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Abstract. We consider issues associated with the Lagrangiarl Introduction
characterisation of flow structures arising in aperiodically

“me"?'epe.”de”t Ivector fi(_alds th"’,‘t are ofnly ﬁnown on a fi'Organised or “coherent” structures in fluid flows have been
hite time interval. A major motivation for the considera- a subject of intense study for some time, especially since the
tion of this problem arises from the desire to study transportg, i paper oBrown and Roshk@1974. The dynamical

and mixing problems in geophysical flows where the flow is systems approach to the Lagrangian aspects of fluid trans-

obtained from a numerical solution, on a finite space-time;,; \hich became widespread in the 1980's and 90's, has
grid, of an appropriate partial differential equation model for provided a variety of techniques for determining the exis-

the velocity field. Of particular interest is the characterisa-tence and quantifying “organised structures” in fluid flows.

f[lon, Iocat!oln, and eV0|L:th0n ?f transport barnershln the flow, Hyperbolic trajectories and their associated stable and unsta-
I..e. material curves and surfaces. We argue that a genergliy manitolds have provided one approach to this problem,
theory of Lagrangian transport has to account for the effect:gn both the periodic and aperiodic time-dependent settings,

.Of _trgnsi.ent ﬂOV\.’ phenomena Whi_Ch are not captured F’Y theat dates back to the beginning of studies of “chaotic advec-
infinite-time notions of hyperbolicity even for flows defined tion” in fluid flows (Ottino, 1989 Aref and EI Naschigl994

for all time. Notions of finite-time hyperbolic trajectories, . ivos et al 1991 Bab,iano et al.1994 Wiggins, 2005
their finite time stable and unstable manifolds, as well aSjones and \;Vinkler2002 Samelsdn and Wiggin00§
finite—tim_e Lyapunov exponent (FTLE) fields and asS‘OCiatedMore recently, the notion of “Lagrangian coherent structure”
Lagrangian coherent structures have been the main tools fo(rhenceforth LCS) derived from finite-time Lyapunov expo-
characterising transport barriers in the time-aperiodic s;itua-nent (FTLE) fields has provided another means of identify-
t|(_)n. In ”_"? paper we cons@er a varl_ety of examples, somqng coherent flow structures in fluid flows which can be used
with explicit solutions, that illustrate in a concrete manner in Lagrangian transport analysisidller and Yuan 200Q

the issues and phenomena that arise in the setting of ﬁnitel’—laller 2001ab; Shadden et al2005 Lekien et al, 2007)

time dynamical systems. Of particular significance for geo-| 4 purpose of this paper is to compare the methods based

physical appli(':a_tion.s is the notio.n.of.flow transiti.on which on determination of stable and unstable manifolds of hyper-
occurs when finite-time hyperbolicity is lost or gained. The' bolic trajectories with LCS's derived from FTLE's as tech-

phenomena discovered and analysed in our examples poinfiq, e for uncovering organised structures in fluid flows and
the way to a variety of directions for rigorous mathematical

- : X . quantifying their influence on transport.
research in this rapidly developing and important area of dy- S o ) )
We begin in Sect2 by reviewing some theoretical is-

namical systems theory.

y Y sues associated with Lagrangian transport analysis in time-
dependent vector fields defined over a finite time interval. We
also take the opportunity to clarify a number of misconcep-

Correspondence tavl. Branicki tions that have arisen in the literature concerning the applica-
BY

(m.branicki@bristol.ac.uk) bility of hyperbolic trajectories and their stable and unstable
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manifolds in analysing Lagrangian transport in fluid flows, definitions is considered iBieci and Vleck 2002. Once a
especially with respect to their comparison with LCS’s. This hyperbolic trajectory is located, the stable and unstable mani-
will naturally lead to the issue of a relationship between thefold theorem for hyperbolic trajectories immediately applies.
stable and unstable manifolds of hyperbolic trajectories andt can be verified that the statement of this theorem is also
LCS’s. We will particularly focus on the performance and independent of the nature of the time dependence by exam-
applicability of these techniques in flows undergoing transi-ining, for example, its proof in the classic ordinary differen-
tions associated with a loss or gainfisfite-timehyperbolic-  tial equations textbook d€oddington and Levinsof1955.

ity by some trajectories. An understanding of this relation- Additional resources on the stable and unstable manifold the-
ship is essential for understanding the role that each of theserem for arbitrary time dependence can be foundérBlasi
structures plays in Lagrangian transport. Both methods camnd Schinaq1973; Irwin (1973; Katok and Hasselblatt
have drawbacks as tools for diagnosing the finite-time La-(1995.

grangian flow structure. In Se@.we consider a series of Of course, a central issue in practical applications is the
examples which aim at providing a guide for choosing thelocation of relevant hyperbolic trajectories in aperiodically
most suitable technique for a particular application. We be-time-dependent velocity fields. Historically, there have been
gin the discussion by studying a 1-D non-autonomous sysimany algorithms for finding equilibrium points (stagnation
tem which can be solved analytically and which provides points) of steady velocity fields and periodic orbits of time-
a good illustration of issues concerning the finite-time hy- periodic velocity fields. However, relatively little work had
perbolic trajectories and FTLE fields in higher dimensions. been done on algorithms for finding hyperbolic trajectories
The subsequent examples of 2-D non-autonomous systentd aperiodically time-dependent velocity fields (and quite a
are chosen to highlight various properties and problems arisfew new issues arise, in comparison to the issues associated
ing in the invariant manifolds and FTLE analysis. with steady and time periodic velocity fields, which we will

We summarise our findings in Sedtwhere we also dis- mention below). An algorithm for determining hyperbolic
cuss a number of outstanding problems. The Appendicesrajectories in arbitrary unsteady flows was givede et al.
contain a number of technical details and definitions, as wel(2002 and further refined idu et al.(2003; Mancho et al.
as a discussion of some important facts necessary for com2004. This technique is based on an iterative method de-
putation of finite-time stable and unstable manifolds. fined on a space of “paths” and, provided it converges, is

guaranteed to yield ayperbolic trajectoryon a specified

time interval which is bounded in most practical applications.
2 Some theoretical background and questions (The “finiteness” of the considered time interval brings up

yet another technical issue that we will shortly address.) The
In this section we describe some of the relevant theoreticalterative algorithm requires an initial ‘guess’ in the form of
issues related to hyperbolic trajectories and their stable and C hyperbolic path (see DefinitioA.4) defined on the ap-
unstable manifolds, and LCS’s. This will serve to highlight propriate time interval. It is important to stress here that such
some practical issues arising from applications, as well as tha path need not be a trajectory of the velocity field. Nev-
need for further theoretical and computational developmentsertheless, the construction of the initial guess is often non-
We will not go into great detail in describing the theoreti- trivial and problem dependent. We provide a few more de-
cal results and computational methods since they are alreadwils regarding some necessary properties of the initial guess
covered in numerous papers in the literature; relevant referin the Appendix A (see remarks after Definitién5). The
ences will be provided wherever appropriate in the discus-nitial guess is often chosen to be a path of hyperbolic in-
sion. Rather, we will discuss ideas and concepts and providgtantaneous stagnation points, ISPs Adf8, Appendix A).
a guide to the existing literature. In order to achieve a rel-This particular choice of the initial path has lead to numer-
ative self-containment of the following discussion, we also ous misleading and incorrect statements in the LCS literature
provide a number of important definitions in the Appendix A related to the notion of “Galilean invariance” and the nature
in order to make this discussion easier to follow. of this algorithm [ekien and Coulliette2007 Lekien et al,

The notion ofhyperbolicity of a trajectoryras been around 2007 Shadden et 312005. Galilean transformations con-
for some time. It is particularly worth remembering in the sist of spatial translations, time translations, shear transfor-
context of the present discussion that hyperbolicity is not de-mations, reflections, and rotations. Paths of ISPsiatein
pendent on the nature of the considered time dependence (adeneral, particle trajectories and they are not invariant un-
though continuity in time, which is also our operating as- der Galilean transformations. This has been a known fact
sumption here, eliminates many technical issues). In particuin the fluid dynamics community for some time and a sim-
lar, if hyperbolicity is determined by Lyapunov exponents ple proof can be found, for example, in an appendixde
(Katok and Hasselblattl995 or exponential dichotomies etal.(2002. However, it is well-known in the dynamical sys-
(Coppel] 1978, then the nature of the time dependence, tems community that trajectories are invariant under Galilean
e.g. periodicity, quasiperiodicity, or aperiodicity plays no transformations (i.e. a trajectory maps to a trajectory under a
role in any of these definitions (equivalence between theséalilean transformation) artdyperbolictrajectories to which
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the iterative algorithm converges are likewise invariant underar, in the context of finite-time dynamical systems, hyper-
Galilean transformatiorts Consequently, the fact that a non- bolicity of a trajectory is defined over a finite time interval
Galilean invariant path is used as an initial guess for the iter{cf. Definitions A.4 and A.11 in the Appendix A) and the
ative algorithm is irrelevant since if the algorithm converges, stable and unstable manifolds associated with the trajectory
it yields a hyperbolic trajectory which is manifestly Galilean no longer have a lower dimension than the underlying phase
invariant. Likewise, since the stable and unstable manifoldsspace (cf. AppendiB andDuc and Siegmund@008. Con-

of a hyperbolic trajectory are, by definition, composed of tra- sequently, a trajectory which is hyperbolic over some time
jectories, they are also Galilean invariant. The importance ofinterval (in the finite-time sense) may not be hyperbolic over
Galilean invariance to specific oceanographic investigations longer time interval. In other words, givenb, ¢, delR

is another matter entirely. Oceanographers require a fixeduch that:<b<c<d, itis possible for a trajectory to possess
reference frame to describe the ocean through measuremerfigite-time hyperbolic characteristics on all intervals con-
and grid based computations. In the chosen frame, the beained inl,,=[a, b], and then lose such characteristics on
havior and stability of ISPs have historically played an im- some intervals contained iy, possibly regaining the finite-
portant role in describing observed Eulerian flow structurestime hyperbolic properties for all intervals contained/ip.
While ISPsmaybear little relation to particle trajectories, we We refer to such a scenario as a “loss” and a subsequent
believe that dismissal of their utility on the grounds of not “gain” of finite-time hyperbolicity and point out that one can-
being Galilean-invariant is unjustified. not pin these transitions to a particular time instant. Purists

A more serious issue worth mentioning here is that hyper-in dynamical systems theory may immediately object by say-
bolicity, and therefore hyperbolic trajectories and their sta-ing that hyperbolicity is a notion that only has meaning for
ble and unstable manifolds, are “infinite-time objects”. More trajectories defined for all time. According to the traditional
precisely, hyperbolicity of a trajectory is determined on the definition, this is certainly correct. However, applications to
basis of the asymptotic behaviour of neighbouring trajecto-transport in velocity fields defined for finite time have moti-
ries in the infinite time limit. The stable and unstable man- vated this new definition of hyperbolic-like properties over a
ifolds associated with a hyperbolic trajectory are proven tobounded time interval (i.e. the finite-time hyperbolicity) and
exist via a fixed point, or iterative, argument where the limit the notion of loss or gain of (finite-time) hyperbolicity has
as time goes to either positive or negative infinity is taken. If proven useful for describing the transient behavior of a num-
the velocity field is aperiodic in time, and it is obtained from ber of time-dependent structures in oceanographic flows. We
the output of a numerical computation, then we have knowl-will discuss examples of simple flows whose transitions are
edge of the velocity field only on finite time interval This  induced by the loss (or gain) of finite-time hyperbolicity in
fact creates a host of new problems in applying the “tradi-Sect.3.3.1 3.3.5 and3.3.6
tional” dynamical systems approach to fluid transport. The In any case, it is important to realise that all of the finite-
main difficulty in the “finite-time” description of Lagrangian time dynamical systems notions that we mentioned above are
transport stems from the fact that the dynamical systems thetrajectory based That is, the finite-time hyperbolic trajecto-
ory is generally concerned with the “long time behavior” of ries are indeed trajectories and material curves contained in
systems of ODE’s (many of these problems are discussed itheir finite-time stable and unstable manifolds are barriers to
Wiggins 2005 Mancho et al.2006. In particular, the stan-  transport (see also AppendB. Their usefulness for appli-
dard definitions of hyperbolicity of trajectories do not apply cations derives solely from their ability to explain new phe-
to velocity fields that are only known on a finite time interval nomena in applications, and this is assessed in the context of
(hencefortHinite-time velocity fields specific applications.

The subject of “finite-time dynamical systems theory” Another technique used in the finite-time transport analy-
gives rise to many new issues that require new theoretica$is is based on determination of the so-called Lagrangian co-
and computational results. These are discussalfigyins  herent structures (LCS) from finite-time Lyapunov exponent
(2005; Mancho et al(2006. There have also been a num- fields (FTLE). Lyapunov exponents are quantities associated
ber of mathematical papers developing various aspects of thiwith trajectories that are obtained as infinite time limits. For
subject in recent yeardD(c and Siegmund2008 Berger ann-dimensional continuous time dynamical system a trajec-
et al, 2008. The “finite-time” framework is intrinsically ~ tory has: Lyapunov exponents —one associated with a direc-
dependent on the time interval one considers in the analytion tangent to the trajectory (which is always zero) and
sis and the implications of non-uniqueness associated withyapunov exponents associated with the remaining direc-
this setting have been discussed in numerous papers, seiéons. The Lyapunov exponents are measures of the growth
e.g., Miller et al. (1997; Haller and Poje(1998; Haller of infinitesimal perturbations in these directions, i.e. growth
(2000); Ide et al.(2002; Mancho et al(2006. In particu- rates of the linearized dynamics about the trajectory (cf. Ap-

pendixA). Of particular interest is the maximum Lyapunov
1The Galilean invariance of hyperbolic trajectories is proven in €xponent since the existence of a single positive Lyapunov
Ide et al, 2002 for hyperbolicity determined with exponential di- €xponent indicates that the trajectory is unstable. The fun-
chotomies. damental theorem on the existence of Lyapunov exponents
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is expressed by the Osedelec multiplicative ergodic theoficantly for different values of’. We discuss these issues in
rem Oseledec1968. There are many excellent references most of the examples presented in Séct.

on Lyapunov exponents that describe their properties ( Since Lyapunov exponents are a measure of the (lin-
tok and Hasselblatl995 Lapeyre 2002 Legras and Vau-  earized) growth rates of a set of orthogonal directions per-
tard 1996 and algorithms for their computatioDigcietal,  pendicular to the tangent vector to a trajectory, FTLE fields
1997 Dieci and Eirola1999 Dieci and Vleck2002 Greene  have been more physically referred to as “stretching fiélds”
and Kim, 1987 Geist et al. 1990. Numerous groups have computed discrete approximations of

