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Abstract. Previous research regarding the solutions of
Long’s equation always presumed that the flow far upstream
is without shear. In this paper we derive the proper form
of this equation when shear is present. We then apply a
sequence of transformations to this equation which make it
possible to linearize it while preserving its physical contents.
We then derive conditions under which the solutions of this
linear equation admit the existence (or creation) of gravity
waves. We present also a solution of this model equation
when the presence of shear in the overall flow is “small”.

1 Introduction

Long’s equation (Long, 1952, 1953, 1955, 1959) models the
flow of stratified incompressible fluid in two dimensions over
terrain. When the base state of the flow (that is the un-
perturbed flow field far upstream) is without shear the nu-
merical solutions (in the form of steady lee waves) of this
equation over simple topography (i.e. one hill) were stud-
ied by many authors (Drazin, 1961, 1967; Durran, 1992;
Lily, 1979; Peltier and Clarke, 1983; Smith, 1980, 1989,
Yih 1967, Davis 1999). The most common approximation in
these studies was to set Brunt-Väis̈alä frequency to a constant
or a step function over the computational domain. More-
over the values of two physical parameters which appear in
this equation were set to zero. (These parameters control
the stratification and dispersive effects of the atmosphere –
see Sect. 2.) In this (singular) limit the nonlinear terms and
one of the leading second order derivatives in the equation
drop out and the equation reduces to that of a linear har-
monic oscillator over two dimensional domain. Careful stud-
ies (Lily, 1979) showed that these approximations set strong
limitations on the validity of the derived solutions (Peltier
and Clarke, 1983). An extensive list of references appears in
(Baines, 1995; Carmen, 2002; Yih, 1980).
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Long’s equation also provides the theoretical framework
for the analysis of experimental data (Shutts, 1988, 1994;
Vernin, 2007) under the assumption of shearless base flow.
(An assumption which, in general, is not supported by the
data; Humi, 2004b).

An analytic approach to the study of the solutions of this
nonlinear equation was initiated recently by the current au-
thor (Humi, 2004a, 2006, 2007). We showed that for a
base flow without shear and under rather mild restrictions
the nonlinear terms in the equation can be simplified. Us-
ing phase averaging approximation we derived for self sim-
ilar solutions of this equation a formula for the attenuation
of the stream function perturbation with height. This result
is generically related to the presence of the nonlinear terms
in Long’s equation. New representations of this equation in
terms of the atmospheric density and terrain following coor-
dinates were derived in (Humi, 2007, 2009). Partial results
on the impact that shear can have on the generation and am-
plitude of gravity waves when the base flow consists of “pure
shear” were investigated by us in (Humi, 2006).

The objective of this paper is to study the nature of the
solutions to Long’s equation when some shear is present in
the base flow. Using conditions which depend solely on the
base flow and Brunt-V̈ais̈alä frequency we characterize the
qualitative nature of the perturbations from the base flow and
their amplitude with height. These results are independent
of the actual detailed description of the terrain that caused
these perturbations. Furthermore we derive conditions under
which these perturbations are not oscillatory i.e. no gravity
waves are generated by the flow. To our best knowledge this
issue was never considered in the literature before (at least in
the context of Long’s equation).

From a geophysical point of view it well known that some
present models for the generation of gravity waves over es-
timate this effect (Eckermann and Preusse, 1999; Dewan et
al., 1998; Doyle et al., 2006). Partially, this is due to the fact
that shear is not taken into account, the representation of the
terrain is oversimplified or some other crude (geophysical)
assumptions are made.
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The plan of the paper is as follows: Sect. 2 presents the
different forms of Long’s equation and the solution of its
simplified version without shear. In Sect. 3 we derive the
(analytic) solution of this simplified equation using terrain
following formulation of Long’s equation in the presence of
shear. Section 4 presents several transformations of Long’s
equation which lead to it linearization while conserving its
physical contents. We then solve this linearized equation
when the mixture of shear in overall base flow is “small”.
Section 5 presents constraints on the generation of gravity
waves in the presence of shear using the linearized equation
which was derived in Sect. 4. Setion 6 considers the case of
base flow consisting of “pure shear”. We end up in Sect. 7
with summary and conclusions.

