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Abstract. Many volcanic eruptions exhibit periodic behav- seismic activity and periodic magma flow activity (Voight et
ior. For instance, periodic ground inflations and deflationsal., 1998, 1999; Wylie et al., 1999). The period was of the
in proximity to a volcano are the consequences of periodicorder of 10-20 h. Other volcanic systems also exhibit cyclic
overpressure variations in the magma conduit and periodiepisodes. Examples are found in Mount St. Helens (Wash-
magma flow rate. The period varies from a few hours toington State, USA) between 1980 and 1986 (with an aver-
many years, depending on the volcano parameters. On thage period of 74 days or 230 days, depending on the cycle)
other hand, volatile components exsolve from an ascend{Barmin et al., 2002), Santiaguito (Guatemala) from 1922
ing magma by forming bubbles. The strong dependence ofo the present (with an average period of 10.7 years) (Har-
the melt viscosity with the volatile concentration generates aris et al., 2003), Mount Unzen (Japan), Karymsky (Russia)
positive feedback on the magma flow. We consider here thend Merapi (Java) (Nakada et al., 1999; Ozerov et al., 2003;
effect of the growth of volatile bubbles on the dynamics of a Voight et al., 2000).

magmatic flow in a shallow volcanic system. Various expres- On the other hand, various volatile species are commonly
sions for the bubble growth rate are treated, thus generalizinound in magmatic systems (mainly,8, CQ and sulfide
previous work. In particular, a growth rate law derived from species) and volatile bubble dynamics is an important con-
a recent many-bubble theory is considered. It is seen thatyibuting factor to the understanding of volcanic eruptions
for a range of flow rate values at the base of the magma con¢Sparks, 1978; Bottinga and Javoy, 1990; De Vivo et al.,
duit, the system undergoes a Hopf bifurcation. Periodic s0-2005; Behrens and Gaillard, 2006; Proussevitch and Saha-
lutions compatible with the observations are generated. Thigjian, 1996, 1998). The object of this contribution is to ex-
work shows that measurements of volcanic activity have theamine in details one simple nonlinear dynamical model in
potential to test various bubble growth models in magmaticwhich an oscillatory behavior due to the growth of volatile
systems. bubbles occurs in a shallow volcanic system; the effects of
various bubble growth rate laws are also investigated. The
treatment is limited here to the typically dominant volatile
species, water (De Vivo et al., 2005; Behrens and Gaillard,
2006).

Volcanic eruptions are the consequences of a succession of Similar models are available in the literature. In Wylie et
complex processes acting over a wide range of timescale@l- (1999) (thereafter referred to as WVW), the authors pre-
and understanding their dynamics is an important, but chalsented a constant tgmperature model that is mostly applicable
lenging task. One example of intriguing volcanic eruptions t0 shallow magmatic systems (such as Montserrat). In that
dynamics consists in the occurrence of an oscillatory behavModel, the magma flow dynamics is coupled to changes in
ior. For instance, tilt meters installed on the crater of theMelt viscosity induced by variations in the dissolved volatile
Soufriere volcano (Montserrat Island) in 1996 and 1997 de-content (specifically water). In turn, through the forma-

tected periodic ground inflations that correlated with periodiction and growth of bubbles, volatile exsolution controls the
volatile concentration dynamics.

Melt viscosity depends not only on the volatile concen-

Correspondence td: L'Heureux tration but also on the magma temperature and its chemi-
BY (ilheureu@uottawa.ca) cal composition (Hess and Dingwell, 1996). In Costa and
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Macedonio (2002), a model is presented in which tempera- model (2002), no detailed linear stability analysis is
ture variations (rather than volatile content) induce changes  available for the WVW model, generalized to an arbi-

in the melt viscosity, that feedback, in turn, on flow dy- trary bubble growth rate law. Such an analysis and a
namics. No dynamics are presented by these authors, but dynamical phase diagram in parameter space are pre-
the possibility of a bursting effect (whereby the flow rate sented here.

changes abruptly back and forth between two values) is de- i ) i
scribed. Mourtada-Bonnefoi et al. (1999) presents a com- "€ theory presented here is applicable to shallow magmatic
partment model in which crystal magma content and tem_system; (such as Montserrat) as it can|ders only the effect
perature are coupled through two ordinary differential equa-°f Volatile content on the melt viscosity and neglects tem-
tions. Again, bubble bursting effects are described. How-Perature changes during the magma short ascent. Indeed,
ever, the model ignores transport processes. In Barmin e time scale associated with conducting cooling of a shal-
al. (2002) and Melnik and Sparks (1999, 2005), a more del0W ascending magma via heat exchange through the walls
tailed transport model is described that takes into account thgansbezestlmated from the magma thermal diffusivity (about
viscosity changes induced by variations in temperature and0 ~ M°/s, Costa and Macec?c_)mo, 2002) and the conduit lat-
volatile content in a volcanic conduit of circular cross sec- €@l dimension (about 10 m); its value is very large compared
tion. A crystal growth factor is also included in that model to the releyant period oflthe oscillations (Moight et al., 1999).
as the magma crystal content affects the permeability of thé)ve_r the time scales of interest here, we can thus neglect the
system and the flow dynamics. This model was further gen-00ling effect. .
eralized (Costa et al., 2007) to the situation where the lower FOr Simplicity, we also neglect the viscosity change due
part of the conduit has an elliptical cross section. to increase in the magma crystal content. Previous models
Other mechanisms that do not involve directly the pres-('vle!n'k and S_park;, 2005; Barmin et al., 2002) have param-
ence of volatile have been proposed to explain oscillatorfte”zed the y|SCOS|ty dependence on crystal vqlume fraction
eruptive behaviors. Ozerov et al. (2003) considered thd" the following way: for a crystal volume fraction smaller
magma as a visco-elastic fluid that undergoes stick-slip tranthan @ critical value of about 0.7, the viscosity is basically
sitions in a boundary layer adjacent to the conduit walls. constant; otherwise it increases rapidly with the crystal vol-

