Nonlin. Processes Geophys., 17, 2324 2010 4 "K Nonli P
www.nonlin-processes-geophys.net/17/237/2010/ G onlinear Frocesses
© Author(s) 2010. This work is distributed under in Geophysics
the Creative Commons Attribution 3.0 License. -

Kernel estimation and display of a five-dimensional conditional
intensity function

G. Adelfio
Dipartimento di Scienze Statistiche e Matematiche “Silvio Vianelli”, University of Palermo, Palermo, Italy

Received: 3 December 2009 — Revised: 29 January 2010 — Accepted: 8 February 2010 — Published: 22 April 2010

Abstract. The aim of this paper is to find a convenient and 1976 is commonly used for such a purpose in discussing the
effective method of displaying some second order propertiecumulative behavior of interpoint distances about an initial
in a neighbourhood of a selected point of the process. Theoint. It is defined as the expected number of events falling
used techniques are based on very general high-dimensionalithin a given distancé of the initial event, divided by the
nonparametric smoothing developed to define a more geneverall density (rate in 2-dimensions) of the process,say
eral version of the conditional intensity function introduced Since it is defined as an average over many initial points, the
in earlier earthquake studies bfgre-Jone$1978. K-function cannot be used to distinguish processes with the
same (average) second order properties. As an alternative,
Getis and Frankliff1987 suggested examining the behavior
of the occurrence patterns in the neighbourhood of selected
initial points developing a second order neighbor analysis of

This paper is concerned with the second order properties of §'2PPed point patterns. However, this method is not use-

multidimensional point process in contexts where some fealul for determining whether a given pgttern is random, clus-
tered or regular@oguwg 1989. Adelfio and Schoenberg

tures of a given point (e.g. location, depth, magnitude) play ) . .
a dominant role in determining the local behavior of the pro- (2009 sugge_:sted using a wgghted_versmn of some second
prder statistics to provide diagnostic tests. Adelfio and

cess in a neighbourhood of the selected point. The aim o hiodi ohted 4 ord . d
the paper is to describe a convenient and effective method ofhiodi (2009 weighted second order statistics are used to

displaying second order properties of counts in a neighbourf’lssess the fitting of seismic models to real catalogsi-

hood of a selected point of an observed point process and tBenzoni(ZOOQ focussed on the conditiqnal i'ntensity function
examine how those properties are affected by the features ogf a sp?ce-tlme procesls, where conditioning is made on the
the fixed point. In particular we would like to display second asis of past events only.

order properties of counts in a neighbourhood of the initial _Second order statistics, such as the Rlpleys.K-funcnon
event in an aftershock sequence or swarm in a seismic activeXiPIey. 1979, are useful to describe observed point patterns

area. For instance, the way these properties change with th%haracterized by high cprrelation structures both in space and
magnitude of the initial event tells us something about thellMme and are also designed to test the randomness hypoth-

physical processes governing the numbers and distribution§>'S often based on the_ Poisson d|_str|but|0n. For this rea-
of the aftershocks respond to the size of the initial event.SON second order statistics are crucial to study and compre-

Similar issues arise in the discussion of medical epidemiche,nd §eismic Process anq its realizat_io.n_, since description of
data, where the size and severity of the epidemic overall mayc>M'¢ events ofFen requires the definition of more Comple.x
be related to characteristics of the initial recorded infection. models than sta_ltmnary P0|ss_on_ process and the relaxation

To look at second order properties, the counts need to bé)f any assumption about statistical independence of earth-

averaged over both the choice of a selected point and Ove?uakesalntc;eedt, Zmorgtrhea!lsttlc defctr_lptlo?fof felsmll.(;('ty Ofl'f
the events in its neighbourhood. Ripley’s K-functigtigley, en needs the study and the interpretation ot features like sefi-

similarity, long-range dependence and fractal dimension.
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238 G. Adelfio: Kernel estimation of a five-dimension conditional intensity function

In this paper a nonparametric estimation of the second or- Let ds anddu be small regions located atandu € X,
der conditional intensity function (CIF) introduced bgre- and leté(x) be the Lebesgue measurexof Thefirst order
Joneg(1978 is provided, by making use of kernel intensity intensityis defined by:
estimators. The nonparametric second order CIF is here in-
troduced to analyze the influence in a neighbourhood of 3 (s)= lim /‘N(ds);
multidimensional point to some properties of the observed ds)—~0 L(ds)

point pattern, by using a procedure that does not require an . - . )
constraining assumption to characterize the generating pm{hesecond order intensitg defined by:

Cess. o . . . 12 (ds -du)

In Sect.2 a brief introduction of spatial-temporal point j,(s,u)=  lim oy s 7
processes and their second order characteristics is pro- £(ds) — 0 t(ds)tdu)
vided. The proposed nonparametric approach is introduced £(du)—0

in Sect.3, showing some application in Seet. Section5

provides some concluding remarks and directions for future The second-order counting properties of such a process
study. can be summarized bya@variance density

c(s,u)ds du =Cov{N(ds),N(du)}, (s#u). D
2 Point processes and conditional intensity function

The covariance measure also has a singular component
A spatial-temporal point process is a random point patternconcentrated along the line=u, as illustrated by the for-
defined by time and location of every single event. Pointmula:
processes are here introduced by a mathematical approach
that uses the definition of a counting measure on aset  Var{N (ds)} = E[N(s)] = un(s).
R?,d > 1, with positive values irZ: for each Borel seB ] ) )
this Z., -valued random measure gives the number of eventd-€t N b€ a point process on a spatial-temporal donkia
falling in B. R, xR?, d > 2; the functioni*(t,z) = A(t,z|H;), defined

This section reviews some basic definitions related to pointby:

processes, reported to introduce the notation used throughout
E[N([t,t+dt) -[z,2+dz) | H))]

the paper. For further elaboration and references, please see (t,2)= lim 7
Daley and Vere-Jongg003. 2(dt) — 0 £(dr)t(dz)
£(dz)—0

Definition 1 Point process

2
Let (2,4, P) be a probability space and a collection of @
locally finite counting measures ofc R?. DefineX asthe is the intensity function of the process conditionedHg,
Borelo-algebra ofX and let\ be the smallest-algebraon  that is the space-time occurrence history of the process up to
®, generated by sets of the forfg € @ : ¢ (B) =n} for all timet, or in other words, the -algebra of events occurring at
B € X. A point processV on X is a measurable mapping of times up to but not including, dt,dz are time and space in-
(2,X) into (®,N). A point process defined ovéR, A, P) crements respectively, afel N ([, +dt) x [z,z+dz)|H,)]
induces a probability measuil@y (Y) = P(N €Y),VY e N is the history-dependent expected value of occurrence in
(Cressig1991). the volume({[s,7 +dt) x [z,z2+dz)}. The conditional in-
) . ) tensity function is a function of the point history and it
Given a point process defined on the spad&’, X) and s jtself a stochastic process depending on the past up to
a Borel setB, the number of point&/(B) in B is arandom  time 1. Assuming such a limit exists for each poiftz)

variable with first moment defined by: in the space-time domain and the point process is simple,
the conditional intensity process uniquely characterizes the
un(B)=E[N(B)]= L(P(B)HN(CM’) finite-dimensional distributions ¥ (Daley and Vere-Jones

2003. According to the used notation, the starify(-) is
that is a measure ofX,X’). The measure.y is called the  used to indicate that the intensity is a function of the past
mean measure or first moment measur®y ¢Cressie1991). history H;.
The second moment measureNis given by: If the conditional intensity function is independent of the
past history and dependent only on the current time and spa-
ME\?)(BrBz) = E[N(B1)N(B2)] =/ ¢ (B¢ (BTN (do), tial location, Eq. R) determines.(z, z) and identifies an inho-
@ mogeneous Poisson process. A constant conditional intensity

with By, Bo € X. If it is finite in X @ the process is second Provides a stationary Poisson process.

order.
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In a time-stationary but spatially inhomogeneous process; (; . v.2, M: ) O(Z":Kt(t —ti>
the expression in?j is: e —~ hy

—X; Y=Y Z2—2Zi M—M,;
A (t,2) =M (z K X—=Xi Y—=Yi 2% K i 5
(t,2)=rf"(2) e M0 (5)

with A the overall rate occurrence for a given region gito ) i

a time-invariant space density. A more general form &) ( WhereK, KsandKy are temporal, spatial and magnitude
is provided assuming a separable form, in which the spatiak€Mel density functions, as id), respectively.