2 Long’s equation

2.1 Derivation of the equation

In two dimensions(x,z) the flow of a steady inviscid and in-
compressible stratified fluid (in the Boussinesq approxima-
tion) is modeled by the following equations:

ux+wz = 0 (1)

uρx+wρz = 0 (2)

ρ(uux+wuz)= −px (3)

ρ(uwx+wwz)= −pz−ρg (4)

where subscripts indicate differentiation with respect to the
indicated variable,u= (u,w) is the fluid velocity,ρ is its
densityp is the pressure andg is the acceleration of gravity.

We can non-dimensionalize these equations by intro-
ducing

x̄ =
x

L
, z̄=

N0

U0
z, ū=

u

U0
, w̄=

LN0

U2
0

w

ρ̄ =
ρ

ρ0
, p̄=

N0

gU0ρ0
p (5)

whereL represents a characteristic length, andU0, ρ0 repre-
sent respectively the free stream velocity and density.N0 is
the characteristic Brunt-Vaisala frequency

N2
0 = −

g

ρ0

dρ0

dz
. (6)

In these new variables Eqs. (1)–(4) take the following form
(for brevity we drop the bars)

ux+wz = 0 (7)

uρx+wρz = 0 (8)

βρ(uux+wuz)= −pz (9)

βρ(uwx+wwz)= −µ−2(pz+ρ) (10)

where

β =
N0U0

g
(11)

µ=
U0

N0L
. (12)

β is the Boussinesq parameter (Baines, 1995; Carmen, 2002)
which controls stratification effects (assumingU0 6=0) andµ
is the long wave parameter which controls dispersive effects
(or the deviation from the hydrostatic approximation). In
the limitµ=0 the hydrostatic approximation is fully satisfied
(Baines, 1995; Carmen, 2002).

In view of Eq. (7) we can introduce a stream functionψ
so that

u=ψz, w= −ψx . (13)

After a long (and intricate) algebra one can show that
ρ = ρ(ψ) and derive the following equation forψ (Dubreil,
1934; Long, 1953, 1954)

ψzz+µ
2ψxx−N

2(ψ)

[
z+

β

2

(
ψ2
z +µ2ψ2

x

)]
= S(ψ) (14)

where

N2(ψ)= −
ρψ

βρ
(15)

is the nondimensional Brunt-Vaisala frequency andS(ψ) is
some unknown function which can be determined by making
proper assumptions on the upstream disturbance (see Baines,
1995; Carmen, 2002). Equation (14) is referred to as Long’s
equation. We note that a generalization of this equation in
the context of ocean internal gravity waves appeared in the
literature (Miropol’sky, 1974, 2001).

If we let

ψ(−∞,z)= z (16)

then

S(ψ)= −N2(ψ)

(
ψ+

β

2

)
(17)

and Eq. (14) becomes:

ψzz+µ
2ψxx−N2(ψ)

[
z−ψ+

β

2

(
ψ2
z +µ2ψ2

x −1
)]

= 0 .

(18)

On the other hand if we include shear in the base flow viz we
let

ψ(−∞,z)= z+
δ

2
z2, δ≥ 0, (19)

then

S(ψ)= δ−N2(ψ)

[√
1+2δψ−1

δ
+
β

2
(1+2δψ)

]
(20)
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and Long’s equation takes the following form;

ψzz+µ
2ψxx−N2(ψ)

[
z+

β

2

(
ψ2
z +µ2ψ2

x

)]
= δ−N2(ψ)

[√
1+2δψ−1

δ
+
β

2
(1+2δψ)

]
. (21)

Whenδ�1, we can approximate this equation by

ψzz+µ
2ψxx−N2(ψ)

[
z+

β

2

(
ψ2
z +µ2ψ2

x

)]
= δ−N2(ψ)

[
ψ+

β

2
(1+2δψ)

]
. (22)

2.2 Terrain following formulation

Recently a terrain following formulation of Long’s equation
was derived in the literature. In this formulation one intro-
duces a transformation of the coordinates

x̄= x, z̄=H
z−h(x)

H −h(x)
(23)

whereh(x) is the height of the terrain andH is the vertical
scale of the domain. Under this transformation we have

∂

∂x
=
∂

∂x̄
+G12 ∂

∂z̄
,
∂

∂z
=

1
√
G

∂

∂z̄
(24)

where

1
√
G

=
H

H −h(x)
, G12

=
1

√
G

(
z̄

H
−1

)
h′(x). (25)

Next a “terrain following stream function” is defined by the
following relations,