In the infinite-time setting, Lyapunov exponents are oneFTLE fields over the years in the context of fluid transport
measure of the hyperbolicity of a trajectory. If a trajectory (e.g., Pierrehumbert1991, Pierrehumbert and Yand 993
has nonzero Lyapunov exponents (with the exception of the;on Hardenberg et 22000 and have noted that these fields
zero exponent associated with the direction tangent to theyppear to exhibit a great deal of structure. A more precise
trajectory), it is said to be hyperboli&éatok and Hassel-  quantification of such structures have led to the notion of
blatt, 1999. Finite-time Lyapunov exponents are obtained by | CS (Haller, 200Q Haller and Yuan200Q Haller, 20013b,
computing the same quantities, but restricting the computa2002 Shadden et 12005 Lekien et al, 2007). In particular,
tion to a finite time interval, rather than taking the limit as the since FTLE’s are a measure of separation of nearby trajec-
time goes to positive infinity (for “forward-time” Lyapunov  tories after some finite-time, regions of high values for the
exponents) or minus infinity (for “backward-time” Lyapunov maximal FTLE would seem to be likely candidates for re-
exponents). Clearly, one would like to know the length of gions containing hyperbolic trajectories and their stable and
the time interval on which they must be computed so thatunstable manifolds. Heuristic arguments supporting this as-
they are “close” to the infinite time limit. Some interesting sertion are given in the aforementioned references, and will
arguments are given i@oldhirsch et al(1987); Ershov and  not be reproduced here. Rather, in this paper we will focus
Potapov(1998 which indicate that the rate of convergence upon the assumption that “maxima” of the FTLE fields are
may be quite slow. The FLTE techniglis not immune to  “approximations” to the stable manifolds of hyperbolic tra-
the non-uniqueness issues arising in the finite time settingectories (forward time FTLE fields) and unstable manifolds
mentioned earlier. These are highlighted by the fact that forof hyperbolic trajectories (backward time FTLE fields). We
any time instant in the considered time interabne can  have put the word maxima in quotes since this notion needs
compute a whole family of FTLE fields. We discuss impli- careful consideration. This was doneShadden et a(2005
cations of this fact in the following sections. via the notion of aridge curveof an FTLE field. Roughly

For each time instant, within the considered (or avail- speaking, a ridge curve has the property that moving trans-
able) time intervall, forward FTLE fields are obtained by verse to the direction tangent to the curve corresponds to
computing the forward Lyapunov exponents of the trajectorymoving to a lower value of the FTLE. Precise definitions are
starting at an initial conditiony;, in a chosen grid for the  given inShadden et a{2005 where ridges of the FTLE field
lengthT of time available (and computable) and colour cod- are taken as the definition of LCS. This raises the question of
ing the initial condition according the the magnitude of the precisely how “Lagrangian” are LCS’s? In general, they are
largest FTLE (e.g. bright colors for large values, light col- not material curves, and therefore not necessarily barriers to
ors for small values). By performing such a computation for transport. In the following sections we will demonstrate this
an ordered sequence of “observation times,}, <z, tn€/,  with several examples designed to highlight different aspects
one can examine the spatial evolution of the structures exhibef the problem. Nevertheless, certain segments of an LCS
ited by the forward FTLE fields in time. Clearly, backward
FTLE fields can also be computed by reversing the direction  45¢ e have noted, FTLE's are a measure of the growth of in-
of time. Note here that for any in such a sequence itis pos- finjtesimal perturbations to a given trajectory, i.e. growth rates of the
sible to compute an FTLE field for arfy such that,+7<1. linearized dynamics about a trajectory. Finite size (or scale) Lya-
It is often not obvious which length of the integration time punov exponents (FSLE’s) are a technique to analyse the growth of
interval T should be chosen in such computations especiallyfinite perturbations to a given trajectory. Alternatively, FSLE quan-
when the structure of the resulting FTLE fields varies signi-tify the relative dispersion of two particles, as discussefldifetta
et al. (200). In Boffetta et al.(2001); Koh and Legrag2002);

2We note that the notion of a “direct Lyapunov exponent” (DLE) Joseph and Legrg®002; d’Ovidio et al. (2007); Gar@-Olivares
has been introducedH@ller, 20013. This has created some confu- et al.(2007); d’Ovidio et al.(2009 Lagrangian structures are iden-
sion in the literature in the sense that the acronyms “FTLE” andtified using FSLE’s. The maxima of the FSLE fields look very much
“DLE” are used somewhat synonymously. In recent years the condike the maxima of FTLE fields and bear a striking resemblance to
sensus has become that there is no substantive difference betwegte stable and unstable manifolds of hyperbolic trajectories. How-
the two notions and “FTLE” has now returned to being the acceptedever, it must be emphasized that FSLE’s are a non-rigorous nu-

acronym (e.g., se8hadden et 12005 2006 2007, Lekien et al, merical technique and, despite the strong numerical evidence, there
2007). are no theorems relate the results of the calculations to Lagrangian

3We note that in much of the literature concerning FTLES, the transport barriers. Much like the case with FTLE’s, this must be
phrase refers to thmaximunFTLE. assessed “after the fact”.
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may be “close” to a barrier to transport in the sense that the ble/unstable manifolds of relevant hyperbolic trajecto-
flux across the curve may be small. This issue was carefully  ries in sufficiently “well-behaved” flows,

considered irBhadden et a[2005. However, the extent to
which LCS’s are barriers to transport must be assessed af(?)
ter they are computed. The stable and unstable manifolds
of finite time hyperbolic trajectories are a priori barriers to
transport since they are computed as curves of fluid particle
trajectories.

A possible misconception that has appeared in several
places in the LCS literature is that the concept of invariant
manifold is somehow either not well defined or inapplicable,
or not easily interpretable for aperiodically time-dependent
flows (Haller and Yuan 200Q Haller, 2001gb; Shadden
et al, 2006 Lekien and Coulliette2007). In particular, this
point has been emphasized in the finite time dynamical sys-
tems context. While the approach to Lagrangian transport
based on finite-time stable and unstable manifolds of finite-
time hyperbolic trajectories certainly requires more complex
algorithms and computational techniques, the results, being
trajectory based, are certainly unambiguous (in that sense).
Towards this end we note thisiancho et al(2008 use finite-
time hyperbolic trajectories and their (finite-time) stable and3 Tests
unstable manifolds which are computed in a realistic velocity
field obtained from an oceanographic model (DieCAST) toIn this section, based on a wide range of example flows, we
give the first Lagrangian characterization of a salinity front analyse and compare the information about the Lagrangian
in the Mediterranean Sea and provide an explanation anflow structure obtained from the backward/forward FTLE
characterization of the notion of “leakiness” of the front. Of maps, and the information obtained from computing the un-
course, the finite time issues mentioned above do requirstable and stable manifolds of relevant (finite-time) hyper-
careful consideration in the context of specific applications.bolic trajectories. The algorithms used for computing the
It is incorrect to think that the LCS approach has somehowhyperbolic trajectories and their manifolds were developed in
“solved” this problem. MATLAB, based on the ideas describedlde et al.(2002);

A broader issue here, which keeps recurring throughout't €t al.(2003; Mancho et al.(2003 2004. The FTLE
the following discussion, concerns the problem of descrip-COmputations are performed also in MATLAB using an im-
tion of the Lagrangian structure of a time-dependent flow inPlementation of methods describedHaller (20013; Shad-
a way which would allow for a meaningful finite-time La- den et al(2005 2006 2007). We also compare our results
grangian transport analysis. It is well known that in order With the LCS MATLAB Kit v.2.3, developed in the Biologi-
to establish the existence of, for example, a transport parcal Propulsion Laboratory at Caltech, which is available on-
rier (i.e. a flow-invariant, Lagrangian structure) in the non- line (seeDabiri (weblink)). In the case of the LCS MAT-
autonomous case, one requires non-local (in time and spacé)AB Kit, several minor modifications were introduced iq the
information about the governing flow. As already pointed code in order to_enable FTLE computations from analytically
out, the finite-time notions discussed above may providedefined vector fields.
ambiguous diagnostics due to their potential sensitivity to All the examples considered here are based on analytically
the time-interval chosen for extracting the relevant informa-defined velocity fields. While the resulting flows are cer-
tion. Consequently, it seems crucial for the development of dinly not sufficiently complex to be of importance in practi-
general theory of finite-time transport in aperiodically time- cal applications, they provide an easily reproducible testbed
dependent velocity fields to understand and properly describr our analysis.
transient flow phenomena. Undoubtedly, this task requires
development of tools which would adequately capture the3'
finite-timg flovy pr.operties. The gxamples dispussed in .the\Ne consider first a 1-D, non-autonomous ODE which can
?heexi:fﬁ:io szlsgg]['?nr:}a?igl;{nrg Z;gylgspgrr:c?rgﬁfllzn;fe lrgg.ardmgbe solved analytically, and which illustrates in the simplest
q ' possible setting a number of issues which are important in
the following sections. Based on three related examples,
(1) One can obtain a good agreement between the ridges ofie highlight potential difficulties when trying the uncover
the FTLE fields (i.e. the LCS) and the finite-time sta- the structure of a non-autonomous flow using the finite-time

Both approaches may provide non-unique results, par-
ticularly in flows undergoing transitions (discussed
later), and their interpretation may require a subjective
interpretation. The main drawback affecting the invari-
ant manifold computations lies in the need for identi-
fication of the “most important” (or distinguished) hy-
perbolic trajectories used for “seeding” the finite-time
stable and unstable manifolds. The main drawback af-
fecting the FTLE technique stems from the fact that it
is a function of trajectory separation which depends,
in general, on the time interval chosen for assessment
of such a measure. Consequently, in flows undergoing
transitions it is often difficult to decide which time in-
terval is most suitable for assessing the (non-local) flow
structure. Moreover, there is no guarantee that the time
evolution of the ridges of locally strongest separation is
continuous in time.

1-D non-autonomous configuration
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Scenario I Scenario 11 Scenario III

1) ya(t) Y1(t)

¢ 4 AN A P
/é R

Fig. 1. Geometry of the 1-D flowsl) with the time dependence induceddy) characteristic of the three scenarios considered in Seict.
The trajectoriey 1(¢), y2(¢) are distinguished in the sense described in appropriate sections. Analysis of these flow structures using the
FTLE technique are summarised in Figs3, and4.

Lyapunov exponents, or when trying to identify some “spe- Whendo/dr#0, it is more convenient to consider the re-
cial” trajectories which play an important role in organising sulting dynamics in the extended phase space, spanned by
the global dynamics. Of course, in such a setting there arde,, &}, with coordinatesx, ¢); three distinct examples are

no non-trivial invariant manifolds in the (non-autonomous) shown in Fig.1. We note here thatlj is, in fact, a Bernoulli

flow. However, one can consider the 1-D geometry dis-equation with solutions given by the family

cussed below to represent some aspects of transverse dynam- 1

ics in the neighbourhood of an invariant manifold in a higher- x (¢; xo, 10)? = - ; . @
dimensional flow; in fact, we use this analogy in S&8.6 _26—2ﬁoa(s)ds + 2/ e~ 2/t o )ds gy

Here, we are particularly interested in the properties of the X0 )

FTLE maps and their behaviour during certain flow transi- |1 «an pe easily verified using) that x(1o: xo, 70)=xo. FOr

tions characterised by changes of finite-time stability PrOPer-3ny trajectoryx (1; xo, f0), given by @), we can consider a

ties of some distinguished trajectories in the_: flow. _ perturbation,x (; xo+80, 7o), With o<1, SO that the growth
Consider a 1-D, non-autonomous dynamical system givery¢ ihe perturbation after timé is given by
by
8 (T, o, x0, f0) =|x (fo+T'; x0, f0) — x (to+T'; x0+30, f0)|

)&:x(c(t)—xz), x,t € R, ()

dx (to+T; s, to) 3)
where o (¢) is a prescribed function of time. In the au- ds
tonomous configuration, witbh=const<0, the trivial solu-  Thus, since the solution&)are continuous, the growth of an
tion x=0, representing the only fixed point in the flow, at- infinitesimal perturbation introduced aty( 7o) after timeT'
tracts all trajectories as—~oo. Wheno=const>0, there are s given by
three fixed points in the flowt1=0, andx, 3=+ /0. It can
be easily checked by examining the linearisationlpBpout A(T, xo, o) = lim
these points that; is an unstable hyperbolic fixed point and 80—0
x2,3 are stable hyperbolic fixed points.

s=x080 + O(80?)

(T, do, to)
B — (4)

T
672 f,:_JOJr o (s)ds

10+T
e—Zf,O o (s)ds + ZXS/

fo

1o+T 3/2
e*katoJrT a(s)dsdk
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Fig. 2. (b—e)1-D FTLE fieldsA 7 (x, tg), for the flow (L) with o (¢) given by (L7) which is characteristic of Scenario | discussed in Sgdt.

The finite time Lyapunov exponentsy, are computed over different time intervals of length In this configuration, there are three
“distinguished” trajectories in the flowy >(¢), (see 11)), andx=0, which play an important role in organising the dynamics (blue curves;
left column). (b—c) Backward FTLE field computed, usidg &nd 6), at (b) =5 and (c)r=—1 with different values of the integration
parameterT. Note that the maxima of the FTLE fields (i.e. the LCS) vary withand that they do not coincide with the location of
y1,2(t=—1) during the transition phase, e.qg. (c), regardless of the vallie 8ke text for a discussion. (d—e) Forward FTLE field computed
for the same flow at (d)=0 and (ey=—10 with different values of the parametgr

We note further thatd) is related to the 1-D finite time Lya-
punov exponentr (xo, fp) at timerg via

diagnostic. The ambiguities associated with choosing the
“right” FTLE map from the family{Ar (x, f0)}7+1er Which
“best” describes the flow structure at a given time are espe-
cially evident in analysis of flows displaying transient phe-
nomena. We recall that this problem is not restricted to the
which is Computed over the time interval, (See the Ap- FTLE method. In particular the techniques, mentioned in
pendix A for a more general formulation). Sect.2, based on identification of the so called “distinguished
Note that even if solutions Satisfying a given system arehyperbonc trajeCtorieS” and their invariant stable and unsta-
on|y known numerica”y, an estimate on the Separation rat@le manifolds suffer from similar limitations in the case of
of trajectories which were initially infinitesimally close can flows defined on a finite time interval. We analyse these is-
be obtained via finite differences. Therefokg, can be es-  sues further below based on three different scenarios of evo-
timated for any flow defined by sufficiently smooth velocity lution of the 1-D flow (1), characterised by different types of

field on some time interval. Consequently, the map time dependence induced by the formeof) (see Fig.1).
Clearly, the dimensionality of the problem does not allow for

existence of any non-trivial invariant manifold of a hyper-

L . . . olic trajectory. Nevertheless, the discussed examples serve
can be used, in principle, as a straightforward diagnostic toog J Y P

1

R>x+— Ar(x,t0) e R, to+T el CIR, (6)

o . 1o highlight some important consequences of flow transitions
for uncovering time-dependent flow structures characterise ghig P g

by locally strongest separation of nearby traiectories. Not specified below) on the computed FTLE fields and their re-
y y 9 >EP . y traje ' E1ationship to some (possibly non-unique) “special” trajecto-
however, that at any ting during the flow evolution one can

; . ries in the space of solutions df)( Moreover, we will show
construct the whole family of FTLE fieldS.r (x, f0)}7 -t {hat the non-uniqueness of the FTLE diagnostic may lead to
which generally results in a non-uniqueness of the compute

www.nonlin-processes-geophys.net/17/1/2010/ Nonlin. Processes Geophys36 2010



8 M. Branicki and S. Wiggins: Finite-time Lagrangian transport analysis

detection of “ghosts” or “premonitions” of flow structures as- and

sociated with the future, or past, stability properties of such

“special” trajectories. We will later return to these examples |im (x(;; x0, f0)% — yl(¢)2> =0, Vx0<0,7reR, (15)
in Sect.3.3.1in the context of locally transverse dynamics in 0~ =%

a neighbourhood of a stable or unstable manifold of a hyper-

bolic trajectory in the 2-D non-autonomous case. lim (x(t; X0, to)z—yz(t)2> =0, Vxo>0,7reR. (16)

