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Abstract. Politano and Pouquet’s law, a generalization
of Kolmogorov’s four-fifths law to incompressible MHD,
makes it possible to measure the energy cascade rate in in-
compressible MHD turbulence by means of third-order mo-
ments. In hydrodynamics, accurate measurement of third-
order moments requires large amounts of data because the
probability distributions of velocity-differences are nearly
symmetric and the third-order moments are relatively small.
Measurements of the energy cascade rate in solar wind tur-
bulence have recently been performed for the first time, but
without careful consideration of the accuracy or statistical
uncertainty of the required third-order moments. This pa-
per investigates the statistical convergence of third-order mo-
ments as a function of the sample sizeN . It is shown that
the accuracy of the third-moment〈(δv‖)

3
〉 depends on the

number of correlation lengths spanned by the data set and a
method of estimating the statistical uncertainty of the third-
moment is developed. The technique is illustrated using both
wind tunnel data and solar wind data.

1 Introduction

In the solar wind, coupling between large- and small-scale
turbulence occurs at kinetic scales defined by the ion gyro-
radius and the ion gyro-period. At these scales, the turbulent
energy cascade undergoes a transition from large magneto-
hydrodynamic (MHD) scales to small plasma kinetic scales
where the energy is ultimately dissipated by collisionless
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processes. Detailed understanding of the energy cascade pro-
cess at MHD-scales is a prerequisite for studies of this cou-
pling. Here we focus on one particular aspect of MHD-scale
turbulence which is of some practical importance, namely,
the determination of the energy cascade rate from measured
data.

MHD-scale turbulence in the solar wind is often modeled
using the theory of incompressible MHD because of its rel-
ative simplicity, even though the solar wind is known to be
compressible. In the solar wind, the energy density of MHD
turbulence is comparable to the plasma thermal energy at 1
AU (Belcher and Davis, 1971) and the turbulent energy cas-
cade is believed to significantly heat the solar wind plasma
as it flows from∼1 AU to several tens of AU. Theoreti-
cal work has shown that plasma heating caused by dissipa-
tion of the turbulence can likely explain the observed radial
temperature profile of the solar wind which decreases more
slowly than would be the case if the expansion were adia-
batic (Matthaeus et al., 1996; Zank et al., 1999; Matthaeus
et al., 1999; Smith et al., 2001; Isenberg et al., 2003). To
refine these theories, accurate measurements of the energy
cascade rate are needed. Recently, the energy cascade rate
ε has been directly measured for the first time in the solar
wind using a generalization of Kolmogorov’s four-fifths law
(MacBride et al., 2005; Sorriso-Valvo et al., 2007; MacBride
et al., 2008; Marino et al., 2008). Before discussing this, it
may be helpful to provide some background information on
Kolmogorov’s four-fifths law.

For turbulent flows in ordinary incompressible fluids such
as air or water the energy cascade rateε is often measured
indirectlyby means of the energy dissipation rate

εdiss = 15ν

〈(
∂v

∂x

)2〉
, (1)
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where ν is the kinematic viscosity and the coefficient 15
arises from the assumption that the turbulence is isotropic
(Pope, 2000, p. 134). The energy cascade rate can also be
measureddirectlyby means of Kolmogorov’s four-fifths law

〈
(δv‖)

3〉
= −

4
5εr, (2)

valid for isotropic turbulence, where

δv‖(r) =
[
v(x + r) − v(x)

]
· êr (3)

is the component of the velocity fluctuation in the direction
of the displacementr and the lengthscaler lies in the in-
ertial range (Kolmogorov, 1991; Frisch, 1995). Note that
Kolmogorov’s four-fifths law Eq. (2) is independent of the
kinematic viscosityν and can be applied even when the kine-
matic viscosity is unknown, but the accurate evaluation of the
third-order moment Eq. (2) requires much more data than the
second-order moment Eq. (1).

Kolmogorov’s four-fifths law was originally derived for
homogeneous isotropic turbulence and a similar law was
later derived by Monin for homogeneousanisotropic tur-
bulence; seePodesta et al.(2007) for references.Politano
and Pouquet(1998a,b) generalized these fundamental re-
sults of Kolmogorov and Monin from the theory of incom-
pressible hydrodynamic turbulence to incompressible MHD
turbulence. It is important to emphasize that Politano and
Pouquet’s law holds for both isotropic and anisotropic tur-
bulence, although this fact was not explicitly mentioned by
Politano and Pouquet(1998a). This is especially important
in MHD where statistical isotropy may not hold in the pres-
ence of an ambient magnetic field. A derivation of Politano
and Pouquet’s law which is similar to Frisch’s derivation of
Kolmogorov’s four-fifths law is given byPodesta(2008).

