of a
multidimensional point to some properties of the observed
point pattern, by using a procedure that does not require any
constraining assumption to characterize the generating pro-
cess.

In Sect.2 a brief introduction of spatial-temporal point
processes and their second order characteristics is pro-
vided. The proposed nonparametric approach is introduced
in Sect.3, showing some application in Sect.4. Section5
provides some concluding remarks and directions for future
study.

2 Point processes and conditional intensity function

A spatial-temporal point process is a random point pattern
defined by time and location of every single event. Point
processes are here introduced by a mathematical approach
that uses the definition of a counting measure on a setX ⊆

Rd ,d ≥ 1, with positive values inZ: for each Borel setB
this Z+-valued random measure gives the number of events
falling in B.

This section reviews some basic definitions related to point
processes, reported to introduce the notation used throughout
the paper. For further elaboration and references, please see
Daley and Vere-Jones(2003).

Definition 1 Point process

Let (�,A,P ) be a probability space and8 a collection of
locally finite counting measures onX ⊂ Rd . DefineX as the
Borelσ -algebra ofX and letN be the smallestσ -algebra on
8, generated by sets of the form{φ ∈ 8 : φ(B) = n} for all
B ∈X . A point processN onX is a measurable mapping of
(�,X ) into (8,N ). A point process defined over(�,A,P )

induces a probability measure5N (Y ) = P(N ∈ Y ),∀Y ∈N
(Cressie, 1991).

Given a point processN defined on the space(X,X ) and
a Borel setB, the number of pointsN(B) in B is a random
variable with first moment defined by:

µN (B) = E[N(B)] =

∫
8

φ(B)5N (dφ)

that is a measure on(X,X ). The measureµN is called the
mean measure or first moment measure ofN (Cressie, 1991).
The second moment measure ofN is given by:

µ
(2)
N (B1·B2) = E[N(B1)N(B2)] =

∫
8

φ(B1)φ(B2)5N (dφ),

with B1,B2 ∈X . If it is finite in X (2) the process is second
order.

Let ds anddu be small regions located ats andu ∈ X,
and let`(x) be the Lebesgue measure ofx. Thefirst order
intensityis defined by:

η(s) = lim
`(ds)→0

µN (ds)

`(ds)
;

thesecond order intensityis defined by:

η2(s,u)= lim
`(ds)→ 0
`(du) → 0

µ
(2)
N (ds ·du)

`(ds)`(du)
.

The second-order counting properties of such a process
can be summarized by acovariance density:

c(s,u)ds du = Cov{N(ds),N(du)}, (s 6= u). (1)

The covariance measure also has a singular component
concentrated along the lines = u, as illustrated by the for-
mula:

Var{N(ds)} = E [N(s)] = µN (s).

Let N be a point process on a spatial-temporal domainX =

R+ ×Rd , d ≥ 2; the functionλ∗(t,z) = λ(t,z|Ht ), defined
by:

λ∗(t,z) = lim
`(dt) → 0
`(dz) → 0

E [N([t,t +dt ) · [ z,z+dz) | Ht )]

`(dt)`(dz)
,

(2)

is the intensity function of the process conditioned toHt ,
that is the space-time occurrence history of the process up to
time t , or in other words, theσ -algebra of events occurring at
times up to but not includingt ; dt,dz are time and space in-
crements respectively, andE[N([t,t +dt)×[z,z+dz)|Ht )]

is the history-dependent expected value of occurrence in
the volume{[t,t + dt) × [z,z + dz)}. The conditional in-
tensity function is a function of the point history and it
is itself a stochastic process depending on the past up to
time t . Assuming such a limit exists for each point(t,z)

in the space-time domain and the point process is simple,
the conditional intensity process uniquely characterizes the
finite-dimensional distributions ofN (Daley and Vere-Jones,
2003). According to the used notation, the star inλ∗(·) is
used to indicate that the intensity is a function of the past
historyHt .

If the conditional intensity function is independent of the
past history and dependent only on the current time and spa-
tial location, Eq. (2) determinesλ(t,z) and identifies an inho-
mogeneous Poisson process. A constant conditional intensity
provides a stationary Poisson process.
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In a time-stationary but spatially inhomogeneous process,
the expression in (2) is:

λ∗(t,z) = λf ∗(z)

with λ the overall rate occurrence for a given region andf (·)

a time-invariant space density. A more general form for (2)
is provided assuming a separable form, in which the spatial
term is assumed to be univariate in time and temporal density
is not constant, where the both terms are allowed to depend
on the past history, such that:

λ∗(t,z) = λ∗(t)f ∗(z) (3)

It simplifies to the product of constants for homogeneous
Poisson processes.