11— —00

Scenario I: 0< o () < o0 Since we intend to minimise the amount of mathematical

formalism here, we just remark that the propert)(im-
plies thaty, (¢) is forwards attracting(andLyapunov stable
within xpe(—o0, 0) and (@5) implies that it ispullback at-
c}racting within xpe(—o00, 0). Similarly, y»(¢) is both for-
wards and pullback attracting withikge(0, co). A more
formal introduction to the stability and bifurcation phenom-
ena in non-autonomous dynamical systems can be found in
E Ix (; x0,t0)| > 0, Vel 7) Langa et al(2006 20032; Kloeden and Siegmun(R005);

dr Duc and Siegmun¢2008; Sell (1967, 1971). Pullback con-

A more general definition of instability of a trajectory in a vergence is useful in constructing limiting sets, such as the
non-autonomous dynamical system, which we do not requirejistinguished trajectories in our 1-D toy example, provided
here, can be found, for example, lianga et al(2006. It that the flow is defined on the negative half-liGeco, *],

can be easily verified tha?) is satisfied onc(r)=0 over any  *>_—oo. Otherwise, we cannot uniquely define a distin-

With the above constraints imposed otir) (see Fig.1),
the trivial solution, x(#)=0, of (1) is (finite-time) un-
stable on any time interval=[z,, ,]€IR in the sense
that for each nonempty, simply-connected and bounde
set x;=(0, x*)CIR, O<|x*|<o0, there exists a trajectory,
x(t; xo, t0), With xoeXy, toel, such that

time interval/ C R, by noticing that guished trajectory. We will see in the next example that
d 1 2 —2[* o(t)ds these two notions are not necessarily equivalent in the non-
& <m> = ;( —o(t)e "0 (8)  autonomous case. . .
0 We can now examine the 1-D FTLE fieldaz (x, tg),
- ZJ(t)xS/[ o2 o(©)ds g +x§>’ associat_ed with scenario | Whi(_:h are o_btair_led f_r(ﬂha(nd
10 (4) for different lengths of the integration time interval

9) The results shown in Fig2 were computed for a sigmoidal

which implies that 7) is satisfied at least for function

5 O—mine*ZUmin(fb*fa)
)CO <

10) o0 = %(atar(lO(t +4)) + /2 + 0.01), (17)

1— e—zamax(fb—fa)(ezamin(fb—fa) _ 1)

We note further that there are two ‘distinguished’ trajecto- SO that the flow I) is asymptotically autonomous.

ries in the space of solutions df)(given by The top-row insets of Fig2 focus on detection of attract-
1 ing structures in the (extended) phase space of the flgw (
yl,z(t)2 = - , (12) Since such structures should be characterised by separation
zf e~ 2/ o )ds gy of trajectories in backward time, we compute a number of
—o0 the backward FTLE fields at two different times5 (b) and

which have the property that any trajectory df £ (¢; xo, f0), t=—1 (c). The geometry of the two attracting distinguished
x0<0 is “attracted” (in the sense we specify below) towards trajectoriesy; »(z) is marked by the blue curves. Note that
y1(t) and any trajectoryt (¢; xo, fg), xo>0 is ‘attracted’ to-  the maxima of the FTLE fields (i.e. the LCS) vary with
wardsy»(¢). There are two different notions of attraction and that they do not coincide with the locationefh(r=—1)
which we can utilise here. If we rewrit@)as during the transition phase, e.g. (c), regardless of the value of
T. The maxima of the forward FTLE fields, computed for the

x(t; x0, t0)> = 1 - , same flow at (dj=0 and (ey=—10, are all located at the tri-
ie*2ﬁ30<f>d5+ 1 _2/ Oe—sz‘ o (s)ds g vial solutionx (r)=0 which is unstable. However, during the
xg y(1)? —o0 flow phase when the unstable trivial solution is “sandwiched”

(12) between the two attracting “distinguished” solutigng, the
FTLE field has to be computed over sufficiently long time in-
tervals in order to reveal a positive maximum (i.e. exponen-
tial growth of the infinitesimal perturbation ta(r)=0 over
the considered time interval).

it can be seen that the following are true (whet(r) <oo)

lim (x(t; X0, o) — yl(t)) =0, Vxp<0,10e R, (13)

1—>00

tll)rgo (x(t; X0, t0) — yg(t)) =0, Vxp>0,10e R, (14)
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Fig. 3. (b—e)1-D FTLE fields,A7 (x, tg), for the flow () with o (¢) given by 1) which is characteristic of Scenario Il discussed in Sédt.

the fields A7, are computed over different time intervals of len@th(b—c) Backward FTLE field computed, using) énd 6), at (b)z=5 and

(c) r=—8 with different values of the integration parameferin this configuration there distinguished trajectonigs(¢) (cf. 11) dominate

the flow structure after the transition when the trivial solution becomes unstable. Note that for sufficiently large values of the integration
parametell the maxima of the FTLE fields detect “ghosts” of the past stability of the trivial solution and not the situation at the time of
computatiory. See text for a discussion. (d—e) Forward FTLE field computed for the same flowrat{d)2 and (ey=0 with different

values of the parametér. The trivial solutionx=0 is globally attracting in the sense 4f8) on any time interval = (—oo, t* ] t* <t* where
t*~—4.105. Note that, when computed over sufficiently long time intervals, the FTLE fields detect “premonitions” of the future (finite-time)
stability properties of the trivial solution, cf. (d), which is repelling (in this case) on any time interval contaified(#4.105 co).

Scenario ll: lim o(¢t) <0,0(¢t*) =0, and do/d¢ > 0 In Fig. 3 we analyse the phase-space geometry of the flow
7o (1) with o () given by
In this situation the trivial solution of 1), x(¢)=0, 1
is stable (in the pullback sense) on any time intervalo(?) = /2108 (atar(lO(t +4) + 0~8>, (21)
I=(—o00, t*], t* <t*, i.e., '
(18) which satisfies the constraints characteristic of this scenario
and changes sign &t~—4.105. Moreover, such a choice in-

and unstable, in the sens8,(on any time interval contained troduces an additional simplification to the problem, making
in I = (*, o). Note that the trajectories »(¢) (11), which it asymptotically autonomous. This configuration makes it

are still solutions of{), are now only asymptotically attract- €asier to observe the emergence of an “attracting” structure
ing, i.e., developing around the trajectorigs(r) after the transition

) (see Fig.3). The FTLE fields,Ar, shown in Fig.3b—e are
Jim. (x(“ X0, 10) — Vl(t)) =0, Vxo<0neR, (19)  computed using4) and &) at four different times and over
different time intervals of lengtif’. The examples of the
lim (x(t; X0, fg) — yz(t)) =0, Vxo>0,10€eR, (20) backward FTLE fields, computed at (035 and (c)r=—8
= highlight some typical characteristics of this technique when
but they are not asymptotically pullback attracting. We will applied to flows with transient phenomena. When computed
loosely refer ta* as the transition time, since it corresponds at times after the transition, as in (b), over sufficiently short
to the boundary of the pullback stability of the trivial solu- time interval lengthd", the maxima of the FTLE fields coin-
tion. cide well with the location of the distinguished trajectories

lim x(t;x0,70) =0, V rel,
10— —00
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10 M. Branicki and S. Wiggins: Finite-time Lagrangian transport analysis
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Fig. 4. (b—e)1-D FTLE fields, A7 (x, 7g), for the flow @) with o (r) given by @4) which is characteristic of Scenario Ill discussed in S&dt.

The trivial solution,x=0, is asymptotically attracting on the time intervatIR and globally pullback stable, se22), on any time interval

I = (—o0,t*], 1* <t* (in this case*~—3.83; see text). The trivial solution is unstable on any time interval contained (in this case) within
I=[—3.83,3.83]. (b—c) Backward FTLE field computed, using) @nd &), at (b)z=3 and (c)s=8 with different values of the integration
parametefT. Note that the maxima of the FTLE fields (i.e. the LCS) vary witland, for sufficiently largel’, the FTLE fields detect a
‘ghost’ of the past attracting phase of the trivial solutior0, red curves in (b—c). See text for a discussion. (d—e) Forward FTLE field
computed for the same flow at (d)-—8 and (e)=0 with different values of the parametEr Note that at=—8 (d), whenx=0 is attracting

and globally pullback attracting, the FTLE field computed over sufficiently long intdPvéétects a “premonition” of the future unstable
phase of the trivial solution.

(dashed blue lines in Fig3b). Note, however, that for atr=-—12 for sufficiently larger a sharp positive maximum
sufficiently large values of the maxima of the FTLE fields appears which might be interpreted as a “premonition” of the
detect “ghosts” (red) of the past stability of the trivial solu- future (finite-time) stability properties of the trivial solution
tion and not the situation at the time of computatiorit is after the transition.

worth remembering here that while the geometry of the flow

trajectories and the transition time is known in the consideredScenario lll: o (£)>0 for te[¢*, ¢**], and

example, it may not be at all obvious what length of the timeo (¢)<0 V te(—o0, t*] U [¢**, 00)

interval one should choose when computing FTLE fields for

a realistic, higher-dimensional geophysical flow. A simi- In this configuration the trivial solution is the only “distin-
lar problem might occur when trying to identify structures guished” one. It is globally asymptotically pullback stable
characterised by trajectory separation in forward time via theon any time interval = (—oo, t* |, t* <t*, i.e.,

computation of forward FTLE fields. We show examples of |im y(s;x0,10) =0, V te 1, xo€ R, (22)
such computations for the same flow in F8gl. and e which  fo=>—

are computed at d=—12 and =0 with different values of  anq is globally asymptotically stable on any time interval
the parametef'. As already mentioned above, the trivial so- j_ [13%, 00), 3% >1%, iLe.,

lution x=0 is asymptotically pullback attracting at angon- i

tained inJ=(—oo, t*], t* <t*~—4.105. Therefore, no tra- M x(:x0,70) =0, V 10€ 1 x0 € RR. (23)
jectory separates, in the sen3g from the trivial solution on However, it can be easily verified by examining) ghat

I. The FTLE fields computed in Fi§d correspond to such a x()=0 is unstable, in the sense of conditia, (on any time

situation. However, if one computes the forward FTLE fields interval contained i — [t*’ t**]_

Nonlin. Processes Geophys., 17362010 www.nonlin-processes-geophys.net/17/1/2010/



M. Branicki and S. Wiggins: Finite-time Lagrangian transport analysis 11

In order to illustrate the typical properties of the described inde et al.(2002; Ju et al.(2003. The choice
FTLE field in such a case we choose the time dependencef the initial guess is often subjective and, consequently, a

in the following form trajectory branded the DHT depends largely on applications.
Determination of a general set of characteristics of a finite-

o(t) = 2(@’2/16 - O.4>, (24)  time hyperbolic trajectory which would make it “more im-
portant” than others in the time-aperiodic is an open prob-
lem.

so thatr*~—3.83 andr**~3.83. In Fig.4 we examine the
backward (b, c) and forward (d, e) FTLE fields for this
flow configuration, which are computed for different lengths,
T, of the time test interval. The trivial solution is un-
stable on any time interval contained (in this case) within
I=[-3.83,3.83]. The backward FTLE fieldsir (x, ro),
computed atr=3 show a similar behaviour as in Figb
except that the magnitude of “ghost” maximum (red), indi-

cating the past attracting properties of the trivial solution, iIStorms of the complexity of the dynamics that they exhibit.

;'lr;i?(;:]g;:isf d?:::;giﬁg fp;j;s:si_bSIeangioTt)I:e::nls,o\}vEI; tstl,rr]:)-retaThe first example is the velocity field due to a linear, time-
. . ) X dependent straining flow defined on the plane. In this case
tion of the families of FTLE fields attimg {A7 (x, t)}71se1, P 9 P

: . N L we can derive the Lyapunov exponents analytically, and thus
anc_j t_he right choice of the time mt_egratl_on interval best Ole'show explicitly that they do not depend of the initial condi-
scribing the flow structure at the given time The forward

. _ S . tion of the trajectory (i.e., the Lyapunov exponents are iden-
FTLE computations reveal similar ambiguities when trying J Y ( yap P

to detect structures characterised by separating trajectori e%cal for all trajectories). In this case the FTLE field reveals
. . . 0 LCS'’s, for any time over which the FTLE field is defined.
in forward time. The FTLE field computed at=—8 (d) y

o : . The second example is the Arnold cat map. Itis a linear map
with T=2 indicates correctly the lack of trajectory separation defined on a closed Riemannian phase manifold with doubly-
points. The profile ok, (x, r=—8) is, however, rather broad

. . ) ~ ~ " periodic boundary conditions (i.e. the torus). The Lyapunov
and one might be temp_ted to Incréase the integration time In'exponents for every trajectory can be again computed explic-
tervalT in order to obtain a more localised s_hape_. If one thenitly, and linearity of the map implies that all exponents are
computes the forward FTL.E. field a_{:—8 with T=10, the equal. Hence, also in the case of the Arnold cat map the
r10(x, 1=—8) reveals a positive maximum at0 (red curve

in (d)) which indicates that th turbati fthe trivial FTLE fields reveal no LCS’s. Contrasting these two exam-
|n_( ))W ich indicates that the perturbations ot the trivial So- ples is interesting. Neither example has LCS’s as diagnosed
lution will eventually separate with a positiwg . It is impor-

. by the FTLE field although the phase space of each does
tant to understand here that this is not an erroneous result. Ir}iave hyperbolic trajectories with stable and unstable mani-
deed, we know that the trivial solution is unstable on the timefOIdS (the notion of a DHT becomes degenerate though). The
|r1_ter\éatlllzt[—3.83, ?’8.'3] an.tlapnt(re]fo!lclws tr?jﬁlgtques ftro.ml considered velocity field given by the linear, time-dependent
r=—cloatime contained within this intervay, this Is certainly straining flow has “simple” trajectories, while the trajectories

wh_at IS going to happen. Moreoy_er, ifwe _fOHOW S_UCh trajec- exhibited by the Arnold cat map are “extremely” chaotic. We

tories to times beyond, the positive maximum disappears will now describe each of these examples in more detail, and

again (e.gazo(x, 1=-8) in Fig. 4d). An important question .y, process provide more background and justification for
arises in connection to this fact: Which FTLE fields from the these statements

T-parametrised family{Ar (x, #)}74:cs, best describes the
flow structure at? As we showed above, it is not always the | jnear time-dependent strain
field with the ‘sharpest’ maxima. '

3.2.1 Two examples of dynamical systems where
the Lyapunov exponents of every trajectory
are equal

In this section we point out two situations where the Lya-
punov exponents adverytrajectory are equal. Interestingly,
the two flows are, in some sense, almost exggositesn

We consider here the simplest class of incompressible
2-D flows, defined for alte IR, which possess a hyperbolic
In the remainder of this paper we consider a number of anagrajectory at the origin. The flows are trivial, time-dependent

lytically defined, time-dependent 2-D flows. In each case Weextensmns of the linear §teady S”a'F‘ apd the corresponding
c§)n—autonomous dynamical system is given by

analyse and discuss the relationship between the stable ant
unstable manifolds of relevant hyperbolic trajectories and thef 3 —1 01 [x
LCS identified from the FTLE maps. e[ } =A@ - [ 0 1} [ ]
We note here that the characteristics of a “relevant”, or
distinguished, hyperbolic trajectory (DHT) in a finite-time where A(z) is a time-dependent strain amplitude. When
setting are currently not well defined. We attempt a working.A=const., the pointx, y)=(0, 0) is a hyperbolic saddle with
definition of a DHT in the AppendiA which is “tied”tothe  a 1-D stable and unstable manifolds aligned with, respec-
initial finite-time hyperbolic guess via the iterative algorithm tively, e, ande,. When d4/dr#=0 and.A(¢)>0, it can be