ū=
√
Gu=

∂ψ

∂z̄
, v̄=

√
Gv= −

∂ψ

∂x̄
. (26)

In this formulation Long’s equation takes the following form

∇̄
2
µψ−

N2(ψ)β

2

[
µ2(ψx̄)

2
+2µ2G12ψx̄ψz̄

+

(
1

G
+µ2

(
G12

)2
)
(ψz̄)

2
]
−N2(ψ)g(x̄,z̄)= S(ψ). (27)

where

∇̄
2
µ=µ2

{
∂2

∂x̄2
+2G12 ∂2

∂x̄∂z̄
+

[
∂G12

∂x̄
+G12∂G

12

∂z̄

]
∂

∂z̄

}

+

[
1

G
+µ2(G12)2

]
∂2

∂z̄2
(28)

and

g(x̄,z̄)= z̄+h(x̄)

(
1−

z̄

H

)
.

When the base flow is shearless i.e. satisfies Eq. (16) S(ψ)
in (27) is given by (17). Similarly if the base flow satisfies
(19) thenS(ψ) is given by (20).

2.3 Equations for the perturbation from the base flow

For the perturbationη from shearless base flow (16) we have

η=ψ−z. (29)

Equation (18) becomes

ηzz−α
2η2
z +µ2

(
ηxx−α2η2

x

)
−N2(η)(βηz−η)= 0 (30)

where

α2
=
N2(ψ)β

2
. (31)

Similarly to derive an equation for the perturbationφ from
the shear base flow (19), we let

η=ψ−z−
δ

2
z2. (32)

Substituting this in (21) we obtain

ηzz−α
2η2
z +µ2(ηxx−α2η2

x)−2α2[(1+δz)ηz−δη
]

−N2
[
z+

1

δ

(
1−

√
(1+δz)2+2δη

)]
= 0 (33)

Observe that both (30) and (33) are exact equations forη.
However, if |δη| � 1 we can remove 1+δz from the square
root in (33) and use the approximation

√
1+a≈ 1+a/2 to

obtain

ηzz−α
2η2
z +µ2

(
ηxx−α2η2

x

)
−2α2[(1+δz)ηz−δη

]
+
N2η

1+δz
= 0 (34)

2.4 Boundary conditions

For a shearless flow in an unbounded domain over topogra-
phy with shapef (x) and maximum heighthmax the follow-
ing boundary conditions are imposed onψ

ψ(−∞,z)= z (35)

ψ(x,εf (x))= constant, ε=
hmaxN0

U0
(36)

where the constant in Eq. (36) is (usually) set to zero. For
low lying topography (vizε�1) it is customary to replace
(in the numerical simulations) (36) by the approximation

η(x,0)= −εf (x). (37)

As to the boundary condition onψ(∞,z) we observe that
Long’s equation contains no dissipation terms and therefore
only radiation boundary conditions can be imposed in this
limit. Similarly at z= ∞ it is customary to impose (follow-
ing Lily, 1979; Durran, 1992) radiation boundary conditions.
When shear is present in the base flow (35) is replaced by
(19).
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In the terrain following formulation of Long’s equation the
boundary condition (36) is replaced by

ψ(x̄,0)= 0, (38)

whereψ is the terrain following stream function.
For the rest of this paper we consider this equation for the

special case whereN andδ are constants.

3 The limiting caseβ = 0, µ= 0

Whenβ = 0, µ= 0 andN(ψ) is a constantN over the do-
main Eq. (30) reduces to a linear equation

ηzz+N
2η= 0 . (39)

We observe that the limitβ = 0 can be obtained either by
lettingU0 → 0 orN0 → 0. In the following we assume that
this limit is obtained asU0 → 0 (so that stratification persists
in this limit). The general solution of Eq. (39) is

η(x,z)=p(x)cos(Nz)+q(x)sin(Nz) (40)

where the functionsp(x),q(x) have to be chosen so that the
the boundary conditions derived from Eq. (35), (36) and the
radiation boundary conditions are satisfied. These lead in
general to an integral equation forp(x) andq(x).

q(x)cos(εNf (x))+H [q(x)]sin(εNf (x))= −εf (x) . (41)

whereH [q(x)] is the Hilbert transform ofq(x). This equa-
tion has to be solved numerically (Davis, 1999; Drazin, 1961,
1969) subject to the boundary conditions mentioned above.
However recently (Humi, 2009) we showed how this prob-
lem can be solved analytically using a “terrain following for-
mulation” of Long’s equation.