term is assumed to be univariate in time and temporal density Introducing the estimator defined i§)( the estimation of

is not constant, where the both terms are allowed to depené complex intensity function dependent on the past history

on the past history, such that: of the process as ir2) now reduces to the estimation of the
intensity function of an inhomogeneous Poisson process, in-
A =2"0) f*(2) 3) dependent of the past history and identified by a space-time

Gaussian kernel intensiti@elfio and Ogata2010); this re-

It simplifies to the product of constants for homogeneoussult provides useful directions for a simpler estimation ap-
Poisson processes. proach in describing very complex phenomena such as the

In this paper a nonparametric estimation of a second orseismic one. Separability of time and space kernel densi-
der measure like3) is provided to describe dependency ties is here assumed for computational convenience, because
structures of a multidimensional observed seismic process bygf the high dimensional issue, although tests to assess this
using a flexible procedure based on kernel intensity estimaassumption could be use8d¢hoenberg2004. It might be
tors. useful to note that this assumption is not directly extended to
the intensity function of the process since it is obtained by
the superposition of these densities.

In this context the problem of choosing the amount of
For an adequate description of the seismic activity of a fixedSMm0othing is of crucial importance, since smoothing parame-

area and to suggest useful ideas on the mechanism of a sudfr regularizes the trade-off between variance and bias of the

complex process, the definition of a valid and effective mode(€Stimator, that is between random and systematic error.  In
is required. When a complete definition of a parametricAdelf'o et al. (2009 the seismicity of the Southern Tyrrhe-

model is not reliable, nonparametric approach could be usefian Sea is described by Gaussian kernels and the optimum

ful. Indeed, in seismic modelling contexts, parametric mod-Value offt is chosen such as to minimize the mean integrated
els are not always useful since the definition of a reliableSauare error (MISE) of the estimatgi(-). In particular the

mathematical model from the geophysical theory may not be2uthors used the valuep that Silverman(1986 obtained

available. minimizing the MISE off (-) assuming multivariate normal-
In general, some disadvantages of the parametric modiy-

elling can be avoided by using flexible procedures (nonpara- In Adelfio (2010 a variable bandwidth procedure is in-

metric techniques), based on kernel intensity meth&ils (  troduced, choosing/ = (h1,h},h), i.e. the bandwidth for

verman 1986. Givenn observed eventsy,so...,s, in a the j-th event,j =1,...,n, as the radius of the smallest cir-

d-dimensional given region, the kernel estimator of an un-cle centered at the location of thieth event(x;, y;,z;) that

3 Nonparametric estimation

known densityf in R? is defined as: includes at least a fixed number of further events.

In Adelfio and Ogata(2010 a naive likelihood cross-
N 1 L S1—8i1 Sd— Sid validation function is optimized to obtain the bandwidth of
f (52,50 ) = mX;K< hy 7 ) the smoothing kernel used to estimate the intensity for earth-

@) quake occurrence of northern Japan.

Although the use of variable bandwidth may be preferable
where K (s1,...,sq) denotes a multivariate kernel density to reflect local occurrence rates instead of using fixed band-
(usually the standard Normal density function) operating onWidth, in this paper constant smoothing is considered as a
d arguments centered &1, ...,s;q) andh=(h; hgy) is convenient approach to deal with the high dimensionality of

LR [ERREX)
the vector of the smoothing parameters of the kernel funche analyzed problem.
tions. |If s; = {t;,x;,yi,zi, M;}, the space-time-magnitude
kernel intensity estimator o] is defined by the superpo-
sition of the separable kernel densities:

3.1 Conditional intensity estimation

Conditional intensity estimation can be considered as a gen-
eralization of regression, focussing on the estimation of the
full conditioned distribution and not just on the expectation
value.

www.nonlin-processes-geophys.net/17/237/2010/ Nonlin. Processes Geophys., 24423010
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A discrete estimate of the second order conditional inten- L 2 174 176 178 180
sity for a point process is given Byere-Jone1978. Now L Depth: (0.12] |
we are looking for a smoothed version of the conditional in-  _5 | X L
tensity, that is the local intensity of the procesgpatgiven -39 gﬁ% ***3**$ r
the occurrence of a point of the process.athus: :‘3: . 33&? ager " i