3.2 2-D, time-dependent flows

(25)
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12 M. Branicki and S. Wiggins: Finite-time Lagrangian transport analysis

easily verified tha (1)=0 is a trajectory of Z5) in the ex-  trajectories of the cat map. These can be explicitly computed
tended phase space, y, r). Moreover,y(¢) is hyperbolic  from the map and are found to be
(and finite-time hyperbolic on ank IR) and it has a 2-D sta-

ble and unstable manifolds spanned by, respecti‘{'e}y,et} A1z =%In(E+ VB2, (30)

and {ey, e,} in the extended phase space. The fundamentaind they are the same fewerytrajectory. Therefore, we

solution matrix, X (z, 1p), of (25) is given by have a situation where, in some sense, the map is the “most
At chgotic possible” (i.e., it ha_s the Bernoulli pr(_)perty)_ on its

X(t, 1) = {—6 0 ] ’ (26) entire domain and every trajectory is hyperbolic (having one
0 A1) Lyapunov exponent with modulus greater than one and one

Lyapunov exponent with modulus less than one). Neverthe-
where A(t, 10)= ft; A(r)dr. less, since the Lyapunov exponents of every trajectory are
Note that the finite-time Lyapunov exponents,; identical the FTLE fields are constant, and thus they reveal
(cf. Definition A.1), for the flow associated with2¢) are no LCS’®. Similarly to the previously discussed case, the
given by cat map is linear and the trivial trajectory located at the ori-
~ gin can be regarded as distinguished. The notion of a DHT
Ao+ T, tg) is again degenerate (as in the previous linear case), since any
—_—, (27) ; o
2|T| trajectoryy,, of (28) can become distinguished upon an ap-

_ . . propriate linear transformatiom,, g,)= k.., L,)+!, vi).
and are independent of the spatial coordinates. Conse-

quently, the FTLE field given by Summary

A2,y 10) = £

Ar(x,y,10) = ma{k%(x, v, to), x%(x, y, to)], We have shown two examples where the Lyapunov expo-
nents can be explicitly computed and shown to be identical
is spatially homogeneous and does not reveal any structurgyr everytrajectory. Dynamically, these two examples could
despite the fact that the stable and unstable manifolds of th@ot be more different. The flow defined by a linear, time-
hyperbolic trajectoryy (t)=0 are well defined. In this sim- dependent strain on the plain does not possess complex dy-
ple flow it is clear that the hyperbolic trajectory at the ori- namics, even though every trajectory in this flow has a pos-
gin plays the dominant role in organising the flow dynam- itive Lyapunov exponent. The Arnold cat map defined on
ics. Moreover, since it triviaIIy satisfies the requirements of the torus is extreme|y chaotic on its entire domain (and every
Definition A.5, it represents a Distinguished Hyperbolic Tra- trajectory also has a positive Lyapunov exponent). Clearly,
jectory of 5) in the considered frame of reference. Note, complexity of trajectories is not sufficient for the FTLE field
however, that the notion of a DHT is frame dependent (as opto reveal “structure”. Rather, spatial heterogeneity is re-
posed to a general hyperbolic trajectory). In particular, anyquired, and this does not occur for linear flows, or flows ex-
trajectoryy (¢) of (25) can become ‘distinguished’ by means hibiting “uniform” chaos, in the sense of identical Lyapunov

of the transformatiom=y+y (¢). exponents for (almost) every trajectory.

3.3 The Arnold cat map 3.3.1 Strain-vortex-strain transition

The Arnold cat map, defined on the torus, is given by We consider here an example which is designed to illus-
trate the geometry and fate of finite-time stable and unsta-

Pnt1=pp+4qn (MmodD, (28) ble manifolds of a finite-time hyperbolic trajectory during a

qn+1 = pn + 29, (modD. (29) flow transition associated with a loss and subsequent re-gain

_ _ of finite-time hyperbolicity by this trajectory. We show here
This dynamical system has a number of remarkable properwhat kind of information about transport properties of such
ties that are amenable to eXpIICIt analySIS reSUltlng from thea flow can be obtained by ana|ysing this transition using, re-

linearity of the map and the doubly periodic boundary con-spectively, the invariant manifold approach and the FTLE ap-
ditions. In particulareverytrajectory can be shown to be proach.

hyperbolic and explicit expressions for its stable and unsta
ble manifolds can be computed (eAgnold and Avez1968.

5This paper is concerned with an understanding of the role of

. - anifolds and LCSs in fluid transport. Consequently we have been
The map can be shown to be ergodic, mixing, and to have th%nealing with flows that are defined for continuous time. The Arnold

Bernoqlll property, and each of these properties is present o at map is a discrete time dynamical system. We have chosen it
the entire domain of the map. Thg proofs of these .results to illustrate a specific point because of its familiarity, and the ease
are “well-known”, but are often difficult to track down in the - or which its various properties can be explicitly computed. Never-
literature. Sturman et al(200§ contains proofs, and also a theless, the Arnold cat map dynamics can be realized in continuous
guide to the original literature. However, for our purposestime flows; sedBowen(1973; Bowen and Ruell¢1975; Pollicott
here we are only concerned with the Lyapunov exponents 0f1987 for details.
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Fig. 5. Geometry of two material surfaces in the extended sgpace, 1) approximating the unstable manifold (red) and the stable manifold
(blue) of the trivial solutionx(r)=0, of the system31). For the chosen form of the amplitudegk, Ay (cf. 46), the trivial solution is
(infinite-time) hyperbolic orf=R but finite-time hyperbolic only o= (—o0, —4.47] andl= (4.47, o] (see Sect3.3.1for a discussion

of finite-time hyperbolicity on an interval).

Consider the following 2-D, non-autonomous dynamical Stability of the trivial solution, x(#)=0

system
The linearisation of31) aboutx (r)=0 is given by

||x|[?
i= (As(t)S(x) +Av(t)v(x))e . xR iR (L) LA = [‘AS(’) _AV(”} [x} . 3
Av () As() Yy
wheres is a constant and the terms in the brackets represent a
linear superposition (with time-dependent coefficieAtsr) Consider first a class of flows generated 84)for which
andAy (1)) of a straining field given by the coefficients As (1), Ay (1)>0, satisfy
“x Ay () > Ag(t), for ¢ € [t*, t**], —oo < * < t** <00,
s =| 7. (32) } (35)
y Ay (1) < As(t), for t e (oo, t*) U (£, 00).
and of a vector field with circular streamlines given by In such a case, it can be shown that the trivial solution,
x(¢)=0, IR, has codimension-one unstable and stable man-
V(x) = [_Y} ) (33) ifolds® in the extended phase spa@e ). Consequently, it
X can be shown that the trivial solution is hyperbolic &

B_efore proceed_in_g _tO a diS_CUSSion of Concrete _exa_mples 6we skip the proof here but the existence of the “infinite-time”
derived from 81), it is instructive to analyse the finite-time stable and unstable manifolds of the trivial solution 8#)(can
stability properties of the trivial solutiom,(r)=0. Some spe- be shown by using techniques analogous to those usddaimgé

cific examples are discussed in the following subsection.  etal, 2002 cf. Sect. 4). The main difference here is the presence of
the off-diagonal terms i\ (cf. 34) which invalidates the contrac-
tion mapping argument whedy (t)>.Ag(¢). However, one can
show the existence of a codimension-one manifold of trajectories
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14 M. Branicki and S. Wiggins: Finite-time Lagrangian transport analysis

in the classical, infinite-time sense. However, if we con- the rate of strain tensor
sider the finite-time stability properties of the trivial solution, R R R —As() 0
some interesting issues arise. We note here that the theorg() = %(A(r) +AnNT) = |: } ,
of finite-time stability of non-autonomous dynamical sys- 0 As®
tems is still an area of active research and, as a consequengg,indefinite for anyre R, and the zero-strain set, defined as
there exist, for example, at least two different ways of deﬁ”'Z(r):{erez C o, g(t)x>=0} is given by
ing what is meant byfinite-time hyperbolicity(cf. Defini-
tionsA.4 andA.11 in the Appendix A). Although, itis cur- ) {§+y £ R?: £t a[l]’ £ = a[ 1]7 aem}. (38)
rently not clear if these two notions are equivalent, or which 1 -1
one is more suitable for a given application, we show be|OWFina||y, the strain acceleration tensor is
that they predict essentially the same stability changes in the, dea A A A ora
configuration considered here. M) = g St + S(OA@) +A)" S()

As discussed briefly in the Appendix A, one approach to 2
characterising finite-time stability properties of a given tra- _> As)™ As@OAv () (39)
jectory is via the notion dfinite-time exponential dichotomy As(D)Av (@) As(t)?
which is associated with a system linearised about this tra-
jectory. While this notion of finite-time hyperbolicity seems and its restriction to the zero-strain set yields
more general and is very useful in more abstract considerays— i -y _ o2 _
tions, it is often difficult to verify in practice. Nevertheless, & Mwg) = AS(t)(AS(t) AV(t))’ (40)
provided thatdy () and.As(¢) are bounded and sufficiently oW T 2
slowly varying on a time interval, it can be shownGop- € M0ET) = AS(I)(AS(I) +Av (I))' (41)
pel, 1978 Propositions 1-2, p. 50, 52) that the trivial solu- Consequently, the restriction ol (1) to Z(r) is positive
tion is finite-time hyperbolic on any time intervatc 7 within definite provided thatds(r)—Ay (1)>0. If the amplitudes
which the real parts of the eigenvalues of the ma&ix) in  A4(r), Ay (¢) satisfy B5), one can conclude, that the trivial
(34) are non-zero and have opposite signs. Conversely, it cagolution leaves the hyperbolic region of the phase space at
also be shownGoppe| 1978 Proposition 2, p. 54) thatatra- and is contained in the elliptic region (cf. Definitién10) for
jectory cannot be finite-time hyperbolic if the eigenvalues of ;e y=[*, 1**]. According to DefinitionA.11, the trivial so-
A(r) are imaginary over a sufficiently long time interval (the |ution will not be finite-time hyperbolic on any time interval
slower the variation of the coefficient matrix, the longer time j ¢ Jr such that/N1 is sufficiently long (see DefinitioA.11
interval needed). Since the eigenvalues of the matri8#) ( for more details).

(37)

are given, at anye IR, by Note that both of these characteristics of finite-time hyper-
bolicity depend on the time interval considered and cannot
o()12 =tV As(t)2 — Ay (1)2, (36)  be attributed to a point on a trajectory. Rather, whether or

not a given trajectory is finite-time hyperbolic on a given in-
one can conclude that, s and Ay satisfy @5) and  terval,I, depends on the relative length of subintervalg of
I=[t*,t**] is sufficiently long, the trivial solution is not within which the local dynamics has “undesirable” proper-
finite-time hyperbolic or/. ties. In what follows we will say that a trajectogy is not

Another approach to Characterising the Stabmty proper-finite-time hyperbOHC on an intervadl if there exists inter-
ties originates from the so-called EPH-partition (see the Ap-Val(s)J such that/N/## andy is not finite-time hyperbolic
pendix A ancHaller, 2001k Duc and Siegmun®008. This on J. Clearly, if a trajectoryy is finite-time hyperbolic on
criterion relies upon considering the characteristics of the so €R than it is finite-time hyperbolic on anyc/.
calledrate of strain tensarS(s) (cf. DefinitionA.7), and the Note also that if, instead 086), the amplitudes were cho-
strain acceleration tensoM (¢) (cf. DefinitionA.9), derived ~ S€n such that
for a flow linearised about the considered trajectory. In par- 4y (t) < Ag(r), for e (—oo, t*] , }
ticular, a trajectory is said to be in a hyperbolic region of the (42)
phase space within a time intenaif the restriction ofV (¢) Av(t) > As(t), for te (1%, 00),
to the so called zero-strain set (cf. DefinitiArB) is positive

o one can only identify an unstable manifoldiW“ [x=0], in
definite for allzel. In the case of our example systeBd), y bl ™ [x=0]

the flow generated by3(Q). In such a cas&ie [0 (t)] =0 for
anyte [t*, oo0) and the trivial solution is not finite-time hy-
perbolic onze[t*, 00); i.e.,x(¢)=0 does not have the expo-
nential dichotomy otiz*, co). Similarly, when

on I=(—o0, t*) which converge tax=0 ast——o0, In the linear
case of 84) these solutions can be extended te(:*, co) with the
help of the fundamental solution matrix. Similar procedure can be

used to show existence of trajectories &)(on I=(**, co) con- Av(t) > Ag(t), for te (—o0,1*],
verging tox=0 ast— oo, and then mapping them backwards using (43)
the fundamental solution matrix. Ay (@) < As(@), for e (t*, 00),
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M. Branicki and S. Wiggins: Finite-time Lagrangian transport analysis 15

Fig. 6. (Left) Geometry (in the extended phase spacey(t)) of an unstable manifold of the trivial solutios(z)=0, in a flow generated

by 31). (Right) Finite-time Lyapunov exponent fields, i.eg (x, y, t) (cf. A.2), computed at three different times during the evolutieh

(top row), =7 (middle row),r=13 (bottom row); for each of these times the FTLE fields were computed over two time intervals of different
lengthsT. The green lines denote the instantaneous geometry of the unstable manifold. Only when computed over sufficiently long time
intervals, the ridges of the backward FTLE fields coincide with the unstable manifold.

one could only define a stable manifdd[x = 0]. The tri- and the finite-time unstable set.of:)=0 on[ is defined, for
vial solution is in this case finite-time hyperbolic @, co) tel, as

but not on(—o0, t*). d

~ Note finally that if we restrict the syster]) to a bounded W [x=0](r)= {xem; X (m, Hx||>0, me[} . (45)
time interval,I=[t,, 1, ]CIR, with t,>—00, 1, <00, it iS not dm

possible to definethe stable and unstable manifolds of the
trivial solution (in the classical, time-asymptotic sense) even
if x(#)=0 is hyperbolic for the same system considered on
I=IR. This situation is by far the most common one in ap-
plications, especially when dealing with experimentally mea-
sured or numerically generated flows. Howevex (if)=0 is
finite-time hyperbolic or/ (in the sense oHaller, 2001H,
one can define (cDuc and Siegmund200§ the following
two flow-invariant sets: the-fibre of a finite-time stable set
of x(+)=0 onl is given by

In contrast to the classical (time asymptotic) definition of sta-
ble and unstable manifolds, the finite-time counterpafts,

and W9, have the dimension of the extended phase space
(rather than a lower dimension) and theifibres are open
sets inR2. In such a case, a common approach used in the
invariant-manifold Lagrangian transport analysis is to choose
(non-unique) segments of initial conditions of lengtk1,

Uy and &7, containing the trivial solution of the linearised

systen§, and follow their forwards and backward time evo-
lution. It can be shown (see Append®) that, if properly

s , d chosen, the material segments are contained in, respectively,
Wi [x=0](")= {erR : @”X(’"’ Hx | <O, mEI}’ (44) W [x(t)=0] andW* [x (r)=0]. Moreover, due to the the em-
bedding property of finite-time stable and unstable manifolds
"For systems defined on a finite time interval one can still con- (seeDuc and Siegmund2008 Theorem 37, p. 659) the ef-

sider non-unique extensions fe=/R by applying the Lyapunov-  fect of the non-unique choice of the initial material segments
Perron approach to an extension of the flow frbes [a, b] to IR as
in Haller and Poj€1998; Haller (2000. Since such extensions can 8Note that, by construction, the trivial solutigrir)=0 of a sys-
be accomplished in a non-unique way, the manifolds constructed irtem linearised about some trajectgrit) corresponds to this trajec-
the extended system are unique up to an &ft@r—<—) ¢>0. tory.
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16 M. Branicki and S. Wiggins: Finite-time Lagrangian transport analysis