Politano and Pouquet’s law has recently been applied to
obtain direct measurements of the energy cascade rate in the
solar wind under the simplifying assumption that the turbu-
lence is isotropic (MacBride et al., 2005; Sorriso-Valvo et al.,
2007; MacBride et al., 2008; Marino et al., 2008). MacBride
et al.(2008) have also investigated a non-isotropic 1D/2D hy-
brid model that is believed to be descriptive of the solar wind.
The method used in all these studies consists of the eval-
uation of certain third-order moments which are similar to
those in Eq. (2), except that for incompressible MHD turbu-
lence the relevant third-order moments contain combinations
of velocity and magnetic field fluctuations (or, equivalently,
fluctuations in the Elsasser variables). From the linear scal-
ing of these third-order moments, the energy cascade rate is
obtained without any knowledge of the dissipation processes
or the viscous and resistive dissipation coefficients in the so-
lar wind.

The solar wind studies mentioned above have not given
careful consideration to the convergence properties of third-
order moments which raises the question: how much data
is required to accurately estimate the third-order moments?

The study by Sorriso-Valvo et al. (2007) used approximately
2000 data points to compute the third-order moments while
the study by MacBride et al. (2008) used close to 106 data
points. The purpose of the present work is to investigate the
accuracy of third-order moments as a function of the sample
sizeN (the number of data points used in the analysis). An
important conclusion is that the accuracy of third-order mo-
ments depends on the number of correlation lengths spanned
by the data set (defined below). The number of correlation
lengths determines the accuracy and statistical uncertainty of
third-order moments computed from measured data, not the
number of data pointsN . It turns out that for turbulence stud-
ies where the skewness of the distribution is usually small
the accurate estimation of third-order moments requires large
amounts of data. The reason is partly because the third mo-
ment is not an absolute moment〈|x|

3
〉 but a signed moment

〈x3
〉 and, therefore, is subject to cancellation effects. The

theory describing the convergenge of these moments is illus-
trated using turbulence data from the ONERA/Modane wind
tunnel. The same techniques can be applied to third-order
moments in solar wind turbulence which exhibit similar be-
havior.

Previous investigations of the accuracy of higher order
moments by Dudok de Wit and Krasnoselskikh (1996) and
Dudok de Wit (2004) were restricted toabsolutemoments.
It should be emphasized that the present study is concerned
with algebraic (signed) third-order moments notabsolute
moments.

2 Theory

2.1 Uncorrelated time series

GivenN independent samplesx1, x2, . . . , xN drawn ran-
domly from a probability distributionf (x), the moments of
the distribution can be estimated as

〈x〉 '
1

N

N∑
n=1

xn, (4)

〈x2
〉 '

1

N

N∑
n=1

x2
n, (5)

〈x3
〉 '

1

N

N∑
n=1

x3
n, (6)

etc. Now focus attention on the third moment and let

M3(N) =
1

N

N∑
n=1

x3
n. (7)

Note thatM3(N) is itself a random variable whose prob-
ability distribution can be derived, in principle, from the
pdf f (x) of the random variablex. Now suppose that we
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know the mean and standard deviation of the random vari-
ableM3(N) denoted byµ3 andσ3, respectively. If〈x3

〉6=0,
then forM3(N) to be an accurate estimate of〈x3

〉 the stan-
dard deviation must be small compared to the mean, that is,

∣∣∣∣ σ3(N)

µ3(N)

∣∣∣∣ � 1. (8)

This condition can be used to estimate the sample sizeN

required to obtain an accurate estimate of the third moment.
Hereafter, it is assumed that〈x3

〉6=0.
From Eq. (7) and the independence of thexn, the first and

second moments ofM3(N) are

〈M3(N)〉 =
1

N

N∑
n=1

〈x3
n〉 = 〈x3

〉 (9)

and

〈
[M3(N)]2

〉
=

1

N2

N∑
n=1

N∑
m=1

〈x3
nx3

m〉

=
1

N
〈x6

〉 +
N − 1

N
〈x3

〉
2. (10)

Thus, the variance is

σ 2
3 (N) =

〈
[M3(N)]2

〉
−〈M3(N)〉2

=
1

N

[
〈x6

〉−〈x3
〉
2] (11)

and∣∣∣∣ σ3

µ3

∣∣∣∣ =
1

√
N

∣∣∣∣∣ 〈x6
〉

〈x3〉2
− 1

∣∣∣∣∣
1/2

. (12)

The value ofN required to make the last equation small
(�1) depends on the ratio〈x6

〉/〈x3
〉
2 and, therefore, de-

pends on the distribution functionf (x). If the ratio
〈x6

〉/〈x3
〉
2 is on the order of unity, thenN&103 may be ade-

quate. But, if this ratio is much larger than unity, thenN will
have to increase accordingly. The relation Eq. (12) shows
that to increase the accuracy of the third-moment by a factor
of ten requires an increase in the sample sizeN by a factor
of 100. This slow rate of convergence imposes practical lim-
itations on estimates of third-order moments obtained from
experimental data.