They showed that an oscillatory behavior with short periodsurne fraction. Fpr §|mpllglty, we assume here that the crys-
(seconds to minutes) may ensue. tal volume fraction is limited to a value smaller than 0.7, so

that the viscosity does not depend much on crystallinity. The
same assumption was used by Wylie et al. (1999). A more
1. In that model, it was assumed that the volatile concen-complete theory would also include both crystallization ki-
tration field adjusts quickly to its steady state value. netics and temperature variations (through conduction, heat
Strictly speaking, this is valid only in the limit where exchange at the conduit walls and latent heat production).
the magma pressure relaxes very slowly in response tdlowever, we feel that investigating the effects of various
changes in magma flow rate. This is not true in generalvolatile bubble growth laws in more details is a necessary
and we will not make this assumption here. first step in developing an understanding of periodic dynam-
ics in shallow magmatic systems. Indeed, we plan to investi-
2. WVW introduced an approximation to simplify the gate the effects of parametric random noise driving the model
mathematical treatment of their model: it was assumedsystem through its boundary conditions and a detailed study
that the integral of the viscosity has the same functionalof the corresponding deterministic system — as presented in
dependence as the integral of the volatile concentrationhijs contribution — is needed first.
field. Asthe relation between viscosity and volatile con-  The paper is structured as follows. In Sect. 2, we present
centration is not linear, this is not a correct assumptionthe details of the model and how it generalizes the WVW
in general. We do not use this simplification here. model. A linear stability analysis is presented in Sect. 3
for the three bubble growth rate models considered here. In
Sect. 4, we comment on the numerical method used to solve
the model, and we present and discuss some numerical re-
sults. A comparison with the tilt angle measurement data
of Fig. 1 of Wylie et al. (1999) is made using various bub-
ble growth rate expressions. We then make some concluding
statements in Sect. 5. Finally, Appendix A presents a list
of the model variables and their corresponding notation and
Appendix B estimates a limiting value of the cycle period.

In this paper, we generalize the WVW model in four ways:

3. WVW uses a simple linear bubble growth law without
taking into account the degree of supersaturation. Here
we consider also more realistic bubble growth laws: the
single bubble growth rate law in the diffusion-limit case
(Navon and Lyakhovsky, 1998) and a recently published
(L'Heureux, 2007) many-bubble growth law that takes
into account (in the mean field sense) the collective ef-
fect of the other bubbles on the growth of a given bub-
ble.

4. Although a linear stability is presented by Nakanishi
and Koyaguchi (2008) for the original Barmin et al.’s
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2 Model and¢ is the vesicularity (the fraction of the magma volume
occupied by the gas). We also neglect the motion of the gas

As in many previous models of periodic volcanic activity bubbles relatively to the ascending melt. The magma conti-

(Wylie et al., 1999; Barmin et al., 2002; Melnik and Sparks, nuity equation in the upper conduit reads:

1999, 2005), we describe the volcanic system as a thin verti-

cal conduit in which magma flows from a deep magma reser-— [,Og¢+,0(l—¢)] + 9 { % [pg¢+p(1—¢)]} =0. (1)

voir to the surface. It is in the upper part of the conduit that dt dz | r

the relevant degassing dynamics occurs. It is thus convenierpgapid degassing often leads to magma fractionation

to divide the conduit into two sections. The lower section of (whereby the magma becomes a foam containing a disper-

the conduit connects the deep magma reservoir to the Upp&jion of crystals and melt drops) and to explosive eruptions,

conduit section. No significant degassing occurs in the lowekn which the gaseous mixture can reach supersonic veloci-

conduit. The upper conduit is characterized by a length  tjes (Mader, 1998). Here, we assume that degassing is suf-

and a constant radius Observations of the Soudiie shal-  ficiently slow, so that the magma mixture does not reach the

low volcanic conduit are indeed compatible with a simple fraggmentation stage and the flow remains subsonic. Thus,

cylindrical geometry, as resulting from previous explosive a5 was done in previous models of periodic volcanic activity

eruptions (Sparks and Young, 2002). (Wylie et al., 1999; Barmin et al., 2002; Melnik and Sparks,
We call Q(z,1) the magma flow rate (#s) in the upper 1999, 2005), the magma can be considered incompressible.

conduit, p(z,t) the total magma pressure and,7) the dis-  Equation (1) then states that the flow r&¢) depends on

solved volatile concentration (in units of mass of dissolvedtime only.

volatile reported per melt mass). Herés the spatial coor- The Navier-Stokes equation for magma in the upper con-

dinate measured upwards from the base of the upper condugfuit can be written for a flow in a cylindrical pipe. The ratio

(z=0) andt is time. The melt viscosity in the upper conduitis of the inertial term to the viscous term scales as the Reynolds

denoted;(c) and depends on the magma’s dissolved volatilenumber Re- p /Ly, which is typically small ¢10~%). The

content. inertial term can therefore be neglected and one can use
A few words qualitatively describing the mechanism that Poiseuille law to describe the magma laminar flow. The pres-

generates oscillatory behavior are in order. The lowest secsure gradient can be written in terms of the flow rate as:

tion of the conduit connects the deep magma reservoir to the

upper conduit section. No significant degassing occurs inthe’? — _ ,, _ 8n()Q @)

lower conduit and the volatile concentration is kept constantd2 mrd

at a valuero. We will assume that the magma flow rate from whereg is the acceleration of gravity. The boundary condi-

the reservoir is constant and has a vafie We also define  tions are such that the pressure must match the total pressure

the magma overpressure in the lower conduiis the ac-  at the bottom of the upper conduit and it must be equal to the

tual fluid pressure, from which are subtracted the hydrostaticatmospheric pressure at the upper conduit outlet:

pressure and the atmospheric presgutdt is also assumed

that P(¢) is spatially homogeneous in the lower conduit, al- 7(0:1) =pgL +pa+ P (1), ®)

though it depends on time in general. Now suppose that the

flow rate in the upper conduit is smaller than the va{iig p(L.1) = pa )

at its base. Then, the lower conduit overpressure will in-The oyerpressurg in the lower conduit varies in response to

crease, which will increase the pressure in the upper conduifye gifference between the input flow rage and the upper
and will increase the upper conduit flow rate. The dissolvedgnquit flow rate (Landau and Lifshitz, 1970):

concentration will then increase in the upper conduit through

this enhancement in advective input. At some time howeverd _ Y (Oo—0) (5)
bubble growth will occur as a result of the increasing volatile dt ~ 2(1+a)V ~° '

supersgturatio.n and, as a rgsult. of this exsolution, the CONjere v is the average Young's modulus of the surround-
cgntrayor} of dissolved volatile will decrgase. However, melting rock, o its Poisson ratio and the volume of the deep
viscosity is a strongly dependent function of the concentra—magma reservoir and the lower conduit.