-42 Qﬁ i ’ R -
h(p |S)dp =E [N (dp) |N (dS) - 1] (6) % e Depth : (85,186] Depth : (186,602]

- 37
* - -38
- -39
- -40

wheres andp are points ifR?, with 4 = 5, since we are con- 1
sidering space (3-D), time and magnitude dimensions. This 1
function can be related to the covariance densijybly the 4 -
equation 1 42

E F-43

172 174 176 178 180

h(P|S)ZMN(P)‘FC(P,S)/MN(S)- Longitude

Moreover the formula above can be considered as anothegig 1. 3.p space plot, with depth discretized into four groups with
way of looking at the Ripley’s K-function, useful when the equispaced quantiles as breakpoints, so that all groups have roughly
emphasis is on the physical interpretation of the dependencehe same number of points. Different colors are used for different
In this paper nonparametric kernel estimators are used foranges of magnitude: black for3< M < 5.4, red for 54 < M <
estimatingi(p|s) in high-dimensional domain; in this con- 6.3 and greenfor@<M <7.2.
text the conditioning puts a different complexion on the prob-
lem, as the smoothing parameters have to be adjusted to the
conditioning event. 4 Application to New Zealand data and discussion
Here we use a version of the conditional intensity func- . i i o
tion introduced in earlier earthquake studies\teye-Jones ~ SPace-time modelling seems one sensible direction, espe-
(1978, where the second order properties are classified ac¢ially if depth is also involved. Some pictures could suggest
cording to the magnitude of the initial event. In the early something about the evolution of spatial clusters at various
paper the analysis was based on a crude discretization of théePth (when they merge or separate). Deep earthquakes gen-
process, but in the present paper we make use of kernel derally Iach fully evolved sequences which dec_ay accordmg to
sity estimates applied jointly to both the conditioning and the theé Omori's lawUtsu(1961). Therefore clustering described

conditioned events. More precisely, to evaluate a smoothed©™ ETAS model Ogata 198§ could be valid just for shal-
version of the conditional intensity (CIF) i), we use the lower events, that may have a classical aftershocks behavior.

ratio estimate On the other hand, aftershocks for deep events have a differ-

ent behavior and for this case a different modelling could be
R A(p,s) useful, mostly to check their features that are still unknown
h(pls) = ) (") in some sense.

Here a direct approach to analyze second order properties
that is, the ratio between the joint intensity of the condition- of deep earthquakes is considered, based on the use of the
ing and the conditioned event (i.p.ands), and the marginal  two point correlation function, that is of the conditional in-
intensity of the conditioning event (evesit This function  tensity function defined in7).
is therefore estimated as the ratio of the kernel intensity esti- We selected a subset of the GeoNet catalog of New
mators, defined in Eq5], for A (p,s) andA(s), respectively.  Zealand earthquakes. Completeness issues of this catalog
The kernel estimators consider Gaussian density with zer@re discussed iHarte and Vere-Jong4999. The data con-
mean and variance selected in a such way that its standargist of n=3097 earthquakes loical magnitudel| =4.5 and
deviation’ (the kernel bandwidth) minimizes the mean inte- larger that are chosen from the wide regied3® ~ —37° N
grated square error (MISE) of the estimate). and 172 ~ 181° E and for the time span 19512007. That

This approach simplifies the complex estimation issue ofarea is characterized by several deep events, with depth down
the second-order measure B),(although it implies the use to 530 km.
of high dimensional kernel functions. Indeed, the quan- The bandwidth constants selected for the five-dimensional
tity in (7) has been computed considering the ratio of five-intensity kernel estimator of the process age=0.34,h, =
dimensional kernel estimators, providing, on one hand, &.27,h, =100086 (in days)}. =0.06 anday = 17.54.
very computer intensive procedure, but on the other hand, Some features of the observed events are now investigated.
some advantages related to the possibility of describing thé&Space-time scatterplots of events are provided in Figs.
main features of the process in multiple domains without2 and3. Both in Figs.1 and 2 the depth variable is used
constraining data to binding assumptions. like a conditioning variable, showing significant deep events