2.2 Correlated time series

For applications to turbulence, the random variablex is a ve-
locity difference such asδv‖ and the sequencex1, x2, . . . , xN

is usually not mutually stochastically independent. For ex-
ample, two velocity increments that overlap in space or time
are usually correlated to some degree. In this case, the num-
ber of “independent samples”N in the above theory should
be replaced by the number of correlation lengths of the quan-
tity under consideration. For the third-order momentM3 it is

necessary to use the correlation length or correlation timeτc

of the time seriesyn=x3
n and replaceN in Eq. (12) by the

number of correlation lengths

Nc =
T

τc

, (13)

whereT = Nts is the temporal record length andts is the
sampling time. Thus, Eq. (12) takes the modified form∣∣∣∣ σ3

µ3

∣∣∣∣ =
1

√
Nc

∣∣∣∣∣ 〈x6
〉

〈x3〉2
− 1

∣∣∣∣∣
1/2

(14)

or, equivalently,∣∣∣∣ σ3

µ3

∣∣∣∣ =

(
n

N

)1/2
∣∣∣∣∣ 〈x6

〉

〈x3〉2
− 1

∣∣∣∣∣
1/2

, (15)

whereτc=nts . Note that this is almost the same as Eq. (12)
except for an additional scale factorn1/2. Because the corre-
lation times of the sequencesxn andyn=x3

n can be different
it is important to use the correlation timeτc of the sequence
yn=x3

n in Eqs. (13)–(15) when analyzing the third-order mo-
ment.

3 Textbook example

An example is now given to illustrate the theory described in
Sect. 2. Consider the slightly skewed distribution function

f0(x) =
1

√
2π

[1 + α(x + α)]e−(x+α)2/2, (16)

where the parameterα characterizes the skewness of the dis-
tribution. The distribution has zero mean,〈x〉=0, and re-
duces to the Gaussian distribution whenα=0. If y=x+α,
the pdf ofy is

f (y) =
1

√
2π

(1 + αy)e−y2/2. (17)

The moments of the distribution Eq. (17) can be computed
from the characteristic function

F(k) =

∫
∞

−∞

f (y)eiky dy = (1 + iαk)e−k2/2 (18)

by means of the well known relations

F ′(0) = i〈y〉,

F ′′(0) = i2
〈y2

〉,

F ′′′(0) = i3
〈y3

〉,

(19)

etc. After some tedious calculations, the first six moments
are found to be

〈y〉 = α,

〈y2
〉 = 1,

〈y3
〉 = 3α,

〈y4
〉 = 3,

〈y5
〉 = 15α,

〈y6
〉 = 15.

(20)
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Fig. 1. Power spectrum of longitudinal velocity fluctuations mea-
sured in the Modane wind tunnel (blue dots). For comparison, the
red line is proportional tof −5/3, Kolmogorov’s theoretical iner-
tial range spectrum. The inertial range extends from approximately
10 Hz to 103 Hz. The onset of the dissipation range is indicated by
the change in slope around 103 Hz.

Thus, from the relation〈xn
〉=〈(y−α)n〉, the first six mo-

ments of the variablex are

〈x〉 = 0,

〈x2
〉 = 1 − α2,

〈x3
〉 = 2α3,

〈x4
〉 = 3 − 6α2

− 3α4,

〈x5
〉 = 20α3

+ 4α5,

〈x6
〉 = 15− 45α2

− 45α4
− 5α6.

(21)

For the particular distribution Eq. (16), the ratio Eq. (12)
takes the form∣∣∣∣ σ3

µ3

∣∣∣∣ =
1

√
N

∣∣∣∣∣15− 45α2
− 45α4

− 5α6

4α6
− 1

∣∣∣∣∣
1/2

. (22)

Forα=0.25, for example, this becomes∣∣∣∣ σ3

µ3

∣∣∣∣ =
111
√

N
. (23)

This ratio is small ifN&106. In this idealized example where
the distribution functionf (x) is known, the number of sam-
ples required to obtain an accurate estimate of the third mo-
ment from experimental data can be computed explicitly. For
turbulence data acquired in the laboratory, such precise esti-
mates cannot be computed a priori because the distribution
functionf (x) is unknown.

4 A practical approach

When working with experimental turbulence data the dis-
tribution functionf (x) is usually unknown so that the ra-
tio 〈x6

〉/〈x3
〉
2 in Eq. (12) cannot be evaluated. A practical

approach is to compute the third-momentM3(N) from the
data and then construct the empirical distribution function
for M3(N), whereN is now fixed (a constant). This too may
be impractical because of the large number of data points
required. However, the distribution function forM3(N) con-
tains more information than is needed. Just a few indepen-
dent estimates of the third-momentM3(N), perhaps 10, may
be sufficient to obtain a rough estimate of the ratio in Eq. (8).
The number of samplesN can then be increased until the
ratio so obtained satisfies the inequality Eq. (8). This is a
simple way of controlling the accuracy of third-order mo-
ments estimated from turbulence measurements. The effec-
tiveness of the method can be improved by increasing the
number of independent estimates ofM3(N) used to compute
the mean and standard deviation. The standard deviation ob-
tained from the data provides a rough estimate of the 1-σ

error for the third-order moment.
A more precise analysis can be performed by comput-

ing histograms, means, and standard deviations of the third-
momentM3(N) for progressively larger values ofN . Accu-
rate values of the meanµ3(N) and standard deviationσ3(N)

can be obtained for values ofN much smaller than the record
size. Fitting the measured ratio|σ3/µ3| to the functional
form A/