tion of dissolved volatile: as the concentration decreases, Vis- Tha yolatile mass conservation equation is now described.

cosity increases rapidly. This, in turn, slows down the flow The volatile is present in the upper conduit in two possible

rate back to |t§ initial value, an_d the cycle has the potential tophases: a dissolved phase (of concentratipand a bub-
start over again, thus generating repeated cycles.

ble phase. LeR denotes a typical bubble radius andthe
bubble number density (per melt volume). The total volatile
concentratiom: (volatile mass reported per melt mass) is

2.1 Basic equations

The total magma density isye + o (1 — ¢) wherepg is the 471NR3,og 4Tt MNR3p
. L . m=c+——=c+————. (6)
volatile gas densityp is the melt density (assumed constant) 3p 3pRTo
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Here, the ideal gas law has been used to express the volatile
gas densityT;, being temperatureR the ideal gas constant
and M the volatile molar mass. Surface tension effects be-
tween the bubble and the surrounding fluid have been ne-
glected, so that the gas pressure has been set equal to the
local fluid pressurep. The mass conservation equation for
total volatile takes the form:

9 [ O
=+ Lna-g) <o )

We have neglected here volatile losses through the sides of
the conduit. Combining Eq. (7) with Eq. (1) (wilty¢ ne-
glected compared to(1— ¢)) gives:

3 0 @

Fri—

Similarly, the continuity equation for the bubble number is:

m=0 (8)

AN QO ON
ot mr? oz =/ ®)
whereJ is the bubble nucleation rate reported per melt vol-
ume. For the shallow systems of interest here, we assume
that bubble dynamics is in a post-nucleation regime: growth
of bubbles that have previously been nucleated in the lower
conduit dominates over the formation of new bubbles. We
will thus setJ=0. This can be justified since the surface ten-
sion between water vapor and silicic melt increases substan-
tially as the pressure decreases (Proussevitch et al., 1993), so

that bubble nucleation occurs preferably at lower depths. 3

Finally, the kinetics of the volatile dissolved phase is de-
scribed by

dc 0 oc _
at  mr2dz
wheregG is a term proportional to the bubble growth rate (re-
ported per melt mass), as detailed below. The boundary con-

dition results from matching the concentration of dissolved
volatile with its value in the lower conduit:

(10)

c(0,t) =co. (11)

Various bubble growth models lead to different expressions
for G. We will consider here three models:

1. WVW model: In Wylie et al’s modelG is taken as a
linear function of the concentration, for simplicity:

G=kc (12)

wherek is a rate constant (im$).

2. Single bubble growth (SBG) model: From the well
known diffusion-limited single bubble growth theory
(Navon and Lyakhovsky, 1998), we learn that the ra-
dial bubble growth rate (m/s) is proportional to the

Nonlin. Processes Geophys., 17, 2235 2010
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volatile diffusion coefficientD and to the supersatura-
tion (c —ceq), Whereceqis the value of the concentration
in thermodynamic equilibrium with the fluid:

= ook (13)

v

(c—ceg)-

Multiplying this by 47 R?pq4 gives the bubble mass in-
crease per unit time. Multiplying again hy/p gives
the relative mass change in dissolved volatile per unit
time over theN bubbles per unit volume. Thus
G =47 NRD(c—ceg). (14)
An expression for the equilibrium concentration is
found from a generalized Henry law:
Ceq= (Kup)" (15)
where Ky is the Henry constant and is an empiri-

cal constant that depends on the identity of the volatile.
For wateryn=1/> to a good approximation (Sparks, 1978;
Burnham, 1975). The fact thagq is proportional to the
square root of the pressure in the appropriate pressure
range is indicative of the presence of two water species
in a silicate melt: molecular $0 and hydroxyl OH as-

sociated with the silicate framework (Behrens and Gail-
lard, 2006).

. Multiple-bubble growth (MBG) model: In the single

bubble growth theory, the competitive effects of the
other bubbles are neglected. In LU'Heureux (2007), a
model was proposed that approximately relaxes this
constraint. There, the growth of randomly located bub-
bles is treated in the framework of a mean field approx-
imation that generalizes the approach of Marqusee and
Ross (1984) to leading order in the bubble volume frac-
tion. One of the approximate consequences of this treat-
ment in is that the steam bubble growth rate decays ex-
ponentially with time under isobaric conditions:

G =K(c—ceq (16)

where the rate constait is given by

414 JannNRS | @)
Ceq0 Ceq0

Here, ceqo is the initial equilibrium concentration at a
given position andkis the large-time limit of the bub-
ble radius, which is related te and p via Eqg. (6):

K=47NRsD

30RT,

1/3
—_— . 18
4JTMNpi| (18)

Ry = [(m —Ceq)

www.nonlin-processes-geophys.net/17/221/2010/



I. U'Heureux: Effect of volatile bubble growth rate on periodic dynamics of shallow volcanic systems 225

Equations (16), (17) have been derived under constant preddere,

sure conditions. In general, the pressure changes in time at a - 2=

given position. Nevertheless, for simplicity, we will assume o — 28""L. = pa—r ! . e= 16’7°LV(1_+0).

a pseudo-steady state approximation for the bubble growth, 8oL’ 8noL? TréYe

so that we can use the instantaneous pressure in the growth, t

rate expression. o=CQo 5 (22)

Finally, the melt viscosity is needed. Empirical expres- 50 gimensionless parameters representing the melt density,

sions for the melt viscosity as a function of temperature, atmospheric pressure, the magma reservoir elastic re-

water content and magma composition have been used rege,,nqe and the reservoir flow rate, respectively. The time
ularly by igneous petrologists (see for instance Hess an