/\T(zv yvt = 5)

Fig. 7. Comparison of the 1-D sections (along §=0)) of the backward FTLE fields (gray-shaded) computed for the fBiyvgnd discussed

in Fig. 6. Three 1-D sections of the FTLE map compute¢eatr=7 and(b) =5 over different integration intervals. Note that the number

of maxima and their location varies with. In particular, the nature of the extremumyat0 in the FTLE maps switches between minimum
and maximum depending dh The location of the finite-time unstable manifold of the (finite-time) hyperbolic trajeatany0 coincides,

in this case, with the strongest maxima of the FTLE fields computefi#@0. However, this fact can be only established once the finite-time
unstable manifold is computed.

diminishes with the length of the considered time intefyal ward FTLE fields (cfA.2) at three different times during the
provided that the considered trajectory is finite-time hyper-evolutions=13 (top row),r=7 (middle row) and=5 (bottom

bolic onI (see the AppendiB for more details). row). The unstable manifold was approximated by follow-
ing an evolution of appropriately chosen initial material seg-
Examples of flows generated by the systen3() ment (cf. AppendixB), using algorithms analogous to those

i ) i i described irMancho et al(2004 2003. Clearly, for suffi-
In_our comparison of the invariant manifold and the gjendy 1ong integration intervals the ridges of the backward
FTLE analysis of flows generated bg1), we first choose 1y g field coincide very well with the instantaneous geome-
t_he_ amplltudesAg an_dAv in such a way_that the ﬂo‘_’V IS not try of the unstable manifold (dashed green), as can be seen in
finite-time hyperbolic on a bounded interval; this can be e hanels computed with=20 at three different times (left
achieved, for example, by settins(1)=1 and column). Note, however, that for smaller valuegaiot only
2 the ridges of the FTLE fields become less localised but their
Ay (t) = — <atar(10— t2/2) + n/2>, (46) location changes as well. This effect is further highlighted in
T Fig. 7 where we show 1-D cross sections of the FTLE fields
in which case*~—4.47 andr**~4.47 and the trivial solu- computed for different_ value_s dat. The non-uniqueness of
tion is not finite-time hyperbolic odi=[¢*, r**]. The results  the back\_/vard FTLE fields is a dl_rect consequence of t_he
to computed for such a flow are discussed in Figs. fact that if one computes separation of nearby trajectories
In Fig. 6 we show the geometry of the numerically ap- In non-autonomous flows, the outcome will depend, in gen-
proximated unstable manifold of the trivial solution in the €ral, on the starting time and the extent of the time interval
nonlinear flow 81) and compare these results with the back- Over which such a diagnostic is evaluated. Therefore, in more
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Fig. 8. A sequence of backward FTLE fields (grey/red shadegjx, y, #;), {;};e7 (cf. A.2), for the flow 31) with Ag=1 andAy (r) given
by (47). The FTLE fields are computed witif'|=10. The flow undergoes a transition associated with the loss of finite-time hyperbolicity

by the trivial solution. The dashed green lines denote the instantaneous geometry of a material curve which approximates the finite-time

unstable manifold af (r)=0 before the transition (After the transition the trivial solution does not have f.t. unstable manifold but this curve
remains a material transport barrier in the flow.) Note that, when computed with &ffjxbd ridges of the FTLE field fade away during the
evolution as the flow transitions into the “non-hyperbolic” phase.

complex flows it might be not always clear which lendgth,  time unstable (or stable) manifolds dn Assume that we
of the integration interval is the most suitable one for de-choose a time interval length which leads to well localised
scribing the flow structure based on the FTLE fields. It isridges in the backward FTLE fields during the initial period
also worth noting that in complicated flows, possibly known of evolution. In this caséT’ |=10 seems satisfactory for de-
on only for a finite time, the identification of Distinguished termination of the LCS before the transition. Nevertheless,
Hyperbolic Trajectories on a finite time interval and their sta- it can be seen that the ridge localisation deteriorates in the
ble and unstable manifolds is also not unique, although fo=TLE fields, A7 (x, y, t;), computed at an ordered sequence
different reasons (sdde et al, 2002and the discussion fol-  of “observation” timeqr; }; €Z with increasing;.
lowing (44) and @5)).
We finish this section with an example of a flow associated3.3.2 Double gyre flow

with (31) with Ag(z)=1 and

The double gyre flow is considered in the domain
Ay (1) = §<atar(10t) + n/2>, (47)  D=I0,2]x[0, 1] and is given by
which corresponds to the casé2l mentioned above with ~ *(» ¥, 1) = —TAsin((rf (x, 1)) coslry),
*~0. In Fig.8 we consider a hypothetical situation of trying _ df (48)
to record the time-dependent geometry of a transport barrier?(x, y, 1) =7 A cos(mf (x, 1)) sin(ry) o
given by the unstable manifold ®f7)=0, using the backward
FTLE fields. Note that, as discussed earlier, the trivial solu-where f(x,7) is chosen in such a way that
tion is not finite-time hyperbolic on any interval contained f(0,r)=f(2,¢)=0. This flow is frequently used for il-
in I=(t*, o0) and, consequently, it does not have a finite- lustrating the LCS (e.gShadden et al(2009; Shadden
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18 M. Branicki and S. Wiggins: Finite-time Lagrangian transport analysis

Fig. 9. Backward FTLE fieldj_15(x, y, t=0) (cf. A.2) computed withT=—15, the and invariant manifold structure for the double gyre

flow (48) in the steady cas€a) The heteroclinic connection (green vertical line) between the two hyperbolic fixed paiatsdp, coincides

with the most pronounced ridge of the FTLE field, shown in more detdbhjnNote that the FTLE field (b) possesses an inward spiralling

ridge in each cell which does not correspond to an invariant manifold. Depending on the characteristics of the colour map, this spiralling
structure can be suppress@d or enhancedd). However, in a time-dependent case it is not immediately clear whether or not similar
spiralling ridges correspond to transport barriers.

(weblink)) and it is instructive to compare the LCS and hyperbolic fixed pointg; 2. Provided that the FTLE field
stable/unstable manifolds of hyperbolic trajectories usingis computed for sufficiently larg€ (7=15 in this case), the
this example. The (non-autonomous) dynamical systemmost pronounced FTLE ridge coincides with the heteroclinic
associated with48) is simply given by connection discussed earlier. {Ifis too small, the structure

) of the FTLE field does not reveal this heteroclinic connec-
X =ulx, 1), tion; seeShadden(weblink).)

v =v(x, y, 7). _ Whe_n af (x, t)/9t#£0, paths of the instan;aneo_us stagna-
tion points (ISPs, se&18) are not system trajectories. How-
When the flow is steady, i.e., wheif (x, r)/9¢=0, there  ever, the paths of two (frozen-time) hyperbolic ISPs (see Def-

(49)

are two hyperbolic stagnation points in the systet9) (o- inition A.6) given by
cated atpy(x, y)=(1, 0) andp2(x, y)=(1, 1). The unstable 5
manifold of the stagnation poipt; coincides with the invari-  p1(t) = {(x,y) € R“:y =0, f(x,1) = 0}, (50)
ant boundaryX=[0, 2], y=0) and the stable manifold is lo- pot) = {(x,y) € R%:y =1, f(x,1) =0}, (51)

cated within the domain. Similarly, the stable manifolgpaf

is contained in the flow-invariant boundary=£[0, 2], y=1) can be used to compute two Distinguished Hyperbolic Tra-
and its unstable manifold coincides with the heteroclinic con-jectories (DHTS, cf. DefinitiorA.5, Appendix A),y1(¢) and
nection betweerp; and p>. When f(x, t)=x the hetero-  y2(¢), which are contained in the flow-invariant, bottom and
clinic connection is given byx=1, y=[0, 1]). The steady top and boundaries, respectively. These DHTs can be com-
situation is visualised in Fi@ where we overlap the forward puted using techniques describeddie et al.(2002; Man-
FTLE field with the manifold structure associated with the cho et al.(2003 2004 (we stress again that the use of paths
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Fig. 10. Backward(a, c) and forward(b, d) FTLE maps for the double gyre floi®) at r=0; computed over two different time intervals

with lengthsT=15 (a, b) and’'=20 (c, d); Ar=0.01 in all cases. The parameters2r /10, e=0.25 andA=0.1 are chosen as in the online

tutorial Shadden(weblink). The dashed black curves denote the instantaneous geometry of the unstable manifold (a, c) and of the stable
manifold (b, d) of the Distinguished Hyperbolic Trajectorjes(r) (black dot in a and c), ang4(¢) (black dot in b and d). For sufficiently

long integration times, good agreement between the LCS (red) and the manifolds can be achieved. However, depEntlied-ohE

map reveals ridges of different length and connectivity. Some most significant differences are marked by the black arrows. The correlation
between the LCS and the invariant manifolds depends also on the integration method, the integratiorfssteg-ig 11).

”)1 Ar=15(% ¥, t=0) b) Ar=15(%, Y, t=0)

08

Fig. 11. Sensitivity of the FTLE field to the integration method (see also F#). Forward FTLE computed at0 with 7=15 for the

flow (48) using(a) 4th order Runge-Kutta ang) forward Euler (used in the LCS MATLAB Kit, seBabiri (weblink)); At=0.1 in both
computations. The fact that the results depend on the integration method and the time step used are hardly surprising. However, it is
particularly important to bear these effects in mind in situations when one does not have the control over the time discretisation (e.g., when
dealing with experimental data recorded on a discrete space-time grid; see alsd4iguree dashed black curves show the instantaneous
geometry of the stable manifold gf,.
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Fig. 12. When shading the FTLE fields one has to make a choice of a filtering threshold in order to reveal the ridges approximating the LCS.
Different choices of the colour mapping, which serves here a height filter, may reveal or suppress disconnected segments of LCS (backward
FTLE field atr=0 computed fol =—20 shown). This effect combined with the non-uniqueness of the FTLE maps (i.e., the one-parameter
family {A7(x. y, 1)};+1<r) Mmakes it difficult to identify long segments of the LCS which are necessary for transport analysis via the lobe
dynamics.

of ISPs is a convenient but not a necessary choice of the iniand their stable and unstable manifolds are well defined and
tial guess). The stable manifold ¢f;(r) and the unstable unique. Moreover, since these manifolds are composed of
manifold ofy2(¢) lie in the interior of the domain and they the system trajectories they represent barriers to Lagrangian
play a dominant role in organising transport within the flow. transport. It can be seen in Fifj0a and c that in this case

In Fig. 10we show examples of backward FTLE fields (a, c) the instantaneous geometry of the unstable manifojcb&f)

and forward FTLE fields (b, d) computed at a fixed time0, and the ridge of the backward FTLE map (i.e., the attract-
over different lengths of the integration time interval We ing LCS) are well correlated over long distances (in the arc
compare these results with the instantaneous geometry of thength sense from the DHT). Similarly, the stable manifold
stable and unstable manifolds pf(z) andy2(t) which are  of y1(¢) and the repelling LCS associated with the forward
delineated by the dashed black curves. In the computationETLE map coincide provided that the FTLE field is com-

we used puted over sufficiently long time interval (FidOb and d).
The issue of the lengthi of the time interval chosen to com-
flx, 1) =a@)x®+b)x, (52) pute the FTLE field is worth reiterating here. Recall that
. (cf. Sect.2 and the AppendiX), at each “observation” time
a(t) = e sinwt, (53)

the FTLE field,A7(x, y, t), depends on the integration pa-
b(t) = 1— 2e sinwt, (54) rameterT. Thus, the arclength of the strongest ridges of
the FTLE field and, more importantly, the location of these
with w=27/10, €¢=0.25 andA=0.1, which coincides with ridges varies with. This can be seen in Fig.0c and d
the choice used iShadden(weblink). Since the flow 48) which is computed for the same values of the flow parameters
with f(x, t) given by 62) is time-periodic, both the DHTs as in Fig.10a and b but folf=+20. Note, in particular, the
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changes in the FTLE fields occurring in the regions indicatedH, is then perturbed by a time-dependent str&inso that

by the arrows. the corresponding dynamical system is given by
Another interesting aspect related to the FTLE compu-
tations is the identification the LCS (i.e., the ridges of thex = H(x, y,z) + 8(x, y, z,1). (55)

FTLE fields) and their connectivity. The ridge extraction was

described irBhadden et a[2005 and an example of the use The:- components of the steady Hill's vortex in Cartesian co-
of such a procedure can be foundNtathur et al.(2007), ordinates are

Fig. 2. However, it seems that such a ridge extraction is not
commonly carried out. We note, for example, that the results
discussed irshadden et a(2006 2007); Shadden(weblink) Hy, = (u, Sin® + ug cosO) sin®, (56)
and some results iBhadden et a{2005 seem to be obtained
not by ridge extraction but by appropriate “thresholding” of
the colour map used for shading the FTLE fields. In Big.

we shqw a fe_vv examples pf different shading of _the samerjf/rm’ ©=acosz/r), <D=acos<x/\/m)

FTLE field which reveal a “ridge landscape” of varying com- . .

plexity with a number of disconnected ridges appearing (orand’ assuming that Qenotes the_radlus Of. the vortex, the

disappearing), depending on the colour map threshold used\./eloc'ty components in the spherical coordinates are
In summary, we observe a good correlation between the .

stable and unstable manifolds of the relevant hyperbolicu _ U—a®/r¥cose if r>a, (57)

trajectories and the ridge segments identified in the for- 3y —r?/a?)cos® if r<a,

ward/backward FTLE fields in the double gyre flov8]. 2

However, for a given FTLE field, the choice of the param-

etersT and the filtering applied to extract the LCS is rather . .

subjective and can be ambiguous. This is of particular con- o = ~U@Q+a%/@P%)sine it r>a, (58)

cern when analysing transport in time-dependent flows via %U(l —2r2/a?)sin@:  if r<a.

the mechanism of lobe dynamics. Such analysis requires the

ability to follow the evolution of lobes associated with tan- Thjs unperturbed (steady) Hill's vortex flow has two hyper-

gles of stable and unstable manifolds of relevant hyperboligyg|ic stagnation points

trajectories. Any numerical technique for identifying these

tangles will provide, at best, a good approximation of thesen, = (0,0, —a)”, ho = (0,0, a)7, (59)

structures. However, the minimum requirement for this kind

of analysis is that the numerical method is capable of approxwhich are located on the (flow-invariant) axis of symmetry

imating and identifying the evolution of the same (and suf- of the vortex. The fixed poirit; has a 2-D unstable manifold

ficiently long) segments of the invariant manifolds involved. in R® (1-D in any symmetry plane containirg), and the

If the structure of the relevant stable and unstable manifoldgixed pointi; has a 2-D stable manifold ifR3.