√
N , whereA is an adjustable parameter, it is then

possible to extrapolate the ratio|σ3/µ3| to largerN where
direct calculations have poor statistics or are unattainable as
a consequence of the limited record size. An alternate fit-
ting function isA/Np whereA and p are two adjustable
parameters. From this extrapolation it is possible to deter-
mine the value of the sample sizeN required to achieve any
desired accuracy of the ratio|σ3/µ3| and, therefore, of the
third-order momentM3(N). This approach is accurate and
effective as long as sufficient data are available and requires
noapriori knowledge of the distribution functionf (x) or its
moments. The same technique can also be applied to accu-
rately determine moments of any order provided sufficient
data are available.

5 Illustration using wind tunnel data

The technique described in the previous section shall now
be applied to study turbulence data from the ONERA
wind tunnel in Modane, France, characterized by a Taylor-
scale Reynolds numberRλ'2500 (Kahalerras et al., 1998;
Malécot et al., 2000; Gagne et al., 2004). This particular data
set is a time series consisting of 1.44×107 data points with a
sampling rate of 25 kHz and an average velocity of 20.37 m/s.
The inertial range extends from∼10 Hz to∼103 Hz as in-
ferred from the power spectrum shown in Fig. 1.
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Fig. 2. Histograms of the third-order momentsM3(N) for the time lagτ=20 ms obtained from Modane wind tunnel data using samples of
sizeN=2×103, N=2×104, N=2×105, andN=2×106. In each case, the total number of moments computed isNmom, the offset between
adjacent data blocks ism, and the sample mean and standard deviationµ3 andσ3 have units (m/s)3. For the caseN=2×103 the range of
M3 values in the histogram extends from−70.23 to 49.80 (not shown). The range ofM3 values shown in each of the other three histograms
are all inclusive.

Now, consider the third-order moment

〈(δv‖)
3
〉 =

〈
[v(t) − v(t + τ)]3

〉
(24)

whereτ=1/50 s or, equivalently,f =1/τ=50 Hz. This time
lag is chosen for study because it lies inside the inertial range
displayed in Fig. 1.

The third-order moment is computed using a contiguous
series ofN data points. A set ofN contiguous data points
is called a data block. A series of successive data blocks are
then used to compute a series of third-order moments, one
for each data block. The first data point in a given data block
is separated from the first point of the next successive data
block by an offsetm where, ideally,m=N . When the sam-
ple sizeN is not small compared to the record size, smaller
values of the offsetm are used so that the total number of data

blocks yields a sufficient statistical sample. Note, however,
that when the offsetm is smaller thanN the third-order mo-
ments obtained from successive data blocks become depen-
dent (because the blocks overlap) and, consequently, to ob-
tain good statistics it is advisable not to letm become much
smaller thanN . This tradeoff is unavoidable when working
with records of finite length.

The set of third-order moments obtained for a given sam-
ple sizeN are used to generate a histogram of third-order
moments as shown in Fig. 2. The number of third-order mo-
mentsNmom is equal to the number of data blocks employed
in the calculation. As expected, the width of the distribu-
tions as measured by the standard deviation is a decreasing
function of N . Moreover, the results for the ratio of the
standard deviation to the mean are in approximate agreement
with theN−1/2 convergence rate predicted by the theory in
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Fig. 3. Empirical results for the quantity|σ3/µ3| as a function
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ing Modane wind tunnel data (upper plot); the theoretical curve
304/

√
N , Eq. (15), is drawn in red. The numberNmom of third-

momentsM3(N) used to compute the meanµ3 and standard devi-
ationσ3 are shown in the middle plot. The autocorrelation function
of the difference series(δvn)3 is used to determine the correlation
timeτc'90ts used in equation (15);τc is the point where ACF=0.5
(bottom plot).

Sect. 2. Thus, increasingN by a factor of ten causes a de-
crease in the ratio of the standard deviation to the mean by a
factor of∼3.

The third-order moment obtained using all available data
is M3=−0.406 (m/s)2. Note that the meanµ3 displayed in
Fig. 2 is approximately independent ofN . This is to be ex-
pected because for any sequence of numbers partioned into
successive non-overlapping blocks, the average of the mean
values for each data block is equal to the mean value of the
entire record. In practice, the data blocks may not completely
cover the given record because the record size is not divisible
by N and, therefore, the equality is only approximate. This
explains the approximate independence ofµ3(N) versusN
in Fig. 2. See also Eqs. (9) and (11) which predict thatµ3(N)

is independent ofN andσ3(N)∼1/N1/2.
How much data is required to obtain an accurate estimate

of the third-order moment? This depends, of course, on the
level of error which is tolerable for the application at hand.
The relative error is measured by the ratio|σ3/µ3|. This
quantity is plotted as a function ofN in Fig. 3 (upper plot).