; , caler depends on the adopted bubble growth model and
Dingwell, 1996). These expressions are based on a genef e selected so as to simplify the scaled bubble growth

alization of the Arrhenius law for viscosity in the form log rateG'=Gilco as much as possible. Explicitly, one obtains:

n=b1(c) + b2(c)I(To — b3(c)) whereb1,bo and bz are func- For the WVW model:
tions of the water content We use here a simple linear ex- c
pression for log) (Clemens and Petford, 1999; Shaw, 1972), WWW :7=—; G'=¢. (23)
which is a good approximation ferbetween 2% and 5% and k
for temperatures around 90G: For the SBG model (using Eq. 6 to eliminagte:
1/4
n(c) =noeXpiB(1—c/co)l. (19 gpa.ro MioL? _
i ] , "\ 672D3N2pRTocor?
Here, 8 defines a temperature-dependent viscosity response
L ; : ; '2/3
coefﬂc_lent andy is th_e melt viscosity at_the base of the_k_)wer G = (m' — Y3 — cgq) : (24)
conduit, where = ¢o=5%. In fact, the widely used empirical p'3
expression proposed by Hess and Dingwell (1996) reduces to
Eq. (19) wherr is not too far fromc. where
, 8KnnoL?\"
2.2 Dimensionless formulation Coq=Ceq/Co=Ap"; A= (%) . (25)
co ret

Itis convenient to express the model in a dimensionless form
We scale the position coordinate by the lengtaf the upper
conduit and time by a scale to be determined later. We
now introduce the scaled concentratiehandm’, the scaled

For the MBG models has the same value as in the SBG
model. Adoptingn =14 in Henry’s law, the scaled growth
rate becomes:

bubble number density’, the scaled viscosity', the scaled o~ _ a3 N'23p'1/6
flow rate Q' and the scaled pressurgsand P’ as: 16 = (m —ceq) p’1/2
0
m'=m/jco; ' =c/co; 1= ; N'=N/No; (m' — ceq) /?
! __ / ? . /_/ ° rzt_n. r’[{/nip r2t_ / ° (20) |:1+y /1/48(/:;)_/4 (C/_C/eq);

Q' =052} P =Pg7 =Pz Py P

N\ 12
Here, N, is the value ofN at the base of the upper conduit. _ copRTor? ph=(chyo/A)> (26)
The relevant equations then take the form: ~\ 8MpL2 B L

ap’ P . In summary, the problem is defined by Eq. (21) for the vari-
9y o 0% pOr)=a+d+P(1); ablesp’, ¢/, m’, N’, P’ and Q’, with the parameters, g, v,
P Lt)=8; (21a) 9. ¢ Qo andA. Unless stated otherwise, we will drop the
symbols.
dp’ 1
= E(Qé,— 0"; (21b) 2.3 Simplified formulation
o’ am’  IN' IN’ It is possible to rewrite the model as an integro-differential
— + 0’ —=— o' - =0; (21c) system involving the variableB, Q andc only and which
ot 92" ot 9z will be more amenable to a numerical solution. We now in-
9¢! 9¢' troduce a time-like variable as (Barmin et al., 2002):
PPy + Q’a—z/ =-G; J0O=1 (21d) ;
T= / Q(tHdt'. (27)
7' =expp(l—c)]. (21e) 5
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The equations for the dissolved volatile concentration and for

the overpressure become, respectively:

dc dc G
et = 0w c(0,7)=1; (28)
dP _ Qo—Q(1) (29)
dt — eQ(1)

The pressure equation can be integrated to
Z
Pt =all=2)+5+ P[0 -0 [ nle ldz (30)
0

in which the boundary condition at1 imposes the follow-
ing integral constraint on the overpressure:

1
P(t)=0(1) f nle(? o)1dz. (31)
0

Finally, a change of variable =z —t, t* = transforms
Eq. (21c) to

om Bm_am oN 8N_8N
ar 9z oat* 9t 9z  ot*

This indicates that the total volatile concentratiaris con-

(32)

stant and equal to its initial value. Similarly, the scaled bub-SQ =—0, 0

ble number density can be taken equal to unity.

In their model, WVW introduce two simplifying assump-
tions, besides taking = c. (i) By integrating Eq. (28) over
z from 0 to 1, the quantity:(1,r) appears. In order to es-

timate it, WVW assume that the concentration profile ad'ME/n[CS(Z)]dZ.

justs itself quickly to its stationary value, so thatl, t) =
exp(—1/0(z)). (i) Instead of Eq. (19), they make the
approximationfoln(c(z’, )7 = exp[ﬂ(l—folc(z’, 1)dz)],
which is correct only for smalB. Eliminating P, they then

obtain a simple system of two coupled ordinary differentia

equations for the variabled and/olc(z’, 7)dz’. We will not

I. U'Heureux: Effect of volatile bubble growth rate on periodic dynamics of shallow volcanic systems

Z

ps(z) = a(l—2)+8+ Ps— Qo/ nles(z)1dz’. (33)

0

¢s can be solved, at least numerically. For example, for the
WVW growth rate,G = ¢ andcs(z) = exp(—z/ Qo).

We now perform a linear stability analysis. For this pur-
pose, we simplify the pressure dependence in the growth rate
by using its hydrostatic value in the argumentaf

Gles(z), ps(2)] = Gles(2), (1 —2) +8].

The numerical results performed on the exact formulation
(Sect. 4) confirm that this approximation leaves unchanged
the nature of the dynamical instability and does not change
the stability phase diagram substantially. We then set

(34)

c(z,7) = ¢5(2) +6c(z) exp(AT)
P(t) = Ps+5Pexp(AT)
0(t) = Qo +30exp(AT)

whereédc(z), P and§Q are small perturbations and a

complex frequency, to be determined. Also, the bound-

ary conditioncg(0)=1 implies thatsc(0)=0. Substituting in

Egs. (29) and (31), it is easy to eliminate:

(35)

1
[ 3Lsc(z)dz
_ 36
p+(eQoA) 71 (39)
where the integrated viscosity is
1
(37)

Equation (36) requires the derivative of the viscosity with
respect to the volatile concentration. With the relation (21e),

| this is:

817_

Bnles(2)]. (38)

make these simplifications here, but consider the full sys-dcs

tem (21).