It is clear from the form of the general solution given
by Eq. (40) that it represents a wave propagating in the z-
direction and the properties of this wave (under varied phys-
ical conditions) were investigated by the authors which were
mentioned in Sect. 1. It should be observed however that
Eq. (39) is a “singular limit” of Long’s equation as one of
the leading second order derivatives drops whenµ= 0 and
the nonlinear terms drop whenβ = 0. Under these circum-
stances it is uncertain that the solutions of “limit equation”
relates continuously to the solutions of the original equa-
tion. It is imperative therefore to investigate other forms of
Eq. (18) (or equivalently Eq.30) and explore the impact of
these “limit approximations” on the solution.

Under the same limits mentioned above (34) reduces to

ηzz+N
2η= −

N2δ

2
z2, (42)

whose general solution is

η(x,z)=p(x)cos(Nz)+q(x)sin(Nz)−δ

(
z2

−
2

N2

)
. (43)

Observe that whenδ = 0 Eq. (43) reduces to (40), i.e. the
extra term in (43) is due to the presence of shear.

Applying the boundary conditions to this solution (41) is
replaced by

q(x)cos(εNf (x))+H [q(x)]sin(εNf (x))= −εf (x)

+δ

(
ε2N4f (x)2−

2

N2

)
. (44)

In the terrain following formulation of Long’s equation the
corresponding equation for the terrain following stream func-
tion in these limits withδ�1 is

ψz̄z̄+GN
2ψ =G

{
δ+N2

[
z̄+h(x̄)

(
1−

z̄

H

)]}
(45)

The general solution of this equation is

ψ =A(x̄)cos(νz̄)+B(x̄)sin(νz̄)+

[
z̄+h(x̄)

(
1−

z̄

H

)]
+
δ

N2
.

(46)

whereh(x)= εf (x) andν2
=GN2. Applying the boundary

conditions atz̄= 0 yieldsA(x̄)= −h(x̄)− δ

N2 . Using the
radiation boundary conditions implies thatB(x̄)=H(A(x̄))
(see Humi, 2009 for a detailed discussion of this derivation).

If f (x) is given by a “witch of Agnesi” curve

f (x)=
a2(

a2+x2
) (47)

then

B(x)= −ε
ax

a2+x2
. (48)

Here we used the fact that the Hilbert transform of a constant
is zero andx̄ = x. For comparison purpose Figs. 1 and 2
present the solutions of Eq. (45) with and without shear over
this topography. We observe that in Eq. (46) ν2

=GN2 is not
constant sinceG is a function ofx. However, in the region
whereh(x)= 0,G= 1 and thereforeν=N . For Fig. 1,N =

1 and sinceδ= 0 it follows that the base flow speedU = 1,
hence asymptotically (i.e. asx → ∞) ν = 1. In Fig. 2,U
is not constant with height and is equal toU = 1+ δz; see
(19). Hence the Richardson number for this flow isRi =
N2/U2

z =N2/δ2. In Fig. 2,N = 1 andδ= 0.1.

4 Transformations on Long’s equation with shear

Long’s equation in the form (22) contains second order
derivatives inx, z and quadratic terms in the first order
derivatives. In this form it is a challenge to solve the full
equation even numerically. In this section we apply on this
equation a sequence of transformations which mitigate some
of these difficulties.
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Fig. 1. Solution of Eq. (45) over a “witch of Agnesi” topography
with ε= 0.2, δ= 0,N = 1,β =µ= 0.

To begin with we definēz= z−β/2+δ/N2, x̄= x/µ and
substitute in Eq. (22) we obtain after dropping the bars that(
ψzz−α

2ψ2
z

)
+

(
ψxx−α

2ψ2
x

)
+N2(ψ)[(1+βδ)ψ−z]=0.

(49)

Assuming thatN2(ψ) is constant we now apply the trans-
formation

φ= e−α
2ψ , α 6= 0. (50)

Equation (49) becomes

∇
2φ+N2φ

(
α2z+(1+βδ)lnφ

)
= 0. (51)

Similar transformations can be applied to the perturbation
equation (34). In fact if we letx̄= x/µ and introduce

χ = e−α
2η, α 6= 0. (52)

then (34) takes the form

∇
2χ−2α2(1+δz)χz+

(
2α2δ+

N2

1+δz

)
χ lnχ = 0 . (53)

We observe that|α2η| � 1 thereforeχ≈1. For this reason
we now introducep(x,z)= 1−χ(x,z) (so that|p(x,z)| � 1
again) and letln(1+x)≈ x for |x| � 1. We obtain

∇
2p−2α2(1+δz)pz+

(
2δα2

+
N2

1+δz

)(
p−p2

)
= 0.