To ensure a reasonably large number of third-moments
Nmom, the offsetm between successive data blocks ism=N

whenN<105 andm=N/2 whenN>105. The number of
third-momentsNmom is shown in the middle plot in Fig. 3.
The theoretical relation Eq. (15) takes the form∣∣∣∣ σ3(N)

µ3(N)

∣∣∣∣ '
304
√

N
, (25)

where the value 304 is obtained using the empirical values
of the sixth momentM6=169.5 (m/s)6, the third moment
M3=−0.4062 (m/s)6, and the correlation timeτc'90ts de-
fined as the time where the autocorrelation function equals
1/2 (Fig. 3). Inspection of the theoretical curve, the red
line in Fig. 3, shows that to achieve the level of precision
|σ3/µ3|≤0.1 would requireN & 107 data points or, equiva-
lently Nc&1.1×105 correlation lengths. The total number of
data points contained in the data set is 1.44×107.

One can see from this example that accurate estimation
of third-order moments from turbulence data requires a very
large record length. Under circumstances where sufficiently
large data sets are not available, the techniques described
here and in the last section can be used to estimate the errors
in the third-moment as quantified by the standard deviation
σ3 and the empirical ratio|σ3/µ3|.

So far in this section the analysis of the third-moment has
been carried out for one time lagτ=1/50 s. The same anal-
ysis can be carried out for many different time lags and, in
this case, the error|σ3/µ3| is typically an increasing func-
tion of time lagτ throughout the inertial range (for a fixed
sample sizeN ). The third-order moment as a function of the
time lagτ computed using all available data is shown in the
upper plot in Fig. 4. For the data shown in Fig. 4, estimates
show that the relative error|σ3/µ3| lies approximately in the
range 0.09<|σ3/µ3|.0.3 for τ<0.1 s and|σ3/µ3|&0.3 for
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τ>0.1 s. Hence, the third-moments are sufficiently accurate
for the present purpose only forτ<0.1 s.

To estimate the energy cascade rateε using Kolmogorov’s
four-fifths law Eq. (2), the quantity−5〈(δv‖)

3
〉/4r is plot-

ted versusτ in the lower panel in Fig. 4. Note that com-
pressibility effects are negligible because the Mach num-
ber is much less than unity and, therefore, the application
of Kolmogorov’s four-fifths law is justified. In the lower
panel in Fig. 4, the data lie approximately on the horizontal
line ε=1.8 J/kg-s throughout the range 2×10−4<τ<10−2 s.
Thus, the value of the energy cascade rate determined by
Kolmogorov’s four-fifths law isε'1.8 J/kg-s. Note that
the range 2×10−4<τ<10−2 s where where an apparent
plateau is formed does not coincide with the inertial range
10−3<τ<10−1 s inferred from Fig. 1. Because the dissipa-
tion range lies just beyond the spectral break near 103 Hz in
Fig. 1 (Pope, page 237), this implies that the region where the
four-fifths law holds includes part of the dissipation range.
It is also puzzling why the four-fifths law breaks down for
τ&10−2 s in Fig. 4 since the inertial range appears to extend
to τ'10−1 s in Figure 1. Consequently, Kolmogorov’s four-
fifths law does not hold throughout the entire inertial range as
the theory seems to predict. The reason for these discrepan-
cies is unknown at the moment. However, results for the scal-
ing of the third-order moment in Fig. 4 are in agreement with
Gagne et al.(2004) who analyzed the same Modane data.

An independent estimate of the energy cascade rate is ob-
tained using Eq. (1). If the measured signal is approximated
by the truncated Fourier series

v(t) =

(N/2)−1∑
k=−N/2

Vk exp

(
i2πkt

T

)
, (26)

whereN is the record length,T =N1t , and1t is the sam-
pling time, then the time average of(∂v/∂t)2 is given by〈(

∂v

∂t

)2〉
=

(
2π

T

)2 N/2∑
k=−(N/2)+1

|kVk|
2, (27)

where

Vk =
1

N

N−1∑
n=0

vn exp

(
i2πkn

N

)
(28)

is the discrete Fourier transform of the sequencevn=v(n1t)

which is easily evaluated using the FFT. Using the entire data
record to evaluate Eq. (27) and the valueν=2×10−5 m2/s,
the energy dissipation rate obtained from Eq. (1) is
εdiss=2.6 J/kg-s.