In this paper a nonparametric estimation of a second or-
der measure like (3) is provided to describe dependency
structures of a multidimensional observed seismic process by
using a flexible procedure based on kernel intensity estima-
tors.

3 Nonparametric estimation

For an adequate description of the seismic activity of a fixed
area and to suggest useful ideas on the mechanism of a such
complex process, the definition of a valid and effective model
is required. When a complete definition of a parametric
model is not reliable, nonparametric approach could be use-
ful. Indeed, in seismic modelling contexts, parametric mod-
els are not always useful since the definition of a reliable
mathematical model from the geophysical theory may not be
available.

In general, some disadvantages of the parametric mod-
elling can be avoided by using flexible procedures (nonpara-
metric techniques), based on kernel intensity methods (Sil-
verman, 1986). Given n observed eventss1,s2...,sn in a
d-dimensional given region, the kernel estimator of an un-
known densityf in Rd is defined as:

f̂ (s1,...,sd;h) =
1

nhs1 ...hsd

n∑
i=1

K

(
s1−si1

hs1

,...,
sd−sid

hsd

)
(4)

where K(s1,...,sd) denotes a multivariate kernel density
(usually the standard Normal density function) operating on
d arguments centered at(si1,...,sid) andh=(hs1,...,hsd)

′ is
the vector of the smoothing parameters of the kernel func-
tions. If si = {ti,xi,yi,zi,Mi}, the space-time-magnitude
kernel intensity estimator of (2) is defined by the superpo-
sition of the separable kernel densities:

λ̂(t,x,y,z,M;h) ∝

n∑
i=1

Kt

(
t − ti

ht

)
· Ks

(
x −xi

hx

,
y −yi

hy

,
z−zi

hz

)
KM

(
M −Mi

hM

)
(5)

whereKt, Ks andKM are temporal, spatial and magnitude
kernel density functions, as in (4), respectively.

Introducing the estimator defined in (5), the estimation of
a complex intensity function dependent on the past history
of the process as in (2) now reduces to the estimation of the
intensity function of an inhomogeneous Poisson process, in-
dependent of the past history and identified by a space-time
Gaussian kernel intensity (Adelfio and Ogata, 2010); this re-
sult provides useful directions for a simpler estimation ap-
proach in describing very complex phenomena such as the
seismic one. Separability of time and space kernel densi-
ties is here assumed for computational convenience, because
of the high dimensional issue, although tests to assess this
assumption could be used (Schoenberg, 2004). It might be
useful to note that this assumption is not directly extended to
the intensity function of the process since it is obtained by
the superposition of these densities.

In this context the problem of choosing the amount of
smoothing is of crucial importance, since smoothing parame-
ter regularizes the trade-off between variance and bias of the
estimator, that is between random and systematic error. In
Adelfio et al. (2006) the seismicity of the Southern Tyrrhe-
nian Sea is described by Gaussian kernels and the optimum
value ofh is chosen such as to minimize the mean integrated
square error (MISE) of the estimator̂f (·). In particular the
authors used the valuehopt that Silverman(1986) obtained
minimizing the MISE off̂ (·) assuming multivariate normal-
ity.

In Adelfio (2010) a variable bandwidth procedure is in-
troduced, choosinghj

= (h
j
x,h

j
y,h

j
t ), i.e. the bandwidth for

thej -th event,j = 1,...,n, as the radius of the smallest cir-
cle centered at the location of thej -th event(xj ,yj ,tj ) that
includes at least a fixed number of further events.

In Adelfio and Ogata(2010) a naive likelihood cross-
validation function is optimized to obtain the bandwidth of
the smoothing kernel used to estimate the intensity for earth-
quake occurrence of northern Japan.

Although the use of variable bandwidth may be preferable
to reflect local occurrence rates instead of using fixed band-
width, in this paper constant smoothing is considered as a
convenient approach to deal with the high dimensionality of
the analyzed problem.

3.1 Conditional intensity estimation

Conditional intensity estimation can be considered as a gen-
eralization of regression, focussing on the estimation of the
full conditioned distribution and not just on the expectation
value.

www.nonlin-processes-geophys.net/17/237/2010/ Nonlin. Processes Geophys., 17, 237–244, 2010
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A discrete estimate of the second order conditional inten-
sity for a point process is given byVere-Jones(1978). Now
we are looking for a smoothed version of the conditional in-
tensity, that is the local intensity of the process atp, given
the occurrence of a point of the process ats. Thus:

h(p|s)dp = E [N(dp)|N(ds) = 1] (6)

wheres andp are points inRd , with d = 5, since we are con-
sidering space (3-D), time and magnitude dimensions. This
function can be related to the covariance density (1) by the
equation

h(p|s) = µN (p)+c(p,s)/µN (s).