(54)

x

z

Contour plot of the Stream Function
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Fig. 2. Same as Fig. 1 withδ= 0.1.

However since|p(x,z)| � 1 we can neglect the nonlinear
terms in this equation and obtain the following linear approx-
imation to Long’s equation.

∇
2p−2α2(1+δz)pz+

(
2δα2

+
N2

1+δz

)
p= 0. (55)

We observe that the only other approximation that was made
in the derivation of this equation is to assume that|δη| �

1. This equation is obviously superior to the usual linear
approximation made in the literature withµ= 0, β = 0 (and
δ= 0).

To solve (55) we apply separation of variables and let
p(x,z)=X(x)Z(z). After substitution we obtain

X(x)′′ +k2X(x)= 0, (56)

Z(z)′′−2α2(1+δz)Z(z)′+

[
2δα2

+
N2

1+δz
−k2

]
Z(z)= 0

(57)

wherek is a (separation of variables) constant.
The solution to (56) is obvious. However the general solu-

tion to (57) can be expressed in terms elementary functions
only if δ = 0. For other values ofδ the general solution of
this equation can be expressed in terms of Heun functions
and their integrals. A representative plot of one of these so-
lutions is shown in Fig. 3. We observe that the wave ampli-
tude grows with height due to the effect of shear. If we plot
this figure with the same parameters but withδ= 0 the am-
plitude remains almost constant (see next subsection). This
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Fig. 3. A plot of of one of the solutions to (99) with N = 1, δ= 0.2,
α2

= 0.0001 andω= 0.1.

plot was obtained using the numerical implementation of the
Heun functions in MAPLE with a precision of 30 digits. The
need to use this high precision stems from the nature of Heun
functions and the roundoff errors in their evaluation (at lower
precision).

4.1 Solution for δ= 0

When δ = 0 an oscillatory solution forZ(z) in (57) exists
whenν2

=N2
−α4

−k2>0 and we have

Z(z,k)= eα
2z [C1(k)cosνz+C2(k)sinνz] (58)

This solution shows that the linear theory of gravity waves
which is based on Eq. (39) is valid only when the modulat-
ing factor eα

2z is close to 1, i.e.|α2z| � 1. It also shows
how the wave amplitude is modulated by height due to ef-
fects of stratification. In addition we note that in the standard
linear theory of gravity waves the condition for oscillatory
solutions isN2/U2

−k2> 0. This is due to the fact that this
theory neglects the effect of stratification on the wave ampli-
tude. (Note that in our discussion hereU = 1 whenδ= 0).
Equation (58) can be viewed therefore as a (minor) refine-
ment of this theory.

In view of (58) the general solution forp(x,z) can be writ-
ten in the form

p(x,z)=

∫ √
N2−α4

−

√
N2−α4

eα
2z [D1(k)cosνz+D2(k)sinνz]eikxdk

(59)

wherek is the horizontal wave number. To determine the
constantsD1(k), D2(k) we have to apply the boundary con-
dition to this solution. Sinceη(x,0) has to satisfy (37) it
follows from (52) and the definition ofp(x,z) that

p(x,0)= 1−eεf (x)=H(x).

Hence

D1(k)=
1

2π

∫
∞

−∞

H(x)e−ikxdx.

To satisfy the radiation boundary condition asz→ ∞ we
must insure that the vertical group velocity of the wave is
positive. Using the dispersion relation for hydrostatic flow
given in (Baines, 1995, p. 181) this group velocity is:

cg =
Nksgn(ν)

ν2
. (60)

It follows that the vertical group velocity is positive when
kν ≥ 0.