The spatial separation between two consecutive mea-
surements̀ =v̄1t=0.8 mm is roughly three times the Kol-
mogorov scaleη'0.3 mm; the normalized wavenumber is
kη'2.4. Because most of the dissipation occurs in the
wavenumber rangekη.1 (Pope, 2000, p. 237, Fig. 6.16),
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Fig. 4. The third-order moment〈(δv‖)
3
〉 versus time lagτ com-

puted using the entire record of Modane wind tunnel data (upper
plot). The ratio−5〈(δv‖)

3
〉/4r versusτ , wherer=v̄τ is the spatial

separation (lower plot). The horizontal line in the lower plot is the
value 1.8 J/kg-s. The data forτ&0.1 s is uncertain and should be
disregarded.

estimates of〈(∂v/∂t)2
〉 from the Modane data should be ac-

curate. (Although Fig. 6.16 in Pope’s book is drawn for the
caseRλ=600, a similar plot in the caseRλ=2500 is almost
indistinguishable from the caseRλ=600.) Note that the value
of η given in Table 1 ofMalécot et al.(2000) is in error, the
correct value is given in Yann Malécot’s thesis and also in
Kahalerras et al.(1998) and inGagne et al.(2004) where the
same Modane data is used.

In summary, it has been shown that the energy cas-
cade rateε=1.8 J/kg-s obtained by Kolmogorov’s four-fifths
law is in rough agreement with the energy dissipation rate
εdiss=2.6 J/kg-s obtained from Eq. (1).
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Fig. 5. Power spectrum of the radial magnetic field componentBR

for the Ulysses data used in this study (blue dots). The red line is
proportional tof −5/3. The inertial range extends from less than
10−3 Hz to approximately 10−1 Hz. The onset of the dissipation
range is indicated by the change in slope around 10−1 Hz.

6 Illustration using solar wind data

In this section, we present two examples to illustrate the con-
vergence of third-order moments for solar wind data. The
first example uses 1 s data for the radial magnetic field
componentBR measured above the poles of the sun by the
Ulysses spacecraft. The second example uses 64 s data for
the radial solar wind velocityvR measured in the ecliptic
plane near 1 AU by the ACE spacecraft.

6.1 Analysis ofBR using Ulysses data

The radial magnetic field componentBR (in spacecraft RTN
coordinates) was chosen because it enters the third-moment
〈|δB|

2δBR〉 that appears in the law for the cross-helicity
cascade in MHD turbulence (Podesta et al., 2007; Podesta,
2008). Ulysses data was chosen because it is devoid of mag-
netic sector crossings which are usually present in data ac-
quired near the ecliptic plane. The third-moment〈(δBR)3

〉

changes algebraic sign in outward and inward magnetic sec-
tors. For this reason, the presence of different magnetic sec-
tors significantly complicates the analysis of this third-order
moment.

The Ulysses data selected for analysis consists of a time
series of∼1 s data from the vector-helium magnetometer
(Balogh et al., 1992) spanning the time interval from 1 July
1994 to 1 October 1994, 92 days. During this time Ulysses

distance from the sun decreased from 2.80 AU to 2.17 AU as
its heliographic latitude remained between−70 and−81 de-
grees. The reversal of the solar magnetic field in the southern
hemisphere was completed in 1992 (Snodgrass et al., 2000)
so the data used here contains only one magnetic sector. The
time tags on the data show some data have a 1/2 s cadence,
some data have a 1 or 2 s cadence, and there are also data
gaps of various sizes. The 1/2 s data is downsampled to 1 s
and the data gaps are left intact to create a time series with
a uniform cadence of 1 s. Times when data are missing are
marked with fill values (such data are easily omitted from
the analysis). There are a total of 7.95×106 data points in
the time series and 23.55% of these points are missing data
markers (fill values). The average value ofBR for the entire
time series is−0.526 nT.

The power spectrum for the Ulysses data shown in Fig. 5
is strikingly similar to that of the wind tunnel data in Fig. 1.
From Fig. 5, the inertial range appears to extend from less
than 10−3 Hz to approximately 10−1 Hz. The time lag
τ=60 s or, equivalently,f =τ−1

=1.67×10−2 Hz is chosen
for analysis because it lies inside the inertial range. The
same procedures used to analyze the Modane data are em-
ployed for the Ulysses data except that missing data is ex-
cluded from the analysis. Consequently, a data block of size
M contains less thanM samples (because of the presence of
fill values) and the actual number of samplesN varies from
block to block. Only those data blocks whereN≥0.55M are
included in the analysis and the average number of samples
N taken over all blocks of a given sizeM is defined to be the
sample sizeN for that run.

The results of the statistical analysis of Ulysses data for
the time lagτ=60 seconds are shown in Fig. 6. The sizes of
the data blocks used in the analysis areM=2×104, 2×105,
and 2×106. The offset from one data block to the next isM

for the upper plot andM/2 for the other two plots. The al-
gebraic sign ofµ3 is negative except in the lower plot, how-
ever, the sample size in the lower plot is too small to yield
adequate statistics. The value of the third-moment obtained
using the entire data record is−8.9×10−5 (nT)3, a very small
value. To gain some idea of the error, the error of the mean
σ3/N

1/2
mom estimated from Fig. 6 is roughly 2×10−4 (nT)3.