3 Linear stability analysis

3.1 General formulation

. . . ds
It is straightforward to solve the system for its steady state—c

(Qs, ¢cs(2), Ps, ps(z)). Setting the derivatives with respect to
T equal to zero gives:

1 Z
0s= 0o csld) =15 f Gles(2), po(2)1d';
(o)
0

1

Ps = QO/U[CS(Z/)]dZ/§
0

Nonlin. Processes Geophys., 17, 2235 2010

The approximation (34) indicates th@tdoes not depend on
overpressure but only on the concentration profile and,on
throughps=a(1—2z)+8. We letGs be the bubble growth
rate evaluated with the stationary concentration profile. After
linearization, Eq. (28) becomes in turn:

_ Gs(Z)
Fr —(A+Ms(2)/ Qo)dc+ 07 80 (39)
where
m 2t (o)
Cs

The solution of Eq. (39) with the boundary conditigx{0)=0
reads:

Sc(z) = (SQ—Qze_AZQ(z,A) (41)

[o]

www.nonlin-processes-geophys.net/17/221/2010/
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where

Z

Gz A = / Ge(y)expiAy — f Msy)dy'/Qoldy.  (42)
/

0

It is convenient to simplify the functiog as follows. The
total differential of the stationary growth rafg; is:

d 0
dGgs = iSdcs—ocisd
86'5 8pS
aGsts 8GS
= _ —a— dZ
aCs dZ aps
0Gs G G
= —(—S—S+a—s>dz (43)
dcs Qo aps
where use has been made &fs/dz=—G¢/Qo. Thus, in
Eq. (42):
i 1 [dG
_/ Ms(y)dy'/ Qo = —— | =—=a’ (44)
Qo dcs
y y
f 9logG
o}
= 109(Gs(2)/ Gs(y) +a / ag 4y,
S

y

In consequence,

g(z,A):Gs(z)/dyexp(Ay—i-a/ algsGsdy/). (45)
0

S
y

Finally, using Egs. (41) in Eqg. (36), and dividing bg, we

227

1 Z

£= {ﬂQ/dZU(Z)Gs(Z)/dySin(Q(z—y))
0

0
3logG -
g Sdy' )

ops

Z
p( |
Y
For a given value oD, andg, Eq. (47) is used to solve for
Q (which can be done numerically using a Newton-Raphson
solver coupled to an integration code). Then, Eq. (48) gives
directly the Hopf bifurcation curvey = ¢(Qo, B).

(48)

3.2 Examples

We now present Hopf bifurcation curves for the WVW, SBG
and MBG growth rate laws. For the simplest case (WVW),
we haveG = ¢, c¢s(z) = exp(—z/Qo) and n =exp (1 —
e~%/20)], The stationary overpressuRg reduces to:

Ps= Qop = Q2P [Ei(—B)—Ei(—Be 1/ 0)]

where E{x) = —fffcdte_’/t is the exponential integral.
Figure 1la plotsPs as a function ofQ, for two values of8.
For sufficiently high value o8, Ps exhibits two increasing
branches connected by a decreasing branch.gtdte the
critical value of 8 above which these three branches exist.
p* is found from the conditiond Ps/d Qo = d?Ps/d Q3 =0
to be8*=2.989.

The frequency equation is taken from Eq. (46) with
0Gs/dps=0. It reads:

(49)

g1+ Q2AeP[Ei(—B)—Ei(— e~/ 00)]
—Qofexpp(1—e~¥20)] -1}

obtain the general frequency equation, which reduces the lin-
ear stability problem to solving the following transcendental —Qoe? B~2A[I'(1+ QoA, B) —T' (14 QoA, Be~Y20)]=0

equation forA:

1

e+ QoA,u—ﬁA/n[cs(z)]eXp(—Az)g(z, A)dz=0. (46)
0
Sincee > 0, it is not possible for the stationary solution to

lose its stability A = 0) with a real frequency. A Hopf bifur-
cation is characterized by a loss of stability with Rg€0,

(50)

where I'(a, x) Efxooza_le_tdt is the incomplete Gamma
function. From this expression, it is straightforward to ob-
tain the Hopf bifurcation curvey, an example of which
is illustrated in Fig. 1b forg=5.5. The vertical dotted
lines correspond to the two valug®,* of Q, for which
dPs/dQolg.« =0. In fact, it is easy to show analytically
from Ps= Qou and from Eq. (47) (in the limif2 — 0) that

Im(A) #0 and is the signature of the emergence of a limit the poundaries of the Hopf bifurcation curve are bounded

cycle (periodic) solution, which itself could be stable or un-

by Qo*. This is true for an arbitrary growth rat€é of the

rameter spacé¢s, Qo, B}, we setA =iQ in Eq. (46) with

condition for a Hopf bifurcation to exist is to haye> g*

Q real. Separating the real and imaginary parts and usingnd to choose a value @, for which the corresponding

Eq. (45), one finds

1 b4
QoM—ﬁ/dzn(z)Gs(z)/dyCOS(Q(z—y))
0 0

Z
dlogG
exp a/$dy’ =0;
aps

y

(47)
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Ps(Qo) lies on a decreasing brandtPs/d O, <0. However,

in contrast to what was suggested in Wylie et al. (1999),
this not a sufficient conditions must be sufficiently large
(e > ep) for an instability to occur.

For the two other growth models (SBG and MBG), ex-
pressions forPs(Qo) andey are not analytically available.
However, a numerical approach is straightforward. Figures 2
and 3 show the stationary overpressure and an example of
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Fig. 1. (a)Steady state overpressuPeas a function of the flow rate ~ Fig. 2. (a) Steady state overpressube as a function of the flow

Qo at the base of the conduit for the WVW bubble growth model, rate Qo at the base of the conduit for the SBG model wth5.5.

for two values of the viscosity response coefficigntAs discussed  (b) Steady state stability phase diagram in parameter spage (

in Appendix B, the path ABCD describes the oscillatory cycle in ¢) for =5.5 for the SBG bubble growth model. S=stable node;
(P, Q) space obtained in the limit wheee— co. (b) Steady state ~ SF=stable focus; U=unstable focus. The Hopf bifurcation line
stability phase diagram in parameter spag,(¢) for 8=5.5 for (continuous curve) resides within the region where the steady state
the WVW bubble growth model. S=stable node; SF=stable focus;Ps(Qo) exhibits two extrema (dashed vertical lines).