To impose this condition on the solution (59) we re-
express it in the form

p(x,z)=
1

2

∫ √
N2−α4

−

√
N2−α4

[
(D1(k)− iD2(k))e

i(kx+νz)

+(D1(k)+ iD2(k))e
i(kx−νz)

]
dk. (61)

The radiation boundary condition forz→ ∞ will be satis-
fied if the first and second integrals vanish fork<0 andk>0
respectively. This implies that

D1(k)= −i sgn(k)D2(k). (62)

4.2 Solutions forδ�1

Although Eq. (57) can be solved in terms of Heun functions
it is not straightforward to delineate from this representation
of the solution it general properties and apply to it the proper
boundary conditions whenδ 6=0. In this section we shall use
proper approximations to this equation when|δz| � 1 in or-
der to obtain a representation of the solution in terms of ele-
mentary functions. When|δz| � 1 we can approximate1

1+δz
by (1−δz) and Eq. (57) becomes

Z(z,k)′′ −2α2(1+δz)Z(z,k)′

+

[
2δα2

+N2(1−δz)−k2
]
Z(z,k)= 0. (63)

We note that the solution of this equation can be expressed
in term of Kummar functions. However to derive an approx-
imate representation of the solution in terms of elementary
functions we have to use a first order regular perturbation ex-
pansion ofZ(z) in terms ofδ viz we let

Z(z,k)=Z0(z,k)+δZ1(z,k). (64)
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Substituting this expression in (63) we obtain for the zero and
first orders inδ

Z0(z,k)
′′
−2α2Z0(z,k)

′
+

(
N2

−k2
)
Z0(z,k)= 0, (65)

Z1(z,k)
′′
−2α2Z1(z,k)

′
+(N2

−k2)Z1(z,k)

=

(
N2z−2α2

)
Z0(z,k)+2α2zZ0(z,k)

′ . (66)

Equation (65) is the same as (57) whenδ= 0 and therefore
the solution forZ0(z,k) is given by (58). Substituting this
solution in (66) we find that the general solution forZ1(z) is

Z1(z)= e
α2z [(C3+w1(z))cosνz+(C4+w2(z))sinνz] (67)

where

w̄1(z) =
1

4ν

[
2C2α

2ν−C1

(
N2

+2α4
)]
z2

+
1

8ν3

{
2ν
[(
C2

(
N2

+2α4
)
+6C1α

2ν
]
z

+ C1

(
N2

+2α4
)
−6C2α

2ν
}

(68)

w̄2(z) =
1

4ν

[
2C1α

2ν+C2

(
N2

+2α4
)]
z2

+
1

8ν3

{
2ν
[
C1

(
N2

+2α4
)
−6C2α

2ν
]
z

− 6C1α
2ν−C2

(
N2

+2α4
)}

(69)

The general solution forp(x,z) can be written as

p(x,z)

=

∫ √
N2−α4

−

√
N2−α4

eα
2zA(k){[C1(k)+δ(C3(k)+ w̄1(z))]cosνzdk

+ [C2(k)+δ(C4(k)+ w̄2(z))]sinνz}eikx . (70)

Introducing the lumped constantsD1(k)=A(k)C1(k),
D2(k)=A(k)C2(k),D3(k)=A(k)C3(k),
D4(k)=A(k)C4(k) this solution can be rewritten as

p(x,z)

=

∫ √
N2−α4

−

√
N2−α4

eα
2z

{[D1(k)+δ(D3(k)+w1(z))]cosνzdk

+ [D2(k)+δ(D4(k)+w2(z))]sinνz}eikx

=p0(x,z)+δp1(x,z), (71)

where

w1(z) =
1

4ν

[
2D2α

2ν−D1

(
N2

+2α4
)]
z2

+
1

8ν3

{
2ν
[(
D2

(
N2

+ 2α4
)
+6D1α

2ν
]
z

+ D1

(
N2

+2α4
)
−6D2α

2ν
}

(72)

w2(z) =
1

4ν

[
2D1α

2ν+D2

(
N2

+2α4
)]
z2

+
1

8ν3

{
2ν
[
D1

(
N2

+2α4
)
−6D2α

2ν
]
z

− 6D1α
2ν−D2

(
N2

+2α4
)}
.