The theoretical relation Eq. (15) may be evalu-
ated using estimates obtained from the data for the
third-moment M3=−8.9×10−5 (nT)3, the sixth-moment
M6=2.1×10−2 (nT)6, and the correlation timeτc'21 s de-
termined from the autocorrelation function for the sequence
(δBR)3. The values of the moments are uncertain, especially
higher order moments such asM6 which can be strongly af-
fected by the presence of outliers in the data (Horbury and
Balogh, 1997), however, they are used anyway to explore the
fit to the data of the relation Eq. (15). Thus, the theoretical
relation Eq. (15) takes the form
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∣∣∣∣ σ3(N)

µ3(N)

∣∣∣∣ '
7500
√

N
. (29)

For the three runs shown in Fig. 6 the theoretical values for
the ratio|σ3/µ3| are 57, 19, and 6. These are roughly consis-
tent with the values found in Fig. 6. For all data,N'6×106

and the relation Eq. (29) predicts a relative errror|σ3/µ3|'3.
Hence,µ3'−8.9×10−5

±2.7×10−4 (nT)3, which is consis-
tent with the estimates in the preceeding paragraph.

In summary, the large magnitude of the ratioσ3/µ3 is
partly due to the fact thatµ3 is close to zero and this makes it
impossible to obtain adequate convergence with the limited
data used in this study. One may conclude from these results
that a much larger data set than the one used here is needed
to determine the third-moment ofδBR accurately. Neverthe-
less, the results presented here are still useful for determining
approximate upper and lower bounds for this third-order mo-
ment.

6.2 Analysis ofvR using ACE data

Solar wind measurements of the radial velocity component
from the Advanced Composition Explorer (ACE) are ana-
lyzed in the same way. The ACE spacecraft is in orbit around
the Sun-EarthL1 libration point 240Re sunward of the Earth.
The ACE SWEPAM plasma instrument has a 64-second ca-
dence (McComas et al., 1998) and we use all data available
during the three year period from 2005 through 2007, about
1.4 million data points. Note that solar minimum is expected
to occur in late 2008 or early 2009. Non-overlapping data
blocks of 100 points (about 10 000 blocks) to 256 000 data
points (5 blocks) are used. Each data block may include fill
values (missing data markers) that are present in the time se-
ries. All fill values are omitted from the analysis and any
data block in which the number of fill values exceeds 10% is
excluded from analysis. Third-order moments ofδvR are cal-
culated for two different time lags,τ=256 s andτ=2048 s.
The inertial range in the ecliptic plane near 1 AU extends
from about 1 s to about 1 h and, therefore, both of these time
lags lie in the inertial range.

Figure 7 shows that in the solar wind, the ratio of the stan-
dard deviation of the third-moment to the average value of
the third-moment|σ3/µ3| has the sameN−1/2 dependence
predicted by Eq. (15) as does the wind tunnel data analyzed
in Sect. 5. Remarkably, the amplitude of this relation is quan-
titatively similar for both wind tunnel data and solar wind
data, even though the solar wind has a fast/slow stream struc-
ture and the turbulence is magnetohydrodynamic in nature.
As with the wind tunnel data, it appears from Fig. 7 that
more than 107 solar wind velocity measurements are needed
to accurately determine the third-order moment〈(δvR)3

〉 (er-
ror less than 10%). However, sample sizesN∼106 may give
sufficient accuracy for some applications.

−0.02 0 0.02
0

10

20

30

40

50

60

70

M
3
 (nT)3

C
ou

nt
s

N = 1.73×104

|σ
3
/μ

3
| = 25

μ
3
 =−2.1×10−4

σ
3
 = 5.3×10−3

N
mom

= 282

−10 −5 0 5

x 10
−3

0

5

10

15

M
3
 (nT)3

C
ou

nt
s

N = 1.52×�105

|σ
3
/μ

3
| = 17

μ
3
 =−1.2×10−4

σ
3
 = 2.1×10−3

N
mom

= 78

−1 −0.5 0 0.5 1

x 10
−3

0

0.5

1

1.5

2

M
3
 (nT)3

C
ou

nt
s

N = 1.49×106

|σ
3
/μ

3
| = 2.1

μ
3
 = 2.4×10−4

σ
3
 = 5.0×10−4

N
mom

= 6

Fig. 6. Results from the analysis of the third order moment
〈(δBR)3〉 for the time lagτ=60 s obtained using data from Ulysses
first southern polar pass. The numberN is the approximate sample
size used to compute the third-moment andNmom is the number of
third-order moments used to compute the statisticsµ3 andσ3. The
mean and standard deviation ofM3(N), denoted byµ3 andσ3, have
units (nT)3. The value ofM3 obtained using the entire data record
is −8.9×10−5 (nT)3.
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Fig. 7. Results from the analysis of the third-order moment
〈(δvR)3〉 using ACE data for 2005–2007. Red triangles and blue
squares correspond to the time lagsτ=256 s andτ=2048 s, respec-
tively. The upper plot shows the convergence of the ratio|σ3/µ3| as
a function of the number of samplesN ; the solid lines are the the-
oretical predictions from Eq. (15), 477/N1/2 and 322/N1/2. The
lower plot shows the values of the third-order moment plus and mi-

nus the error in the mean, that is,µ3±σ3/N
1/2
mom, whereNmom is

the number of moments used to compute the mean.