Nonlin. Processes Geophys., 17, 2324 2010 www.nonlin-processes-geophys.net/17/237/2010/
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Fig. 4. Temporal conditional kernel intensity for all magnitude
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Fig. 3. 3-D scatterplot of earthquakes epicenters in terms of lati-
tude, longitude and depth. Magnitude is used as the conditioning
variable.

concentrated in the area extending from Taranaki and Taupo
region to northeast Bay of Plenty, persisting over different
time periods and different depth ranges. From Bigie can
observe still deep events for high magnitude, (for instance, an
event withM = 7.2 has been recorded at 273 km of depth),
although very deep earthquakes are recordedffess.9.

ported in Fig.4. In these plots the marginal temporal CIF
estimated by the proposed approach is showed, conditioning
to the big event occurred in February 1995, with= 6.8 and

www.nonlin-processes-geophys.net/17/237/2010/
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Fig. 6.S i itud i ditionalintensity f Fig. 7. Space-time-magnitude smoothashditionalintensity func-
9. 0. Space-ime-magniiude SmootNEIAIONANNENSIY TUNC= i1y for 47 — 5.5 around a fixed point at six different times.
tion for M = 4.5 around a fixed point at six different times.

followed by a significant increasing of the activity. In partic- C&Ys after a short period; this clustered activity comes before

ular different cuts of magnitude have been effectuated, to se1€ second main event, followed by a decreasing activity pe-
how the magnitude weighting may influence estimation re-fiod. A big rate of intensity is observed also after the third

sults and therefore these plots are generated by integrating@n event, with increasing values followed by a decreasing
the CIF over space and the specified magnitude regions. Alclustering effect.
though some tests might be useful, we observe significant A four dimensional conditional intensity function is esti-
differences between the plots in Figy.that inform us about mated for time-longitude-latitude-magnitude domains. The
the complexity of the clustering features of events. Indeed itspace-time marginal function with respect depth for differ-
seems evident that time intensity estimation depends also ofint levels of magnitude (4.5, 5.5, 6.5) is shown in Fis.
the magnitude of events, reflecting the not uniform behaviorlt is interesting to highlight the correspondence between the
of aftershocks in time. peaks of intensities of Figé.and7, that indicate the occur-
The clustering nature of events in time and space is alsgence of large sequences of earthquakes, and the locations of
evident from Fig.5. It represents the conditional intensity big events, identified by high kernel intensity areas in Big.
function estimated conditioning to three large events of the For a deeper analysis contour-plots of the four dimensional
catalog withM=6.7, 7 and 6.8 occurred in three different conditional intensity function are reported in F&. in this
dates and by integrating the CIF over space and magnitudease for each event we calculated the spherical distance (for
domain. From these plots in correspondence of each maifongitude and latitude), depth distance and time difference
event we can observe a different behavior of their aftershocksvith respect to longitude, latitude, depth and time of the me-
sequences and their rate of activity. Indeed, the first mairdian point in time of the catalog. The spherical distance
event is followed by an increasing clustered activity that de-is obtained by using the Haversin formula, with Vincenty

Nonlin. Processes Geophys., 17, 2324 2010 www.nonlin-processes-geophys.net/17/237/2010/
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Fig. 8. Space-time-magnitude smoothashditionalintensity func- Fig. 9. 3-D space-time smoothecbnditional intensity function
tion for M = 6.5 around a fixed point at six different times. around a fixed point at six different times.

formula variation to compute distances on ellipsoidg{ can be used to describe the variation in different domains
centy, 19795. A variation of activity in time and space, and, because of its flexibility, it provides a good fitting to
from one part of the analyzed region to another, and betweefocal space-time changes as just suggested by data.
depths, is observed.

Although the provided analysis should be considered as
just as a starting point for the comprehension of the com-5 Conclusions
plex mechanism of the observed seismicity in such different
domains, we think that some interesting features have beefonditional intensity function as well as second order inten-
highlighted. Indeed though the highly clustered seismicitysity provide useful indications of the strength and character
identified by complex intensity function of the studied seis- of second order dependence effects between pairs of points
mic area, the nonparametric approach makes possible a reat different separations of the analyzed domain.
sonable characterization of seismicity, since it does not con- In this paper a nonparametric estimate of conditional in-
strain the process to have predetermined properties. tensity for a multidimensional process is provided, using