H, = (u, Sin® + ug cosO) cosd,

H, = (u, c0S® — ug sin®),

of the DHTs is known, it is generally possible to ad@pand The perturbing, time-dependent straining flow is given by
the colour map “threshold” so that sufficiently long and con-

nected LCSs are revealed. However, if the manifold structure a) 0 O X

is not known a priori, this task may quickly become impos-S = A(r)- | 0 @) O vy, (60)
sible. We also note that, while the methods based on compu- 0O 0 y@® z

tation of stable and unstable manifolds are capable of iden-

tifying and following in time long segments of hyperbolic Where A() is a time-dependent amplitude, the strain rates
structures, the necessary identification of the “distinguishedare normalised so that max(8, y)=1 and they satisfy
hyperbolic trajectory is not always easy. Thus, itis likely that @+8+y=0.

a synergetic approach, combining the use of FTLEs for iden- When 0<A«1 the fixed points:; and/2 no longer ex-
tifying the possible locations of the DHTs with a subsequentists but they are perturbed to two hyperbolic trajectories,

manifold computation, may offer the right way forward. y1(r) andy2(r), which possess, respectively, a 3-D unsta-
ble and 3-D stable manifolds in the extended phase space
3.3.3 Time-dependent Hills’ spherical vortex in spanned by{ex,ey,ez,e,}. In other words, at any fixed
the symmetry plane time instant the unstable manifold ¢fi () and the stable

manifold of y»(r) are given by surfaces embeddedIR?.
Consider now a class of velocity fields obtained by perturb-These trajectories can be computed using the algorithms of
ing the well known steady solution of equations of an inviscid Ide et al.(2002); Ju et al(2003. They are distinguished in
incompressible fluid flow given by the Hill's spherical vortex the sense that their manifolds organise the overall flow dy-
(see, for exampleBatchelor 1967). The Hill’s vortex flow, namics.
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Fig. 13. Schematic representation of a 3-D flow used in computations of invariant manifolds and FTLE fields ;938&cthe steady Hill's
spherical vortexa), sketched in a symmetry plane, is perturbed by a time-dependent &Jai®ne of the principal axes of the straining
flow is aligned with the axis of symmetry of the Hill's vortesg,. The amplitude of the strain changes with time as show(g)in

As long as one of the axes the perturbing straining flowsen integration time step. Obviously, in the case of analyt-
(60) is aligned with the symmetry axis of the Hill's vor- ically defined flow fields, as the ones we are dealing with
tex, the flow B5) remains axisymmetric. Consequently, ev- here, the choice of the integration time step is not a serious
ery plane containing, is invariant with respect to the flow constraint. However, in the case of discrete data sets (nu-
(55), with H given by 66) andS given by 60). We there-  merical or experimental) the time-discretisation of the data
fore restrict the analysis to one such symmetry plane, namelget imposes limitations on¢, requiring a trade-off between
(x=0, y, z), in which the instantaneous geometry of the con- the time step chosen and the temporal data interpolation. In
sidered invariant manifolds is given by curves. order to highlight, the kind of problems one might encounter

The hyperbolic trajectoriesy1(z) andy2(t), which are  in such a situation we show, in Fifidc and d results of the
confined to the symmetry axis,, can be computed using the FTLE computations for the same flow as in Figla and b
same algorithms (cide et al, 2002 Ju and Wiggins2001) but using the first-order accurate forward Euler integration
as used in the previous examples. Their stable and unstabl@ethod. This method is in fact implemented in the LCS
manifolds are computed as in the previous examples usindMATLAB Kit mentioned earlierDabiri (weblink) which
techniques described Mancho et al(2003 2004 with the is combined with linear spatial interpolation of the discrete
initial “seed” for these computations chooses in the way de-flow data required by the code. Note, in particular the erro-
scribed in Appendix B. In Figl4 we compare the instan- neous structures in Fig4d which emerge in the FTLE fields
taneous geometry of the unstable manifoldyaf with the computed using the forward Euler integration method with
corresponding backward FTLE field, both computed in the At=0.1. The main danger here is associated with the main
symmetry plane for the flow associated witb) with the advantage of the FTLE computations. Namely, it is straight-
perturbing strain amplitude given by forward to develop a basic algorithm computing FTLE fields

_ o X which will generate reasonably looking output.
A(t) = (0.05+ 0.3sin(2.33))e "1~ D7/GH7, (61)
3.3.4 Boundary layer separation on a non-slip

The strain rates are chosen@sf=—0.5, y=1. The con-
boundary

clusions one may draw from these computations are similar
as those drawn from the previous examples. Provided that
the FTLE fields are computed with sufficient care the over-The technique of invariant manifolds and lobe dynamics for
all agreement between the ridges of the FTLE field (red) andinite-time, aperiodically time-dependent velocity fields has
the unstable manifold is rather striking (cf. Fitga). As in not been extensively developed. An important area of ap-
the previous examples, the critical parameters for an accuratglication in this setting is separation from a non-slip bound-
manifold computation are the maximum and minimum cur-ary. In this setting Haller and co-workers have developed
vature cut-off parameters and accurate integration routine. a comprehensive theory based on the FTLE and LCS ap-

However, we intend to use this flow geometry to alert the proachwWang et al(2003; Haller (2004); Alam et al.(2006);
reader to the potential problems which are particularly likely Surana et al(2006 2007). Related earlier work using non-
to appear when analysing experimentally measured flowhyperbolic separation points and manifolds can be found
fields or velocities obtained from numerical PDE solvers.  in Shariff et al.(1991); Duan and Wigging1997); Yuster

In order for the FTLE computations to be reliable, one and Hackborn(1997; Ghosh et al(1998. Nevertheless,
needs to make sure that the computational grid is sufficientlythere has been extensive work in the mathematics literature
refined to reveal the desired details and, most importantlyon non-hyperbolic trajectories and their stable and unstable
that the integration routine is chosen appropriate for the chomanifolds, e.gMcGehee(1973; Casasayas et a{1992;
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Fig. 14. Comparison of the backward FTLE fieldsg (x, y, 1) (cf. A.2), computed withT =—15 in a symmetry plane for the axisymmetric,
time-dependent, perturbed Hill's vortex flobg) ats=0, and the instantaneous geometry of the unstable manifold of thejpKi), denoted

by the blue dot (see Se®&.3.3. The top row shows the FTLE fields computed using 4th order Runge-Kuttgayittr=0.01 andb) Ar=0.1.

The bottom row shows analogous computations performed using the forward Euler method (as impleni2abéd ifweblink)) with (c)

Ar=0.01 andd) Ar=0.1. Provided that an appropriate method is used for the integration of trajectories (i.e., not the forward Euler) a good
agreement can be achieved (as in a) between the LCS and the invariant manifold computations.
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Fontich (1999; Cicogna and Santopre{@999; Casasayas With the above choice of the amplitude$; and A»

et al. (2003; Baldoma and Fonticli2004); Bonckaert and the flow is aperiodically time-dependent and asymptotically
Fontich(2009; Holland and Luzzatt¢2006); Baldoma etal.  steady, so that the two DHTSs present in the flow approach the
(2007. This work should serve as an excellent foundationlocation of the single fixed point in the system for —oco

for developing a theory of “distinguished saddle-points” and and two fixed points at—oc. The DHTSs are again computed
their stable and unstable manifolds in finite time, aperiodi-using the MATLAB implementation of the techniques in-
cally time-dependent velocity fields. Finally, we note that troduced inlde et al.(2002); Ju et al.(2003, and their man-
the algorithm for computing time-dependent invariant man-ifolds are computed using the ideas basedvtamcho et al.
ifolds described ifMancho et al(2003 2004 does not re- (2003 2004).

quire a hyperbolic trajectory as a starting point. Rather, itre- Figure 15 shows the backward and forward FTLE fields
quires an appropriate “seed” from which the material curve,(yellow/red shades, see Definitioh2) computed for the
approximating an invariant manifold is “grown” according flow (62) at r=0, and stable (blue and cyan) unstable (ma-
to the numerically integrated vector field. Depending on thegenta) manifolds of the two DHTs present in the flow. The
choice of the “seed”, the obtained results may, or may not,ocation of this “observation” time relative to the geometry
be relevant for transport considerations. Instead of selectingf the DHTs is shown in the top left panel. The top right
the location of some distinguished hyperbolic trajectory aspanel shows the backward FTLE map computed Wit25

the “seed”, one could choose the instantaneous location of and an unstable manifold (of the two DHTs, they are ex-
non-hyperbolic saddle point. However, this situation has yettremely close if not identical). Clearly, the attracting LCS,

to be developed. corresponding to the ridge of the backward FTLE field, and
the unstable manifolds of the two DHTSs correlate very well
3.3.5 Eddy-pair system over long arclength distances from the DHTs (black dots).

The bottom panel shows a comparison between the stable

In this example we focus on a flow exhibiting a transition be- Manifolds (blue and cyan) of the DHTs and the forward

tween a configuration characterised by a single Lagrangialt | -E Map, showing a good agreement. Note also the spiral

eddy and an eddy pair. As in all other examples in this secStructure in the forward FTLE map (bottom) which is visi-

tion, our main objective is to establish how well the LCS, _ble inside the small eddy. V\_/h_e_n computed over Iong time
represented by ridges of the FTLE fields, correlate with in_mtervals the length and definition of the extracted ridges

variant stable and unstable manifolds of relevant hyperbolid"'ght increase (see, however, S&t) but the method starts
trajectories in aperiodically time-dependent flows. detecting “premonitions”/“ghosts” of the future/past phase

The flow considered here is chosen in such a way thaSPace geometry. Note also that the significant inward curl

it undergoes a transition from a single Lagrangian eddyOf the LCSs_inside the large eddy in both forward and b_ack-
configuration to an eddy-pair configu-ration. The stream.ward FTLE fields which does not correspond to the manifold

function of the kinematic model we use in our analysis is geometry. )

given by We show two more snapshots of the instantaneous geome-
try of the FTLE fields and the stable and unstable manifolds

of the DHTs at=—4 (Fig. 16), and at=—8 (Fig.17). In all

_ —(=x1 )+ (y=31))?) /83(1)
Y= M) + Ar(t)e ( )15 (62) cases the agreement between the dominant FTLE ridges and

A 7((x7xl(t))2+(y7yl(z)>2)/a§(z) the corresponding stable or unstable manifolds of the DHTs
+Ax(n)e ’ is good, provided that the FTLE fields are computed for suf-
where ficiently largeT .
M(t) = L(1) — a(t)(x cosO(t) — y sin@(t))2 (63) 3.3.6 Eddy-quadrupole system

+ /3(t)(x sind (1) + ycose(t)), (64) In this final example we focus on an incompressible flow

characterised by the following streamfunction
and £L=-1, «=0.08, 8=1, 6=—n/4. The second and the (gt
third term in 62) give rise, for appropriate values of the V. ¥.1)= (xy (U(I)—xz) —‘”y3+ﬂxy5)e (097 (66)

amplitudes.A; and A, to the appearance of closed con-

tours in the instantaneous streamline patterns. We refer téﬁ"r:‘e;ea(t) IS scl)me function of}mzar@k}ﬁﬁé ﬁre c.ons.tantsb.
such patterns Eulerian eddies. We choose Warel0,51=4, The dynamical system associated with the flow is given by

x1=y1=4, xp=y2=0, §2=0.9 and the time-dependent ampli- (=9 /9 = 3U/d R2.  (eRR 67
tude of the second Eulerian eddy as A=9y /0y, ¥ y/ox, (. y)eR", teR. (67)

We will choose here a particular form of time-dependence
Az(t)=—2/n (atan(r — 1) — atan(-9) ). (65)  which will induce a symmetric transition of the flow
associated with@7) from a four-eddy configuration to an
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2 b)

Fig. 15. FTLE fields (cf.A.2) shaded yellow and red, and stable/unstable manifolds of two DHTs (black curagsdmputed in the flow

(62) at+=0 during a transition between the singe-eddy and eddy-pair configuration (see th6, Eigfor the geometry at earlier timeg})

backward FTLE field, computed witi=—25, superimposed with the unstable manifolds (dashed black) of the two DHTs (black dots); the
LCS are delineated by the red ridges of the FTLE map and were enhanced by appropriate filtering of the col¢rtheaforward FTLE

field (yellow/red shades), computed with=25, superimposed with the stable manifolds (cyan/blue) of the two DHTs (black dots). The
manifold segments inside the black rectangle were removed in order to reveal the LCS underneath. When computed over sufficiently long
time intervals, the length and definition of the strongest ridges (LCS, red) of the FTLE maps generally increases (see, howggh8ect.

the method starts detecting “premonitions”/“ghosts” of the future/past phase space geometry. Note, in particular, the spiral structure inside
the small eddy visible in the forward FTLE map (c). Note also a significant inward curl of the weaker ridges of the forward and backward
FTLE fields inside the large eddy which are not associated with the instantaneous geometry of the invariant stable/unstable manifolds.
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Fig. 16. Comparison between the forward FTLE map (yellow/red shades) and stable (blue, cyan) manifolds of two DHTs (black dots)

M. Branicki and S. Wiggins: Finite-time Lagrangian transport analysis

-1 -05 0 05 1 X
X

computed in the flowg2) atr=—4. The FTLE field was computed with=25 and the LCS, represented by the red ridges, were “extracted”
by filtering the colour map. The manifolds inside the black rectangle were removed in order to reveal the LCS underneath.1Sem#igs.
17 for the geometry at other times during the transition.

Fig. 17. The forward FTLE map (yellow/red shades) superimposed with the stable (blue, cyan) manifolds of two DHTs (black dots) computed
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in the flow 62) atr=—8. The FTLE field was computed with=25 and the LCS, represented by the red ridges, were “extracted” by filtering
the colour map. The manifolds inside the black rectangle were removed in order to reveal the LCS underneath. EeanEit§ for the
geometry at other times during the transition.
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Ts

b) t=0

Fig. 18.centre Dynamics in the two invariant plangs= {(x, v, t)eR2x IR : y=0} andZ,= {(x, v, H)eR%x IR : x=0}, inthe extended
phase space of the flow associated w&H) with o (¢) given by (72). The flow undergoes a transition associated with changes in finite-time
stability properties of the trivial solutiom()=0 (see text). The Distinguished Hyperbolic Trajectories are marked by thick black lines and
paths of instantaneous stagnation points (ISPs) are marked by dashed green lines (and by greardlofhim dynamics in the invariant
planeZ, corresponds to Scenario Il in Se8tl (a—c) Instantaneous streamline patterns in the flow associated@itht(three different

times.

b) I y’t_o C) )\—5(%%75:5)

/%N |

- ) 0
3 0. 3 T

Fig. 19. Backward FTLE fieldsay (x, v, t) cf. A.2, computed for the systen®7) with o (¢) given by (72) ats=5 and different integration

time lengthqa) |T|=1, (b) |T|=3,(c) |T|=5, (d) |T|=10. 1-D cross sections of these fields alangyE2) are shown in the central panel. The

flow associated withg7) undergoes a transition which results in an emergence of four new eddies which are present in both the Eulerian and
Lagrangian frameworks. Contrary to common intuition, the location of the strongest ridges in the FTLE fields variesmdtthe overall

strength of the ridges diminishes with This phenomenon is a direct consequence of the transition. Note also that the strongesidjge in
located atc=0, is a “ghost” of the the dominant attracting structure before the transition. The stable manifolds (blue) and unstable manifolds