(73)

The constantsD1(k),D2(k), are determined by the same pro-
cedure used in the previous section. To determineD3 we ap-
ply the boundary conditionp1(x,0)= 0 which implies that

D3(k)= −
1

8ν3

[
D1(k)

(
N2

+2α4
)
−6D2(k)α

2ν
]
. (74)

To determineD4 we apply the radiation boundary condition
to the wave part ofp1(x,z). This yields,

D3(k)= −isgn(k)D4(k). (75)

5 Gravity waves generation in the presence of shear

To determine the effect of shear (vizδ 6=0) on the solution
for Z(z) in general and its oscillatory nature we shall ap-
ply Sturm-Picone oscillation theorems (Sturm, 1836; Picone,
1909). To this end we write (57) in self-adjoint form

d

dz

[
e−α

2
(
z+δz2/2

) dZ
dz

]

+

[
2δα2

+
N2

1+δz
−ω2

]
e−α

2
(
z+δz2/2

)
Z= 0 (76)

For second order linear differential equations in this form a
variant of Sturm comparison theorem states the following:

Theorem (Sturm) Assume that on the interval 0≤ z ≤

Zmax the functionsK andG in the differential equation

d

dz

[
K(z)

dy(z)

dz

]
−G(z)y(z)= 0 (77)

satisfy the inequalities

A1 ≥K(z)≥A2>0, B1 ≥G(z)≥B2. (78)

Then

1. If B2>0 the solutions of (77) are non-oscillatory.
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2. If B2<0 and

−
B2

A2
<

π2

Z2
max

(79)

then the solutions of (77) are non-oscillatory.

3. A sufficient condition for the solutions of (77) to be os-
cillatory with at leastm zeroes on 0≤ z≤Zmax is

−
B1

A1
≥
m2π2

Z2
max

(80)

For (76)

K(z)= e−α
2
(
z+δz2/2

)
(81)

and

G(z)= −

[
2δα2

+
N2

1+δz
−ω2

]
e−α

2
(
z+δz2/2

)
(82)

It is obvious that we can chooseA1 = 1 and A2 =

e−α
2
(
Zmax+δZ

2
max/2

)
. To findB1,B2 we rewrite the second in-

equality in (78) as

−B1 ≤ −G(z)≤ −B2. (83)

It is easy to see then that a proper choice of these constants
is

B1 = −

[
2δα2

+
N2

(1+δZmax)
−ω2

]
e−α

2
(
Zmax+δZ

2
max/2

)
(84)

B2 = −

(
N2

+2δα2
−ω2

)
(85)

From the first item in the list above we obtain that the so-
lution is non-oscillatory if(
N2

+2δα2
−ω2

)
<0 (86)

From (79) we obtain that the solution is non-oscillatory if

0<
(
N2

+2δα2
−ω2

)
<

π2

Z2
max

e−α
2
(
Zmax+δZ

2
max/2

)
(87)

Finally a sufficient condition for the solutions to oscillate and
have at leastm zeroes is[

N2

(1+δZmax)
+2δα2

−ω2

]
e−α

2
(
Zmax+δZ

2
max/2

)
>
m2π2

Z2
max

(88)

We conclude then that a sufficient condition for oscillation to
exist on the interval[0,Zmax] is that[

N2

(1+δZmax)
+2δα2

]
>

π2

Z2
max

eα
2
(
Zmax+δZ

2
max/2

)
. (89)

Z(z) is not oscillatory if

N2
+2δα2<

π2

Z2
max

e−α
2
(
Zmax+δZ

2
max/2

)
. (90)

We infer therefore that the existence of shear will dampen
the possible existence (or creation) of gravity waves since
it main effect will be to decrease the value of the left hand
side in (89) and increase the value of the right hand side.
We observe that these results are valid for any solution of
(57) and therefore especially for the solution that satisfies the
boundary conditions.

As a specific illustration of the possible effect of shear on
the generation of gravity waves we consider the inequality
(89) for N = 0.4, β = 0.025 with δ = 0 (no shear) andδ =

0.37 as a function ofZmax (these values of the parameters
are relevant in atmospheric studies). In Figs. 4 and 5 we
plotted the values of the left hand side of the inequality (solid
line) versus the values of the right side (dotted line) for these
two values ofδ. We see that when no shear is present the
inequality (89) is satisfied forZmax> 8 but it is not satisfied
for any value ofZmax for the case with shear. We infer then
that under these circumstances gravity waves will be present
if the base flow is shearless but no such waves will be present
if the base flow contains a strong enough shear component.
This result is in line with other investigations on the effect
of shear on gravity waves in the atmosphere (Shutts, 2006;
Dewan, 1998).