U=unstable focus. The Hopf bifurcation line (continuous curve)

resides within the region where the steady stB$60o) exhibits

two extrema (dashed vertical lines).

a Hopf bifurcation curve for the two growth models, respec- In summary, the stationary state is stable witea B*.
tively. The choice of parameter values is discussed in the nexEor 8 > 8*, there exists values af, for which Ps decreases
section. For this choice, the critical valuesgifare 2.60 for  as a function ofQ,. The stationary state is stable whén
the SBG model and 3.75 for the MBG model. Although the is chosen in a range for whichPs/d Qo > 0. Otherwise, it is
details are quantitatively different from the WVW case, the stable when is sufficiently small. In all case, loss of stability
topology of the curves is identical. derives from a Hopf bifurcation.
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25 T T T T T Table 1. Parameter values used in the calculations of Sect. 4.2.
These are typical of the Montserrat system (Wylie et al., 1999). The
(@) value ofg is estimated from the temperature and from the empirical
20 + 1 relation (19) (Shaw, 1972). The value of Henry constip, the
volatile diffusion constanD and the initial bubble radiug(0) are
taken from Proussevitch et al. (1993). The bubble number density
15 H . N is inferred from Proussevitch et al. (1993).
P :
5 10 i Parameter Units Value
co Mass proportion 0.05
D m2/s 1011
5L . g m/<? 9.8
k st 2.77x1074
KH Pal 1.6x10°11
0 1 1 1 1 1 L m 400
0 2 4 6 8 10 12 M kg/mol 0.018
n - 15
) ° N m—3 2.38x10°
T T T 'R
i Pa Pa 101.3210°
I r m 10
1 (b) R(0) m 1075
15| i i To K 1173
' B - 55
i 0 kg/m® 2500
1
1
g 1F S U E S 4
1
1
1
: Pn+l=Pn+Q—0h(l/Qn+1/Qn+l)—]1 (51)
i 2¢ I3
i ] where P" and Q" denote respectively the overpressure and
E the flow rate at = nh with n an integer. The advection equa-
! tion (Eqg. 28) is solved using an upstream explicit scheme.
i The step size# in z- and r-space are chosen to be equal,

|-
(8]

so as to minimize numerical dispersion. Lgand p!' de-
note the concentration and pressure fields at posimh
andr=nhwherei is an integer. This algorithm gives

n+l__ n non n n+1
Fig. 3. (a) Steady state overpressubPg as a function of the flow i =ca—hGl,p) A/ Q7 +1/07) /2. (52)

rate Qo at the base of the conduit for the MBG model wgh5.5.

(b) Steady state stability phase diagram in parameter spgage:{

for g=5.5 for the MBG model. S=stable node; SF=stable focus;
U=unstable focus. The Hopf bifurcation line (continuous curve)
resides within the region where the steady st&$€0o) exhibits
two extrema (dashed vertical lines).

1/Q"*+1is chosen in a self-consistent manner (via a Newton-
Raphson algorithm) so as to be consistent with the dis-
cretized version of the integral constraint (31):

P/ Q" — 1y “wiexpB(1—cfTH] =0 (53)

wherew; are weight constants associated with the particu-

4 Numerical results and discussion lar numerical integration method used (witlsmall enough,
) a trapezoidal integration method was found to be suffi-
4.1 Numerical approach cient).With the fieldc updated, the full pressure field can be

| der to | tigate th t ¢t the attractor in th finally found by the numerical integration of Eq. (30). The
n order to investigate the nature of the attractor in the un'algorithm is fast, simple and convergent.

stable regime, numerical solutions of the system (28, 29, 31)

were generated. The overpressure Eq. (29) is solved by @ 2 Numerical solutions

second-order finite difference scheme in the time-like vari-

ablet of step sizer: In this section, we have left the parametésande free but
have fixed the other parameter values according to Table 1.
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Fig. 4. Time seriesP (¢), Q(¢) for the MBG model with3=5.5. (a) Q0=2, £¢=0.02;(b) Q0=2,£=0.07;(c) Qo=2, ¢=1.0. Parameters values
as in Table 1. The initial condition has been chose@3)=1 with an initial pressure and concentration profiles that have the steady state
form for this value ofQ(0).

With these parameter values, the time scaie 1 h for the  cycle approaches a saw-tooth time-behavior and that the flow

WVW model and 1.58 h for the SBG and the MBG mod- rate exhibits bursting. These features are typical and are sim-

els. The scaled parameters ae29.1,y=14.2,6=0.3 and ilarly found in the two other growth models, WVW and SBG

A=0.046. In the growth rate expressions, we have also use¢hot illustrated).

the approximation of Eq. (34) in order to verify the bifurca-  The cycle period’” (with respect to the time variable is

tion analysis performed in Sect. 3. a highly sensitive function of, ande. This is illustrated in
Figure 4a illustrates for the MBG model an overpressureFig. 5 for the MBG growth model where each curve shows

and flow rate time series in a regime whéms/d Qo < 0 but T as a function of for various values ofD,. The curves

for a case where the steady state is stable{n). Figure 4b T (¢) are similar for the two other growth models. In general,

illustrates the corresponding time series whégjust above T decreases ag, increases for a fixed value ef But for

e In agreement with the analysis, the steady state is indeefixed Q,, the period is an increasing functionefThe lower

unstable in the latter case. The solution evolves towards dimit of each curve corresponds to the period at the Hopf bi-

stable limit cycle. Figure 4c illustrates a limit cycle obtained furcation point 2-/(Q, ) where< is the Hopf frequency

for a larger value of > ¢y. This illustrates that the pressure found from Eq. (47). At the other limit (for large), it is
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100 Table 2. Values of the parameterand the time scale leading to
a minimum in the error functiom of Eq. (55) for various bubble
growth models. Herelgps=18 h andugps=0.6. The dimensionless
reservoir flow rateQy is calculated from Eq. (22) with the knowl-
edge off and assumingo=101P/s. Also, Teaic= iT/y The
10 | productV ng is estimated from Eq. (22) with the knowledger@ind
€, and assumin@=3x 10'0Pa antb=0.2. AP is the amplitude of
T the overpressure drop over one cyae) is the corresponding flow
rate amplitudey is defined in Eq. (56).
r wvwa SB@ MBGC
t (hours) 7.37 1.44 6.36
e 0.20 1.30 0.34
0, 211 041 182
0.1 I L Tealc (hours) 17.70 1737 17.81
0.01 0.1 1 10 Acalc 0.603 0.651 0.596
g e (%) 1.73 9.17 1.34
Vno (x10°Pkm3Pa-s)  6.51 826  9.56
. . _ . AP/no (sh 153 180 120
Fig. 5. Cycle peno_dT as a function ot fqr t_he MBG model with AQ (m3/S) 8.9 15.6 10.3
B=5.5 and for various values ado, as indicated on the curves. X 1.3 20 1.0