Moreover the formula above can be considered as another
way of looking at the Ripley’s K-function, useful when the
emphasis is on the physical interpretation of the dependence.

In this paper nonparametric kernel estimators are used for
estimatingh(p|s) in high-dimensional domain; in this con-
text the conditioning puts a different complexion on the prob-
lem, as the smoothing parameters have to be adjusted to the
conditioning event.

Here we use a version of the conditional intensity func-
tion introduced in earlier earthquake studies byVere-Jones
(1978), where the second order properties are classified ac-
cording to the magnitude of the initial event. In the early
paper the analysis was based on a crude discretization of the
process, but in the present paper we make use of kernel den-
sity estimates applied jointly to both the conditioning and the
conditioned events. More precisely, to evaluate a smoothed
version of the conditional intensity (CIF) in (6), we use the
ratio estimate

ĥ(p|s) =
λ̂(p,s)

λ̂(s)
(7)

that is, the ratio between the joint intensity of the condition-
ing and the conditioned event (i.e.p ands), and the marginal
intensity of the conditioning event (events). This function
is therefore estimated as the ratio of the kernel intensity esti-
mators, defined in Eq. (5), for λ(p,s) andλ(s), respectively.
The kernel estimators consider Gaussian density with zero
mean and variance selected in a such way that its standard
deviationh (the kernel bandwidth) minimizes the mean inte-
grated square error (MISE) of the estimateλ̂(·).

This approach simplifies the complex estimation issue of
the second-order measure in (6), although it implies the use
of high dimensional kernel functions. Indeed, the quan-
tity in (7) has been computed considering the ratio of five-
dimensional kernel estimators, providing, on one hand, a
very computer intensive procedure, but on the other hand,
some advantages related to the possibility of describing the
main features of the process in multiple domains without
constraining data to binding assumptions.
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 : Depth (186,602]

Fig. 1. 3-D space plot, with depth discretized into four groups with
equispaced quantiles as breakpoints, so that all groups have roughly
the same number of points. Different colors are used for different
ranges of magnitude: black for 4.5≤ M < 5.4, red for 5.4≤ M <

6.3 and green for 6.3≤ M < 7.2.

4 Application to New Zealand data and discussion

Space-time modelling seems one sensible direction, espe-
cially if depth is also involved. Some pictures could suggest
something about the evolution of spatial clusters at various
depth (when they merge or separate). Deep earthquakes gen-
erally lack fully evolved sequences which decay according to
the Omori’s lawUtsu(1961). Therefore clustering described
from ETAS model (Ogata, 1988) could be valid just for shal-
lower events, that may have a classical aftershocks behavior.
On the other hand, aftershocks for deep events have a differ-
ent behavior and for this case a different modelling could be
useful, mostly to check their features that are still unknown
in some sense.

Here a direct approach to analyze second order properties
of deep earthquakes is considered, based on the use of the
two point correlation function, that is of the conditional in-
tensity function defined in (7).

We selected a subset of the GeoNet catalog of New
Zealand earthquakes. Completeness issues of this catalog
are discussed inHarte and Vere-Jones(1999). The data con-
sist of n=3097 earthquakes oflocal magnitudeML=4.5 and
larger that are chosen from the wide region−43◦

∼ −37◦ N
and 171◦ ∼ 181◦ E and for the time span 1951∼ 2007. That
area is characterized by several deep events, with depth down
to 530 km.

The bandwidth constants selected for the five-dimensional
intensity kernel estimator of the process arehx = 0.34,hy =

0.27,ht = 1000.86 (in days),hz = 0.06 andhM = 17.54.
Some features of the observed events are now investigated.

Space-time scatterplots of events are provided in Figs.1,
2 and 3. Both in Figs.1 and 2 the depth variable is used
like a conditioning variable, showing significant deep events

Nonlin. Processes Geophys., 17, 237–244, 2010 www.nonlin-processes-geophys.net/17/237/2010/
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Fig. 2. 3-D scatterplot of earthquakes epicenters in terms of latitude,
longitude and time. Depth is used as the conditioning variable. Dif-
ferent colors are used for different ranges of magnitude: black for
4.5≤ M < 5.4, red for 5.4≤ M < 6.3 and green for 6.3≤ M < 7.2.
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Fig. 3. 3-D scatterplot of earthquakes epicenters in terms of lati-
tude, longitude and depth. Magnitude is used as the conditioning
variable.

concentrated in the area extending from Taranaki and Taupo
region to northeast Bay of Plenty, persisting over different
time periods and different depth ranges. From Fig.3 we can
observe still deep events for high magnitude, (for instance, an
event withM = 7.2 has been recorded at 273 km of depth),
although very deep earthquakes are recorded forM<5.9.