(red) of four DHTSs involved in this process are showrfeh
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eight-eddy configuration (see Fi@8). We use this setting which is associated with changes in the geometry of certain
to illustrate two issues affecting, respectively, the invariantdistinguished, hyperbolic trajectories. Due to the presence of
manifold computations and the FTLE computations. Due tohigher order terms in70) and (1) we cannot compute the
the type of transition considered here we are not able to idendistinguished trajectories in a way analogousitt)( How-
tify DHTs throughout the time interval considered. The prob- ever, one can resort here to the iterative algorithm (cf. Ap-
lem affecting the FTLE computations stems again from theirpendix A andde et al, 2002 Ju et al, 2003 as in most other
non-uniqueness and the fact that, in this case, the FTLE fieldsases discussed in this work. Recall that, as it was shown in
computed for longer integration times show less pronouncedde et al.(2002; Ju et al.(2003, if the iterative algorithm
ridges, detecting ghosts of pre-transition flow characteristicsconverges, it returns a hyperbolic trajectory. Such a trajec-
After a bit of algebra, one may notice th&7f has two  tory is branded “distinguished” if it is also bounded (cf. Def-
invariant lines given by=0 andx=0. Alternatively, in the inition A.5) on the considered time-interval Since we are
extended phase space one may identify two invariant planesoncerned in this example with a system which is defined
on /=IR and asymptotically autonomous due to the form of

I, ={(x.y.0) e R”*x R: y=0}, (68) (72), the obvious candidates for the location of the DHTSs for
I, ={(x,y,1) € R?>x IR: x=0}. (69) t—+o0 are given by the hyperbolic stagnation points of the
) o autonomous dynamical systems given respectively@¥y (
Note further that the dynamics i is given by with 0*= lim o (r). One would then expect the existence
¥ = x(g (t) — x2)g—x4/64 - x(a (1) — x2) + Ok, of five DHTs after the transition and the presence of only one
-0 (70)  DHT before the transition. Since the DHTs are trajectories,
y==5 they cannot bifurcate. Consequently, all of the five trajec-
and the dynamics iff, is given by tories which would be branded “DHTSs” after the transition
) must exist in the flow before the transition. For a given time
x =0, interval I C IR the finite-time DHTs can be located using the

. 2\ —ytyst 71 iterative algorithm provided that one can choose an initial
= t . S : )
Y y(a( ) ayz)e 5 1) guess, given by & finite-time hyperbolic path (see Defi-
=—y(o()—ay?) +O(®). nition A.4) which lies sufficiently close to the sought DHT
Clearly, we already analysed this type of 1-D dynamics in(Cf' .D?f.'“l'“"” Al7 mbthe Appendp((j 'fA)' Ofrt]en, ahsat|fs_fac—
Sect.3.1 In this example we will only consider the time- tory initia guess:['can gconsrt]ruEte rfomt etpat ;o mst?n—
dependence that corresponds to Scenario Il discussed i'fff‘neous stagna lon points which are irozen-time nyperbolic.
; This strategy is also useful here for finding two DHTSs con-
Sect.3.1, i.e., we choose ) . . .
tained in the invariant plang,. However, due to the nature
o(r) = 2(atar(10r) + /2 — 1); (72)  ofthe dynamics i, (which is identical with that considered
o ) _ _ in Scenario Il of Sect3.1) we are unable to construct a guess
the remaining parameters i66) area=1/3, $=0.008/5 and 4, intervals containing® which would lie sufficiently close

5:5', . to the DHT. Identification of DHTs on intervals contained in
With o (1) given by (/2) so thaio (+*)=0 atr*~0.0642, 0one  (;+ ) does not pose such difficulties but the outcome de-
can easily see that within the plafig the trivial solution,  pands on the chosen time interval, i.e., the iterative algorithm
x(1)=0, of (67) is pullback attracting (cfl5andLanga etal.  conyerges onto different hyperbolic trajectories depending
200§ on /=(—o0, ") and that it is repelling (in the sense q, the considered time interval. We compare the stable mani-
of 7) on I=(i", c0). If we consider the dynamics within - fo|ds of the identified DHTS with ridges of FTLE fields com-
the invariant planeZy, the trivial solution is repelling on puted for this flow in Fig19.
I=(=o00, ") and it 'i forwards attracting (ctLB_and Langa When attempting to characterise the flow associated with
et al, 200 on /=(1*, c0). Consequently, whila (1)=0is (67) and (72) using the FTLE fields, one can, as in the
pot hypgrbo!lq Orﬂ? (in the tradl’gonal, mﬂmte-qme sense). I previous examples, identify the one-parameter family of
is certainly finite-time hyperbolic on any time interval which FTLE fields, {kT(x, y’t)}rem' which are computed over

m* 1 *
;j'o.(tas ?Ot contazlmbl. More'?v%r,o\ghlltigor]c(&io,t )Egy different integration time intervals. Despite this non-
|nf| eA- ime CLIJ_n;a gsma?el,?s (f)t‘_' 1.€., bJ [f[‘(t)_f ] uniqueness of the FTLE diagnostic, in most examples pre-
(cf. AppendixB and Sect3.3.1), contains a subset ¥, for sented so far one could obtain good agreement between the

* H u — 1
any JC(t*, co) the unstable mameIW/ [x(t).__O] c_ontams invariant manifold calculations and the LCS obtained from
a subset off,. The converse is true for the finite-time stable

manifolds, W’ [x (r)=0], for, respectively,/ C(—o0, #*) and 9Note that on a finite time interval this notion is non-unique
J (1%, 00). since any trajectory of a smooth vector field is bounded on a

Similarly to the 1-D dynamics considered in Se&t, the  pounded time interval. However, the ambiguities due to the non-
changes in stability properties of the trivial solution are ac- uniqueness are, in general, only non-negligible near the end points
companied by a transition in the Lagrangian flow structure,of the time interval; cfJu et al.(2003; Ide et al.(2002.

Nonlin. Processes Geophys., 17362010 www.nonlin-processes-geophys.net/17/1/2010/



M. Branicki and S. Wiggins: Finite-time Lagrangian transport analysis 29

Ar for sufficiently largeT'. In this case, however, the situ- when employing the invariant manifold approach as com-
ation is rather different and in many ways analogous to thepared with FTLE fields. In Sec3.3.2 we considered a
1-D configuration discussed in Se8tl In Fig.19we show  double-gyre flow which has become a common benchmark
results of backward FTLE computationstab for the flow  flow in the LCS literature. We used this example to show
associated with§7) ando (t) given by (72). The panels (a— that essentially the same information about the flow struc-
d) show results of computations over four different lengths ofture can be obtained from both techniques provided suffi-
the integration time interval (dY'|=1, (b) |T|=3, (c)|T|=5, cient care is taken. This seems to be a common situation
(d) |T|=10; the central panel show 1-D cross-sections ofin flows which do not undergo transitions. We also illus-
these fields atd, y=2). Three issues affecting the ridges of trated there the sensitivity of the results to the order of the
the shown FTLE fields are worth noting: (i) the geometry of integrator used in computation of the trajectories as well as
the ridges (i.e., the LCS) and their connectivity changes withthe importance of the cut-off level for the filtering procedure
T, (ii) the relative and absolute strength of the ridges dimin-used in extracting LCSs. These conclusions and, in partic-
ishes withT, (iii) for sufficiently long (backward) integra- ular, the need for accurate trajectory integration, is further
tion times the strongest ridge in the FTLE field correspondsstressed in SecB.3.3where we considered an axisymmet-
to a “ghost” of the pre-transition flow structure (sge0 in ric, time-dependent perturbation of the Hills spherical vor-
d). Consequently, in this case it is rather difficult to obtain tex. This flow serves as a good illustration of how inaccurate
a coherent picture of the flow structure based on the family,integration of flow trajectories can lead to plausible yet in-
{AT(x, v, t)}TelR, of FTLE's. correct FTLE fields. The two closing examples, considered
in Sect.3.3.5and 3.3.6 were linked to the 1-D examples
discussed in SecB8.1 The kinematic model of an “eddy-
pair system”, discussed in Se8t3.5 resembles a common
feature in geophysical flows and both the invariant manifold
and the FTLE methods yield correlated diagnostics of the
In this paper we have considered issues associated with thigow structure in this case. The “eddy-quadrupole” system,
characterising the notion of hyperbolicity for aperiodically discussed in Sec8.3.6 further highlights the problems that
time-dependent vector fields that are only known on a fi-might arise when trying to select the most suitable FTLE field
nite time interval. We explored the concepts of finite-time from the family parametrised by the integration time length.
hyperbolic trajectories, their finite time stable and unstableln particular, this example illustrates the ambiguities one may
manifolds, as well as (one-parameter) families of finite-time encounter when attempting to increase the length of the in-
Lyapunov exponent (FTLE) fields and associated Lagrangianegration time interval in order to obtain longer (in the arc
coherent structures. Our approach has been to consider a cdéngth sense) and more pronounced ridges in the FTLE field.
lection of diverse examples where explicit phenomena can b&inally, in the appendices, we collect a number of techni-
exhibited and controlled. cal details on finite-time hyperbolicity and its use in under-
In Sect.3.1 we considered a 1-D vector field where the standing fluid transport, as well as a detailed discussion of an
aperiodic time-dependence was specified in three distincimportant technical detail concerning the choice of the initial
ways. This enabled us to probe the phenomenon of flonmaterial segment for the computation of finite time stable and
transitions and show how they may give rise to ambigui- unstable manifolds of finite time hyperbolic trajectories.
ties in the effort to determine flow barriers from non-unique  The phenomena discovered and analysed in our examples
FTLE fields. Similarly, we used this configuration to illus- point the way to a variety of directions for rigorous math-
trate issues associated with the lack of a unique, locally disematical research in this rapidly developing, and important,
tinguished hyperbolic trajectories organising the structure ofnew area of dynamical systems theory.
the flow. In Sect3.2.1we considered two essentially dy-
namically opposite examples where the Lyapunov exponents
of every trajectory could be determined analytically. In each
example all Lyapunov exponents were identical, hence theAppendix A
FTLE fields did not give rise to LCSs. This highlighted
the point that the emergence of LCSs is a consequence ¢fome important definitions
spatial heterogeneity in the FTLE field and not just due to
a rapid separation of nearby trajectories. In S8@3.1we In order to make the discussion presented in this paper rela-
considered a velocity field exhibiting the strain-vortex-strain tively self-contained, we recapitulate here some fundamental
transition. This example illustrated some crucial issues asnotions and definitions which are important for the analysis
sociated with attempts to understand the nature of transpopresented in the preceding sections. All of the material in-
barriers in a transitioning flow in the finite-time setting. In cluded in this section can be found in existing literature and
this case, depending on the length and location of the “ob-we provide references, which are not exhaustive, to some rel-
servation window”, different diagnostics could be obtained evant material.

4 Conclusions
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Consider a velocity field : IR" xI— IR" defined over a
time intervall=[z;, ty] C IR and a system of ODE’s
x=v(x,1), xclR" tel. (A1)
The curves, y (1) I—IR" that satisfy Al), i.e.,
y()=v(y(),t), are referred to agR”—embedded trajec-

tories of the non-autonomous dynamical system associated =

with v (other embeddings are possible; for exampig,) :
I—IR" x I, but we do not require such notions here. Also,
one could define the systerAX) in a subseDC IR" but this
is not important here.)

Consider now a transformation of the systeAl) to
a frame moving along an arbitray” (r>1) path, x(¢) :
I—IR", given by

E=A;(nE+f:&,0),

whereé =x—x, A;c (7) is the Jacobian af(x, r) evaluated at
x=x(t),i.e.,

(A2)

Az (1) = dwE(), 1), (A3)
and
fe€, 1) =v(E +X(0), 1) — o (¥(1), 1)E — %(2). (A4)

If x=y(r) is a trajectory of the systemA(),
when y(©)=v(y (¢),1), then @2) is homogeneous with
f, (&, 1)~O(&2), and the linearised equation

E=A,(1)E, (A5)

M. Branicki and S. Wiggins: Finite-time Lagrangian transport analysis

be given (e.g.Shadden et gl2009 in terms of a flow map
induced by Al) defined as

@, R"— R", x

> @) =y X, 1),  (A9)

wherey is a trajectory of A1). Then,A can be expressed as

T
(3!, ()" 0 D, (xr),

whered, @} (x,,) denotes the Jacobian ®f, evaluated at;, .
We used a 1-D variant of this definition m)(

(A10)

Definition A.1 (Finite-time Lyapunov exponents, (x, t)).
The logarithms of the eigenvalues #fl and are called the
finite-time Lyapunov exponents computed at timaver the
time intervalT. If T>0, AiT(x, t) is called thei-th forward
finite-time Lyapunov exponent. If <0, A%.(x, ) is called
thei-th backwardfinite-time Lyapunov exponent.

For more details regarding properties of Lyapunov expo-
nents the reader is referred tdgtok and Hasselblati995
Lapeyre 2002 Legras and Vautardl996, and for descrip-
tion of algorithms allowing their computation see, for exam-
ple, Dieci et al, 1997 Dieci and Eirola 1999 Dieci and
Vleck, 2002 Greene and Kim1987, Geist et al. 1990).

Definition A.2 (Finite-time Lyapunov exponent field,
Ar(x,1)). Assume that

AL, 1), A5 (x, 1), . (e, 1), (A11)

represent the finite-time Lyapunov exponents computed for a
trajectory of A1) passing throughkeR" at r. The scalar

describes the dynamics in the neighbourhood of the trajecfie'd

tory y (¢) in the frame moving at spegd
Thus, ifé; denotes the perturbation ¢f(r) atz=z;, we
find that it evolves according to

18| = /(X(t, 1)8;, X (2, 1:)8y;) (A6)

= (8, X1 1) TX (2, 1)3,,), (A7)
where A=X(z, ;)T X (¢, t;) is commonly referred to as the
finite-time Cauchy-Green tensor. We I¥i(z, ;) denote
the fundamental solution matrix oAb), i.e., it is the map
X, )(-) : IR"— IR" which is linear inz; el and Lipschitz
in trel. Moreover, ifé(t,&;, t;) is a solution of A5), then
E@,E;,1;)=X(t, 1;)&;, andX (¢, s)X (s, t;)=X(¢, ;). SinceA

(e, 1) = max[x% @ 1) A2 (1), A t)] ,
is called the finite-time Lyapunov exponent field at time
computed over a time interval of length. If T > 0, it
is called a forward FTLE field and i < O, it is called a
backward FTLE field.

(A12)

Definition A.3 (Finite-time exponential dichotomy)\Ve say
that the linear Eq.A5) has arexponential dichotomgn the
finite time intervall if there exists a (constant) projection
operatorPe IR"*", P>=P, and positive constant§, L, «, 8
such that (for, sel):

is real and symmetric, it can be diagonalised in an orthogo-

nal basis of eigenvectors which denote the principal axes ofX(z, 7;)(Id — P)X~

growth of the infinitesimal perturbation. It then follows that
the tensor
M=

(X(t, 1) X (2, 1)) 20, (A8)

IX(t, )PX"L(s, )| < Ke @09 for 1>,
Ys, )| < Le P60, for s>t.
(A13)

For more details see, for exampl€pppel (1978; Henry
(1981). The notion of ageneralised exponential dichotomy
whereP does not have to be constant, is discussed for exam-

is also diagonalisable in the same orthogonal basis. We notple, inZhang(1992. Numerical methods for calculating the
that an alternative definition of the Cauchy-Green tensor carconstant’, L, «, andg are given inDieci et al.(1997).

Nonlin. Processes Geophys., 17362010
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Using the notion of exponential dichotomy, we can pro-
vide one possible definition of finite-time hyperbolicity.

Definition A.4 (Finite-time hyperbolicity) We say that the
pathx(¢z) : I—IR" is finite-time hyperbolion the interval
I if the linearisation of the homogeneous part A2}, given

by

& = hv(x(),1)§, (A14)

has exponential dichotomy ah Furthermore, ify(¢) is a
trajectory of the systemA(l), theny is called afinite-time
hyperbolic trajectoryon the intervall if the equation A5)
has exponential dichotomy dn

Remark: In the limit ;——o0, ty—o00 andx=y (1), the
above definition becomes equivalent to the standard notio
of a hyperbolic trajectory.