Parameters values as in Table 1.

a Wiley-Voight-Whitehead;? Single-Bubble Growth® Multiple-

easy to show that the period takes the asymptotic value (seBubble Growth
Appendix B):

Ps(QOc— 0B) Psa(Qp — Op) could be due to a combination of transient effects and/or sys-
T= 5[ - tematic slow or random variations in the system parameters
(BQO Os)(Cc CQO) (Qo—0a)(Cp ~ Qo) which are not described by our simple model. Nevertheless,
Ps(0)dQ Ps(0)dQ by requesting that the limit cycle solution is close to a typical
—/ + (54) measured cycle, our model can be used to obtain reasonable
A

(Qo—0)? J (Qo—0)?

estimates of two of the parameter values that are not easily

h is th d dth accessible: the time scaleand the dimensionless magma
where Ps(Q) is the steady state overpressure curve and the, o b elastic parameter

labels A, B, C, D correspond to the boundary of the limit cy- For the purpose of illustration, we selected the particu-

cle in{P, Q} space, as shown, for instance, in Fig. 1a. The
fact that that the period curves obtained from the numerica

solutions go smoothly to its analytical asymptotic expression

is a further indication of the adequacy of the numerical algo-

ﬁtrly well-defined cycle from 2 August to 3 August, which
as a periodipops=18h and is characterized by a dimen-
sionless asymmetry paramet®hs= (fmax— fmin)/Tob<=0.6

wherermax andmin are the times at the cycle maximum or
minimum, respectively. Botliyps andagps do not depend on

the specific (possibly non linear) conversion between tilt an-
gle measurements and overpressure values. We only need to
assume that extrema in tilt angles occur at the same time as

In this section, we present numerical results for the Caseextremaln overpressure. From the limit cycle solutiénis),

where the full pressure expression is kept in the growth rate\,Ne have adjustedande by minimizing the residual relative
so that the approximation (34) is relaxed. The general fea’"

ture_:s of the solution are qualita_tively identical as those de-, _ {[(Clcalc—aobs)/aobs]z‘l'[(I_T/am—Tobs)/Tobs]z}l/z (55)
scribed above. We will use this approach to see how the

model applies to actual observations. For concreteness, wahereT/, is the dimensionless computed period agl

will consider the tilt angle measurements performed on thethe calculated asymmetry parameter. We have taken (Wylie
shallow Soufrére system in August 1997 (top of Fig. 5 in et al., 1999)Q,=10n¥/s. For the MBG model, the initial
Voight et al., 1998). When the steady state is unstable, th@ressure profile was taken as the steady state one. Table 2
asymptotic state of our model is a limit cycle with a well- gives the values of and ¢ that minimizee for the three
defined period and amplitude. However, the observed perigrowth models. As an example, Fig. 6 illustrates the over-
ods and oscillation amplitudes are not quite constant. Thigressure and flow rate cycles for the MBG model for these

rithm.

4.3 Comparison with observations: the Soufrére
system

rore
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8 . T T We have selected the parameteende from Table 2. The
values ofy are reported in Table 2. These values suggest that
- the SBG model does not provide a good fit, whereas both the
MBG and WVW growth models lead to a marginally good fit
(with a slightly better fit in favor of the MBG model). Never-
P theless, on physical grounds, one expects the bubble growth
P expression to have a more complex form than what Eq. (11)
implies. Notwithstanding the large number of simplifying
Q\L assumptions, the application of this model to data allows one
to constraint the values of the time scaland of the elastic
Y response parameter which are not easily available other-
A wise.

P Q

5 Conclusion

0 5 10 15 20 In this contribution, we have extended the model of Wylie
et al. (1999) describing a simple mechanism for the gener-
ation of an oscillatory behavior in a shallow magmatic sys-
tem. In this model, magma flow is coupled to the magma

Fig. 6. Limit cycle P (1), Q(z) for the MBG model with$=5.5and  \yater content through the explicit volatile dependence of the
for values of the time scalzeanFis that. minimize the relative eror  melt viscosity. We have extended the original model by re-
e (Table_ 2). The origin of the time axis is arbitrary as the transmntslaxing three of its simplifying assumptions: use is made of
are not illustrated. . . .
an arbitrary volatile bubble growth rate law expression, we
do not assume that the volatile concentration profile has a

values off andes. The curves are qualitatively similar for the steady-state form and the spatial integral of the viscosity in
two other growth models. Nevertheless, the minimal residualEg. (31) is properly evaluated. We have also performed a
error is about seven times larger for the SBG growth modellinear stability analysis of the system and have established
than for the two other models. that the oscillatory behavior occurs via a Hopf bifurcation.

Taking the estimates (Wylie etal., 19933x 101°Paand  The range of parameter values for which oscillatory behav-
0=0.2 with L, andr from Table 1, we obtain the product ior exists have been found for three different bubble growth
Vno from Eq. (22). This estimate is reported in Table 2. models: the linear growth model of Wylie et al., the single
For comparison, the estimat&;,=2.34x 10° km3 Pa-s is in-  bubble diffusion-limited growth model and an approximate
ferred from Wylie et al. (1999), with a time scale arbitrarily many-bubble growth model that has been recently published
chosen as=1h. Table 2 also gives the ratio (in’y of the (L'Heureux, 2007). We have found that this modeling ap-
overpressure drop over a cycle P, by the viscosityy,. For proach can generate oscillatory magma dynamics with a pe-
no=10° Pa-s (Voight et al., 1999), the overpressure drop isriod that is compatible with the observations. The quality of
of the order of the MPa, consistent with the observations.the fit with the observations can be used to constraint some
The table also gives the flow rate amplitudgd in m%/s. system parameters that are not easily measured.
Notwithstanding the difference in the valuesrdfvhich im- Since we assumed that only variations in the volatile con-
plies a difference in the pressure and flow rate scales), theentration affect the melt viscosity, the present model is more
amplitude of the variationa P and A Q are comparable for suitable to shallow magma reservoirs. But other factors (such
all three bubble growth rate models. as temperature variations and changes in magma chemical