6 Pure shear flow

In the previous sections we considered a base flow which
satisfies (19) with 0≤ δ� 1. In this section we consider the
“pure shear” case where

ψ(−∞,z)= z2. (91)

In this caseu(−∞,z)= z that isu increases linearly with
height. Using (14) we find that

S(ψ)= 2−N2(ψ)
[
ψ1/2

+2βψ
]

(92)

and Long’s equation (14) for ψ becomes(
ψzz−α

2ψ2
z

)
+µ2

(
ψxx−α2ψ2

x

)
−N2(ψ)z

= 2−N2(ψ)
[
ψ1/2

+2βψ
]
. (93)

To derive an equation for a perturbation from the base flow
we setψ = z2

+η(x,z) and substitute in (93)(
ηzz−α

2η2
z

)
+µ2

(
ηxx−α2η2

x

)
−4α2(zηz−η)

−N2z+N2
√
z2+η= 0. (94)
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Left vs. Right Hand Side of the Inequality (5.14), δ=0

Fig. 4. A plot of the left hand of the inequality (89) (solid line)
versus the right hand side (dotted line) whenN = 0, β = 0.025 and
δ= 0 as a function ofZmax.

For |η| � z we can approximate the square root in this equa-
tion by

√
z2+η≈ z+η/(2z). This leads to

(
ηzz−α

2η2
z

)
+µ2

(
ηxx−α2η2

x

)
−4α2(zηz−η)+

N2

2z
η= 0.

(95)

On this equation we now apply the transformationx̄ = x/µ

and then apply (52). We obtain

∇
2χ−4α2zχz+

(
N2

2z
+4α2

)
χ lnχ = 0. (96)

Using the arguments which proceeded (54) and (55) we in-
troducep(x,z)= 1−χ(x,z) and neglect the second order
terms inp. This yields,

∇
2p−4α2zpz+

(
N2

2z
+4α2

)
p= 0. (97)

This equation can be solved by separation of variables. In-
troducingp(x,z)=X(x)Z(z) we obtain forX(x) (56) and
for Z(z) the following

Z(z)′′ −4α2zZ(z)′ +

(
N2

2z
+4α2

−ω2

)
Z(z)= 0 (98)

The general solution of this equation can be expressed in
term of Heun functions. To determine under what conditions
this solution is oscillatory we rewrite (98) in the following
form

d

dz

[
e−2α2z2 dZ

dz

]
+

(
N2

2z
+4α2z−ω2

)
e−2α2z2

Z(z)=0 (99)
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Left vs. Right Hand Side of the Inequality (5.14), δ=0.37

Fig. 5. Same as Fig. 4 withδ= 0.37.

and apply Sturm theorem on the interval[z0,Zmax] (wherez0
is determined by the requirement that|η| � z0). In this case

A1 = e−2α2z2
0 andA2 = e−2α2Z2

max. Similarly

B1 = −

(
N2

2Zmax
+4α2z0−ω2

)
e−2α2Z2

max

B2 = −

(
N2

2z0
+4α2Zmax−ω

2

)
e−2α2z2

0

We infer therefore that the solution will not be oscillatory if
either(
N2

2z0
+4α2Zmax−ω

2

)
<0,

or

0<

(
N2

2z0
+4α2Zmax−ω

2

)
<

π2

Z2
max

e2α2
(
z2

0−Z
2
max

)
.

Finally a sufficient condition for the solution to oscillate and
has at leastm zeroes if(

N2

2Zmax
+4α2z0−ω2

)
e−2α2Z2

max>
m2π2

Z2
max

e−2α2z2
0 (100)

We conclude then that a sufficient condition for an oscillation
to exist on the interval[z0,Zmax] is that(

N2

2Zmax
+4α2z0

)
>

π2

Z2
max

e2α2
(
Z2

max−z
2
0

)
. (101)

Z(z) is not Oscillatory if

N2

2z0
+4α2Zmax<

π2

Z2
max

e2α2
(
z2

0−Z
2
max

)
. (102)
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7 Summary and conclusions

We derived in this paper the proper form of Long’s equation
with shear. Using a sequence of transformations and mild
approximations which conserve the geophysical contents of
this equation we were able to deduce some criteria for the
excitation of gravity wave under these conditions. These
criteria depend only the shear contents in the base flow,
the value ofN2 and the stratification. These results will
be useful both experimentally and theoretically. Currently
the experimental practice is to ignore the shear in the base
flow (Shutts et al., 1988; Vernin et al., 2007) and attempt
to deduce the quantitative attributes of the gravity waves
using the shearless Long’s equation. As a result several
models for the generation of gravity waves overestimate
their production. These models can be refined now by taking
this important feature into account.
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