The estimated model seems to follow adequately the seisGaussian kernel intensity estimators with constant bandwidth
mic activity of the observed area, characterized by highlyselection. Thus, both an estimate of this quantity and an eas-
variable changes both in space and in time. The simple usetly interpretable graphical summary of data are obtained.
approach provides a valid estimate of the conditional inten- This approach provides an estimate of the conditional in-
sity in different domains that could be used for further inter- tensity function in different analyzed domains, that might
pretation according to the main object of interest. Indeed thebe used for forward interpretations aimed to descriptive and
activity rate is easily interpretable since the kernel approacteven predictive purposes.

www.nonlin-processes-geophys.net/17/237/2010/ Nonlin. Processes Geophys., 24423010



244 G. Adelfio: Kernel estimation of a five-dimension conditional intensity function

For this reason, additional diagnostic analysis should beCressie, N.: Statistics for spatial data, Wiley series in probability
considered, although the high dimensionality could give and mathematical statistics, 1991.
some problems in finding a valid residual measures, as disDaley, D. J. and Vere-Jones, D.: An introduction to the theory of
cussed irAdelfio and Schoenber@009. point processes, 2nd edn., Springer-Verlag, New York, 2003.
Doguwa, S. I.: On second order neighbourhood analysis of mapped
AcknowledgementsMy sincerest gratitude to David Vere-Jones  Ppoint patterns. Biometrical J., 4, 451-457, 1989.
for his very useful comments, but mostly for sharing his experienceGetis, A. and Franklin, J.: Second order neighbourhood analysis of

and kindness. mapped point patterns, Ecology, 68(3), 473-477, 1987.

Grillenzoni, C.: Sequenzial kernel estimation of the conditional in-
Edited by: G. Dller tensity of nonstationary point processes, Statistical inference for
Reviewed by: E. Varini and another anonymous referee stochastic processes, 9, 135-160, 2006.

Harte, D. and Vere-Jones, D.: Differences in coverage between the
pde and new zealand local earthquake catalogues, New Zeal. J.
References Geol. Geop., 42(2), 237-253, 1999.
Ogata, Y.: Statistical models for earthquake occurrences and resid-
Adelfio, G.: An analysis of earthquakes clustering based on a ual analysis for point processes, J. Am. Stat. Assoc., 83(401),
second-order diagnostic approach, in: Data Analysis and Clas- 9-27, 1988.
sification, Studies in Classification, Data Analysis, and Knowl- Ripley, B. D.: The second-order analysis of stationary point pro-
edge Organization, edited by: Palumbo, F., Greenacre, M., and cesses, J. Appl. Probab., 13(2), 255-266, 1976.
Lauro, C. N., Springer-Verlag, 309-317, 2010. Schoenberg, F. P.: Testing Separability in Spatial-Temporal Marked
Adelfio, G. and Chiodi, M.: Second-order diagnostics for space- Point Processes, Biometrics, 60, 471-481, 2004.
time point processes with application to seismic events, Environ-Silverman, B. W.: Density Estimation for Statistics and Data Anal-
metrics, 20, 895-911, 2009. ysis, Chapman and Hall, London, 1986.
Adelfio, G., Chiodi, M., De Luca, L., Luzio, D., and Vitale, Utsu, T.: A statistical study on the occurrence of aftershocks, Geo-
M.: Southern-tyrrhenian seismicity in space-time-magnitude do- phys. Mag., 30, 521-605, 1961.
main, Ann. Geophys., 49(6), 1245-1257, 2006. Vere-Jones, D.: Space-time correlations for microearthquakes: a
Adelfio, G. and Ogata, Y.: Hybrid kernel estimates of space-time pilot study, Adv. Appl. Probab., 10, 73-87, 1978.
earthquake occurrance rates using the etas model, Ann. I. Sta¥incenty, T.: Direct and inverse solutions of geodesics on the ellip-
Math., 62(1), 127-143, 2010. soid with application of nested equations, Survey review XXII,
Adelfio, G. and Schoenberg, F. P.: Point process diagnostics based 176, 89-93, 1975.
on weighted second-order statistics and their asymptotic proper-
ties, Ann. |. Stat. Math, 61(4), 929-948, 2009.

Nonlin. Processes Geophys., 17, 2324 2010 www.nonlin-processes-geophys.net/17/237/2010/