Results of the analysis in time-magnitude domains are re-
ported in Fig.4. In these plots the marginal temporal CIF
estimated by the proposed approach is showed, conditioning
to the big event occurred in February 1995, withM = 6.8 and
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Fig. 4. Temporal conditional kernel intensity for all magnitude
events (on the top left), withM ≥ 5 (on the top right), withM ≥ 5.5
(on the bottom left), withM ≥ 6 (on the bottom right).
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Fig. 6. Space-time-magnitude smoothedconditionalintensity func-
tion for M = 4.5 around a fixed point at six different times.

followed by a significant increasing of the activity. In partic-
ular different cuts of magnitude have been effectuated, to see
how the magnitude weighting may influence estimation re-
sults and therefore these plots are generated by integrating
the CIF over space and the specified magnitude regions. Al-
though some tests might be useful, we observe significant
differences between the plots in Fig.4, that inform us about
the complexity of the clustering features of events. Indeed it
seems evident that time intensity estimation depends also on
the magnitude of events, reflecting the not uniform behavior
of aftershocks in time.

The clustering nature of events in time and space is also
evident from Fig.5. It represents the conditional intensity
function estimated conditioning to three large events of the
catalog withM=6.7, 7 and 6.8 occurred in three different
dates and by integrating the CIF over space and magnitude
domain. From these plots in correspondence of each main
event we can observe a different behavior of their aftershocks
sequences and their rate of activity. Indeed, the first main
event is followed by an increasing clustered activity that de-
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Fig. 7. Space-time-magnitude smoothedconditionalintensity func-
tion for M = 5.5 around a fixed point at six different times.

cays after a short period; this clustered activity comes before
the second main event, followed by a decreasing activity pe-
riod. A big rate of intensity is observed also after the third
main event, with increasing values followed by a decreasing
clustering effect.

A four dimensional conditional intensity function is esti-
mated for time-longitude-latitude-magnitude domains. The
space-time marginal function with respect depth for differ-
ent levels of magnitude (4.5, 5.5, 6.5) is shown in Figs.6–8.
It is interesting to highlight the correspondence between the
peaks of intensities of Figs.6 and7, that indicate the occur-
rence of large sequences of earthquakes, and the locations of
big events, identified by high kernel intensity areas in Fig.8.

For a deeper analysis contour-plots of the four dimensional
conditional intensity function are reported in Fig.9: in this
case for each event we calculated the spherical distance (for
longitude and latitude), depth distance and time difference
with respect to longitude, latitude, depth and time of the me-
dian point in time of the catalog. The spherical distance
is obtained by using the Haversin formula, with Vincenty
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Fig. 8. Space-time-magnitude smoothedconditionalintensity func-
tion for M = 6.5 around a fixed point at six different times.

formula variation to compute distances on ellipsoids (Vin-
centy, 1975). A variation of activity in time and space,
from one part of the analyzed region to another, and between
depths, is observed.

Although the provided analysis should be considered as
just as a starting point for the comprehension of the com-
plex mechanism of the observed seismicity in such different
domains, we think that some interesting features have been
highlighted. Indeed though the highly clustered seismicity
identified by complex intensity function of the studied seis-
mic area, the nonparametric approach makes possible a rea-
sonable characterization of seismicity, since it does not con-
strain the process to have predetermined properties.

The estimated model seems to follow adequately the seis-
mic activity of the observed area, characterized by highly
variable changes both in space and in time. The simple used
approach provides a valid estimate of the conditional inten-
sity in different domains that could be used for further inter-
pretation according to the main object of interest. Indeed the
activity rate is easily interpretable since the kernel approach
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Fig. 9. 3-D space-time smoothedconditional intensity function
around a fixed point at six different times.

can be used to describe the variation in different domains
and, because of its flexibility, it provides a good fitting to
local space-time changes as just suggested by data.

5 Conclusions

Conditional intensity function as well as second order inten-
sity provide useful indications of the strength and character
of second order dependence effects between pairs of points
at different separations of the analyzed domain.

In this paper a nonparametric estimate of conditional in-
tensity for a multidimensional process is provided, using
Gaussian kernel intensity estimators with constant bandwidth
selection. Thus, both an estimate of this quantity and an eas-
ily interpretable graphical summary of data are obtained.

This approach provides an estimate of the conditional in-
tensity function in different analyzed domains, that might
be used for forward interpretations aimed to descriptive and
even predictive purposes.
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For this reason, additional diagnostic analysis should be
considered, although the high dimensionality could give
some problems in finding a valid residual measures, as dis-
cussed inAdelfio and Schoenberg(2009).
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