Assuming a linear scaling between the overpresgusd composition due to mineral growth) may also play an impor-
the base of the conduit and tilt angle measurements (Voightant role in changing the viscosity. In addition, crystal pre-

et al., 1999), the following chi-square cipitation is expected to modify the porosity of the fluid sys-
2 tem and to change its flow characteristics. Some previously

x2= lz(M) (56)  Ppublished models (Barmin et al., 2002; Melnik and Sparks,
f= Oi 1999; Melnik and Sparks, 2005) have considered these ef-

. . fects but not with a many-bubble growth model. Such con-
can be estimated. Hefg are measured tilt angles (from the . . o :
siderations are the object of our continuing research. It will

2-3 August cycle in Fig. 5 of Voight et al., 1998B, and . . ; :
" : . also be interesting to investigate how random parameter fluc-
C are two constants defining the assumed linear relation be;

tween the calculated (dimensionless) overpresguaad the :ger::'?\;‘v?elggﬁfequeltggso)sg:_lrl]?g;y d;?i;nézsr O{;ﬁg?&?; ys-
tilt angle. oj (estimated to be 10% ¢f) is the error on the tilt ! ' P P '

angle measurement arfcthe number of degrees of freedom.
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Appendix A

Notation and description of the variables

Notation  Units Description
a - Asymmetry parameter (Eq. 55).
A - Scaled Henry constant in
Eq. (25).
B rad Constant in Eq. (56).
c - Dissolved volatile concentra-
tion.
Co - Value ofc at the base of the up-
per conduit.
Ceq - Equilibrium concentration.
Ceqo - Initial equilibrium concentra-
tion.
C rad Constant in Eq. (56)
D m/s \olatile diffusion coefficient.
e - Residual relative error in
Eq. (55).
f - Degree of freedom in Eq. (56).
g m/s Acceleration of gravity.
G st Exsolution rate.
g - Factor relatingdc to §Q in
Eq. (42).
h - 7 step in the numerical imple-
mentation.
J m~—3s71  Nucleation rate.
k st Rate constant in WVW model.
K s1 Rate constant in MBG model.
KH Pal Henry constant.
L m Length of upper conduit.
m - Total volatile concentration.
M kg/mol  Volatile molar mass.
N m—3 Bubble number density.
p Pa Total pressure.
Pa Pa Atmospheric pressure.
Do - Scaled initial pressure (Eq. 26).
P Pa Overpressure.
0 md/s Magma flow rate.
0o m/s Input magma flow rate.
r m Radius of upper conduit.
R m Bubble radius.
R m Large-time limit of the bubble
radius (Eq. 18).
R J/K-mol  Molar gas constant.
t S Time.
t s Time scale.
To K Temperature.
T S Cycle period.
v m/s Radial bubble growth rate.
14 md Volume of magma reservoir and

lower conduit.
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Notation  Units  Description

wj - Weights in the numerical inte-
gration of Eq. (31).

Y Pa Young’s modulus.

b4 m Vertical coordinate with respect
to the base of the upper conduit.

o - Scaled melt density (Eq. 22).

B - Viscosity response coefficient.

8 - Scaled atmospheric pressure
(Eq. 22).

8¢,6P,80 — Variations ofc, P, Q about their
steady state.

& - Scaled reservoir elastic response
(Eq. 22).

£H - Value of¢ at the Hopf bifurca-
tion point.

1) - Vesicularity.

Y - Constant in Eq. (26).

A - Frequency of the perturbations
of (¢, P, Q) about their steady
state.

n Pa-s Melt viscosity.

Mo Pa-s Melt viscosity at the base of the
upper conduit.

u - Integrated  scaled viscosity
(Eq. 37).

6 rad Tilt angle.

0 kg/m®  Melt density.

Og kg/m® Volatile density in the bubble
phase.

o - Poisson coefficient of the rock
surrounding the system.

Oj rad Error on tilt angle.

T - Time-like variable (Eq. 27).

Q - Frequency of the cycle at the
Hopf bifurcation point.

Appendix B

Cycle period in the largee limit

In this Appendix, we show that the period of the oscillatory
solution in the limit of larges is given by Eq. (54). Perform-
ing a change of time scate— ¢7’ in Eq. (28) and taking the
limit ¢ — oo indicate that the concentration profile relaxes
quickly to a pseudo-steady state form similar to Eq. (33),
except thatQ,, is replaced by the slowly varying flow rate
Q(z’). One recalls that the overpressure at the base of the
magma conduit is given by Eq. (31P(z") = Q(z")u(z"))
where the integrated viscosity defined in Eq. (37) has the
steady-state fornus. Thus, for Q(t’) sufficiently different

Nonlin. Processes Geophys., 28522010



234 I. U'Heureux: Effect of volatile bubble growth rate on periodic dynamics of shallow volcanic systems

from Q,, the pressure cycle is described by a slow motionHess, K.-U. and Dingwell, D. B.. Viscosities of hydrous

along the ascending branches of steady state diagrams suchleucogranitic melts: a non- Arrhenian model, Amer. Mineral.,

as those of Figs. 1a, 2a or 3a. The overpressure slow dynam- 81, 1297-1300, 1996.

ics is described by Eq. (29): Landau, L. D. and Lifshitz, E. M.: Theory of Elasticity, Pergamon

Press, Oxford, 1970.

dP _ Qo—0(7)) B1 L'Heureux, I.: A new model of volatile bubble growth in a mag-

ﬁ_ o)) : (B1) matic system: Isobaric case, J. Geophys. Res., 112, B12208,
. doi:10.1029/2006JB004872, 2007.

Thus it is seen that the pressure can not assume values Qflager, H. M.: Conduit flow and fragmentation, in: The Physics

the decreasing branch of the steady state diagram(where of Explosive Volcanic Eruptions, edited by: Gilbert, J. S. and
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