Roughly speaking, finite-time hyperbolicity of a trajectory
y(¢t) implies that there exists &-dimensional ¥<n) sub-
space inIR" of solutions approaching at an exponential
rate in forward time, and & —k)-dimensional subspace of
solutions approaching at an exponential rate in backward

time; no assumptions are made the about the fate of thes

neighbouring trajectories beyordeven if the velocity field
v(x, 1) is known outside this interval.
Given a finite-time hyperbolic pattx(z), a correspond-
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Definition A.5 (Distinguished, Finite-time Hyperbolic Tra-
jectory.) Let x(z) be a finite-time hyperbolic path which
does not have an exponential component withinlR. A
trajectoryy (¢) of the systemA1) is called ainite-time Dis-
tinguished Hyperbolic Trajectorif it can be represented as
y (t)=y(t) + x(t) wherey(¢) satisfies the integral EA(L5)
subject to the conditionsA(l6) and A17), and the patkk is
finite-time hyperbolic within/.

Remarks. Two issues are worth mentioning here:

(i) The notion of a distinguished, finite-time hyperbolic
trajectory is, in general, non-unique on any finite time (or
semi-finite) interval.

(ii) The finite-time hyperbolic patk () used in Defini-
tion A.5 can be given, in particular, by a path bfstan-
taneous stagnation poin{$SPs) which are frozen-time hy-

rE)erbolic (cf. DefinitionA.6). Given the velocity fieldv :

IR"x I— IR", a path of ISPs is given by a continuous curve,
xisp: I—IR", t—xisp(t), such that

v(xisp(), 1) =0,  tel, (A18)
where7CI is a time interval within which the Jacobian,
@xv(xisp(t), t), does not vanish, as required by the Implicit
Function Theorem for the existence of a solutionAa.§).

Definition A.6 (Frozen-time hyperbolicity) We say that the
path of instantaneous stagnation poimig,(z) is frozen-time

ing finite-time hyperbolic trajectory can be derived using the hyperholic on the interval if the eigenvalues of the Jaco-

techniques described ilde et al.(2002; Ju et al.(2003.
This is accomplished by consideringX) in a frame “mov-
ing” with x (cf. A2). It can be easily checked that the partic-
ular solution of A2) satisfies the following integral equation

t
YO = X, 1) / PX~1(s. 1) (y(s). s)ds (A15)
1

.
— X(t, t,-)/j(ld — P)X (s, t)f(y(s), 5)ds,
t

whereP is the projection operator associated with the expo-

nential dichotomy A13) andX is the fundamental solution

bian, dxv (xisp(?), 1), in (A2) have non-zero real parts for any
fixedrel.

Remark. A frozen-time hyperbolic path of ISPsjsp(), is
also finite-time hyperbolic if EqA14) with x (r)=xisp(?) has
(finite-time) exponential dichotomy. This generally requires
v (xisp(?), t) to be sufficiently slowly varying (se€oppe|
1978 Propositions 1-2, p. 50, 52). A numerical approach to
solving this problem was described lide et al.(2002 (see
alsoJu et al, 2003. The method is based on a numerical de-
termination of the finite-time Lyapunov exponents in a frame
where the linear part ofA2) is given by a diagonal matrix
with constant coefficients.

matrix associated with the linearisation of the homogeneous

part of (A2). Furthermore, using very similar techniques to
those employed idu and Wigging200J), it can be shown
that, for givenx (), the solution of A15) is finite-time hy-
perbolic and unigue on the time intervaprovided that the
following holds for allze !

lo(y(t) + (1), 1) — B @E (), )y (1) — X(1)]|loo < 00,  (AL6)
and

B : K L\1!
Hoxv (1) + X(1), 1) — v (E (), Dlloc < (g + E) . (A17)

The constantX, L, «,  are associated with the exponential
dichotomy of the linear part o#§2) (cf. Definition A.3).

www.nonlin-processes-geophys.net/17/1/2010/

Definition A.7 (Rate-of-strain tensor)The symmetric part

S,(1) = 3[A, )+ A, 0], (A19)
of Ay(t) = dxv(y(2), t) is called therate of strain tensar

The rate of strain tensor describes the growth or decay of
solutionst (¢) of the linearised systen®\). This can be seen
by directly evaluating { (r)||2/dt, i.e.,

d._ ., d
EIIE(I)II = E(S(t),é(m
=(EO. 1A, O +A,0O"ED) =2E0), SOE®)),

where (-, -) denotes the canonical inner product @Rr,

(A20)
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which induces the canonical norif||=+/(€,&) in IR". (iif) Quasi-hyperbolic region:

Thus, if S() is negative definite, all solutions of the lin- Q@) = {x € R?: S,(t) is indefinite,
earised system are strictly monotonically decaying (in the N _ .
sense of their norm) to the trivial solution. Wh§) is posi- M (@) is negative definitg,

tive definite, all solutions of the linearised system are strictly (iii) Degenerate region:

monotonically growing (in the sense of their norm). If the D(t) = R?\[A() UR®) UE®R) UH() U Q)]

strain tensor is indefinite or semi-definite one can define the

following set: Definition A.11 (Finite-time hyperbolicity based on the dy-
namic partition;Haller, 2001). Assume that=2 in (A1)

Definition A.8 (Zero-strain set, ctHaller, 20010. The set and that the velocity field satisfieg - v=0. A trajectory
y (1) : I— IR? of (A1) is calledfinite-time hyperbolion the

Z,t)={cR": (&.S,)&) =0}, (A21)  intervall if
is called thezero-strain setassociated with linearisation (i) y () intersectD(I) at isolated points.
abouty ().
(i) If I¢ denotes a time interval that the trajectory spends
. . . ) - in £(1), then
Definition A.9 (Strain acceleration tensor; or Cotter-Rivlin
tensor) The time-dependent operator N
) | P P / V2|8, (0)|dr < % (A24)
~ A A A ~ ~ 1
My () = 280 +8,0A 0 +A,078, 0. (A22) ’
where
is called thestrain acceleration tensoassociated with the
linearisation of A1) about y(¢#). The strain acceleration g - 2 312
tensor is associated with the second derivativggdf)||, i.e., | | - _Zl| il
i,j=
d? , d A - The condition (ii) implies that ify (¢) is finite-time hyper-
@II‘;’U)II _E@m’ Sy F@)=ED. My E®D).  (A23) bolic, its finite-time stable and unstable manifolds of are non-

The restriction oM, to the zero-strain set s denotediy . znmdpg.ufzi-éagieeréa)fnlc%gédﬁgzg?énie4e2i 's0 Append
Forn=2 andV-v=0 in (Al), i.e., the case associated with

unsteady and incompressible 2-D flows, the characteristics )

of S, andMZ were used irHaller (2001 to partition [R? Appendix B

into time-dependent regions containing system trajectories ) o ) i

with distinct stability properties. (Some generalisations of O" the choice of the initial material segment in

this framework to:=3 were discussed iHaller, 2005) The ~ humerical computations of stable and unstable

following definition (seeDuc and Siegmund200§ extends manifolds of (finite-time) hyperbolic trajectories.

the dynamic partition ofk to the compressible flow setting: We briefly discuss here the problem of approximating stable

and unstable manifolds of flow trajectories which are finite-
time hyperbolic (see Definitions.4 andA.11).

Consider the linearisationAb) of the dynamical sys-
tem (Al) about a system trajectory (i.ex=£+y (t) and

Definition A.10 (Dynamic partition ofIR?). Consider the
extended phase spac®?x I, associated with the flow in-
duced by Al). For eaclvel one can define the following

sets y(t)=v(y(t),t) for tel). In such a case the the stability
(i) Attracting region: properties of the trivial solutior§ (r)=0, of (A5) correspond
A(t) = {x € R?: S.(t) is negative definitg to the linear stability properties of(r) in (Al). As already
(i) Repelling region: noted in Sect3.3.1, if the system A1) is only known (or de-

fined) on a bounded intervalZ IR, it is not possible to define
the stable and unstable manifoldst@f)=0 in the traditional
“infinite-time” sense (even the trivial solution of the system

R(t) = {x € R?: S.(¢) is positive definitg,
(i) Elliptic region:

E() = {x e R?: S,() is indefinite, (A5) considered o =IR is hyperbolic). In the finite-time
NIZ(r) is indefinite} setting one can define the following two flow-invariant, “sta-

ble” and “unstable” sets of the linearised equatiéd) (see

(iv) Hyperbolic region: Duc and Siegmund@008for a more general treatment in the

H(t) = {x € R?: S,(1) is indefinite, nonlinear case): The finite-time stable set of the trivial so-
I\7If(t) is positive definitg, lution of (A5) on I, £(¢)=0, is given in the extended phase

Nonlin. Processes Geophys., 17362010 www.nonlin-processes-geophys.net/17/1/2010/
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spaceS=IR?x I, by so thatWw* (1) N W~ (1)=Z, (r). Moreover, fory (r)eH(r)
d the restriction of the strain acceleration tensorZp(z),
W‘;[EZOJZ{(&J)653 57 IXGm, &1l <0, Vmel}, (B1)  MZ(), is positive definite, i.e.{£1(), M(1)&1(1))>0 and
(E2(1), M(1)E2(1))>0 which, based onA23), implies that
and the finite-time unstable set®€ft)=0 on[ is defined, for  solutions,& (¢, &+, t*), &+€Z,(t*), of (A5) cross the zero
tel, as strain setZ, (+*) atr=t* from the region of decreasing norm
d to the region of increasing norm.
W‘;[&:O]:{(E,,I)ES: %||X(m,t)§,||>0, Vmel}, (B2)
Proposition B.1. Consider a trajectory () of (A1) and the
whereX is the fundamental solution matrix associated with corresponding trivial solutiorg (z)=0, of the linearised sys-
(A5) and|| - || is the norm induced by the canonical inner tem (A5) on I=[z,, t,] with the fundamental solution ma-
product onR?, i.e.,|lx||=+/(x, x). The instantaneous geom- trix X(z, #,). The finite-time unstable sety7[§=0] and the
etry of B1) and B2) is given by finite-time stable setW;[£=0] are invariant under the ac-
q tion of X(z, ¢,). Moreover, ify(r) € H(r) for rel, the set
W‘}[E:O](t):{‘g‘,ele: d—IIX(m,t)Et||<0, VYm e I}, (B3) \L/,+ ={eR?: At eI, € € VT (1)} is forward-time in-
" variantand the seb; = {§cIR? : 3tel, £e¥ (1)} is back-
and ward time invariant. In particulaikVy [§=0] (z,) = Ut (t,)
andWs, [£=0] (1,)=V " ().

Proof. The invariance oW/ [§=0] andW[£=0], as well
as the forward-time invariance df*(¢) and the backward-
referred to as-fibres of W;[§=0] and W;[§=0] respec-  time invariance of' (), was discussed iPuc and Sieg-
tively. mund(2008, cf. Remark 23, Theorem 44. In order to show

In contrast to the classical (time asymptotic) definition of that W4[E=0](t,) = ¥ (1,) we appeal to the forward in-
stable and unstable manifolds, the finite-time counterpartsyariance of () under the action oX(z, #,).

W¢ andW9, have the dimension of the extended phase space Assume first that the opposite holds, i.e., thae W+ (*)
(rather than a lower dimension) and theifibres are open  and thatg (1**, &+, 1*)¢ W+ (1**) for *<1**, t*, r**<I. Due

setsiniR". If £(1)=0is finite-time hyperbolic o, these sets  to continuity of&(r), the trajectory has to cross the zero

are nonempty. In such a case, acommon approach used inthgrain set at some time*</*<¢** which requires that

invariant-manifold Lagrangian transport analysis is to chooseg (¢ &, *)eZ, (1*) and

(non-unique) segments of initial conditions of lengtk1, )

47 and &7 , containing the trivial solution of the linearised i||§ (£, &0, %) | = (&£ (), M (:¥)E (t*)) <0, (B8)

system and follow their forwards and backward time evolu- dr? 1=t*

tion. WQ show beIovy (cf. Proposn!cBLZ) how to choose the |\ hich contradicts the fact that i (1) eH (1) for rel, N (1)

(non-unique) material segments in such a way that they are; positive definite onZ, (1) for rel. Consequently, if

Contgined in, respectiv_ely, the finite-time stable and unstablq,(t)eH(t) and&«eW+(t*), then& (1)ew+ (1) for t>1*, 1,

manifolds of the linearised systems). . t*el, which implies that+ is forward-time invariant or.
Recall first that the trivial solutio&(¢)=0 of the linearised Note that¥+ is not backward time invariant. In order to see

equation corresponds §o(r) of (Al). If y () € (1) for s it js sufficient to consider trajectories crossing the zero
all ref, then the (symmetric) rate of strain tens8y,(1), is strain set,Z, (%), at t*e(ty, 1]. Sincedaw™ (t%)=2,, (t*),
indefinite on/ (see DefinitionA.10) so that the zero-strain any trajecton (¢, £+, %) , £-€ 2, (t*) leavesw for r<r*

set contains two orthogonal lines for eaef, and it is given in backward time. We finally note that the s@t'(z,)
by is invariant under the action oX (¢, ¢,), which implies
Z,t) = z1.22 € R?: (z1(1),22(1)) = O, that W+ (z,)CWY [£=0] (,). However, based on Defini-
tions B6) and B3) it is clear thatWy [=0] (1) C¥ T (1),
(z1(1), gy(t)zz(m =0}. (B5) which implies that¥ (1,)=W [£=0] (¢,). Similar proce-
dure can be used in backward time to show that is
We now define a subset of nondecreasing solutiongaat backward-time invariant of. O

d
W’;[‘;':O](t):{éte R?: %I|X(m,t)§,||>0, Vme]}, (B4)

d
w+<r)={s,em2: g, 1X0n DEi
m

> 0}, (B6) Proposition B.2. Consider the linearised flowAB) over the
time intervall so that the trivial solution is finite-time hyper-
bolic on! (in the sense that(¢)eH for t<I). If the material

segmentsi(? , &7 , are chosen as

m=t

a subset of nonincreasing solutions at as

-5 3] c R}, (B9)

d
\P‘(t)={£teﬂ€2: g 1% 0m. D ,
d 2" 2

I < 0}, (B7) U ={xeR?: x=p5"(t), Be [

m=t
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and

& ={x e R?: x=pS"(n) pe[-3. Z|cR) (BLO)

202
where ST(r) and §~(t) are the eigenvectors of the
rate of strain tensorS(r), corresponding to the eigen-
values s*(r)>0, s (1)<0. Then, U4 CW¥ [=0] and
&7 cW [6=0].

Proof. For any pointu,, = 8" (t,)ely , |B|<a/2, we
have
(g, S(ta)uy,) > 0, (B11)

which implies thatu,, e¥ ™ (1,)=W' [ =0] (t,). The in-
variance of the unstable manifold [§ =0] implies that
£ (1, uy,, 1) eEWY [=0] (¢) for tel. Similarly, for any point

s1,=B 8 (1)€SL, |B] < a/2,

we have
(51, S(tp)s1,) < O, (B12)
which implies thats, eV~ (1,)=W; [£=0] (,). The in-

variance of the stable manifold¥; [§=0], implies that
& (1,54, 1) WY [=0] (1) for r€l. O

Note finally that, due to the the embedding property of

finite-time stable and unstable manifolds (fre and Sieg-
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