Also plotted in the upper plot in Fig. 7 are the theoretical
curves, Eq. (15), for the two time lags studied. A rough esti-
mate of Eq. (15) is obtained by using all data in the record to
estimate the sixth-moment ofδvR(τ ), M6, the third-moment
M3, and the correlation timeτc of the sequence[δvR(τ )]3.
For the time lagτ=256 s, this yieldsM6'8.8×109 (km/s)6,
M3'2.5×102 (km/s)3, andτc/τ'0.4. In this case,n=1.6
and Eq. (15) becomes

∣∣∣∣ σ3(N)

µ3(N)

∣∣∣∣ '
477
√

N
. (30)

For the time lag τ=2048 s, M6'9.5×1010 (km/s)6,
M3'3.4×103 (km/s)3, andτc/τ'0.4. In this case,n=12.8

and Eq. (15) becomes∣∣∣∣ σ3(N)

µ3(N)

∣∣∣∣ '
322
√

N
. (31)

These represent reasonable asymptotic fits to the data shown
in Fig. 7 asN becomes large.

What accuracy can be claimed for measurements of this
third-order moment in the solar wind? The upper plot in
Fig. 7 indicates that forN'1.4×106 data points the error
is around∼40%. The lower plot in Fig. 7 shows the mean
values of the third momentµ3 plus and minus the standard
error of the meanσ3/N

1/2
mom, whereNmom is the number of

moments used to compute the mean. It appears that the rel-
ative error is roughly the same at both lags and that within
the calculated errors the third moment is proportional to lag.
Such proportionality is most clearly demonstrated by com-
puting the third-moment as a function of the time lagτ (not
shown).

It is interesting that bothRλ'2500 wind tunnel data and
solar wind velocity data require roughly the same number of
data points to obtain good convergence of third-order mo-
ments for time lags in the inertial range. In part, this may be
because both kinds of turbulence have similar Reynolds num-
bers. The Reynolds number in the solar wind can crudely
be estimated using the hydrodynamic relationL/η=Re3/4,
whereL is the integral scale,η is the Kolmogorv scale (dissi-
pation scale), andReis the Reynolds number based on the in-
tegral scale. Solar wind power spectra indicate thatL/η∼105

and, therefore the Reynolds number is of order 106. This is
equivalent to a Taylor-scale Reynolds number

Rλ =
(20

3 Re
)1/2

∼ 2600 (32)

(Pope, 2000, p. 200, eqn. 6.64). Thus, the Reynolds numbers
of Modane wind tunnel data and solar wind velocity data at
1 AU are similar.

7 Conclusions

The purpose of this study is not to compute turbulent en-
ergy cascade rates using third-order moments. The purpose
of this study is to show how the accuracy of third-order mo-
ments can be estimated and controlled. A simple theory is
presented that describes the statistical convergence of third-
order moments, such as〈(δv‖)

3
〉, as a function of the record

length. An important conclusion is that the accuracy of third-
order moments depends on the number of correlation lengths
spanned by the time series as expressed by Eqs. (14) and (15).
The techniques described here are useful for assessing the ac-
curacy of third-order moments obtained using measured data.
Practical applications of the theory have been illustrated us-
ing wind tunnel data and solar wind data.
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For the accurate calculation of third-order moments from
wind tunnel data with a Taylor-scale Reynolds number
Rλ'2500, the number of data points required to obtain an
error less than 10% at the time lagτ=20 ms isN=107 or,
equivalently, a record length spanningNc=105 correlation
lengths. For fluctuations of the radial solar wind velocity
vR, the analysis of ACE data in the ecliptic plane near 1
AU shows that for the time lagsτ=256 s andτ=2048 s the
number of data points required for an accurate determination
of the third-order moment is also roughlyN=107. This is
equivalent toNc=6.3×106 and 7.8×105 correlation lengths
for τ=256 s and 2048 s, respectively. However,N∼106 data
points may yield sufficient accuracy for some applications.

For fluctuations of the radial magnetic field componentBR

over the poles of the sun at a heliocentric distance of ap-
proximately 2.5 AU, the value of the third-order moment is
close enough to zero that convergence of the third moment
could not be demonstrated using an interval of Ulysses data
with approximately six million points (not including fill val-
ues), a record consisting of approximately 3×105 correla-
tion lengths. This suggests that third-order moments of solar
wind magnetic field components must be computed carefully
because without a sufficiently large number of data points
and without evaluation of the probable errors using Eq. (15)
the calculation of the third-order moments are not meaning-
ful.

It should be noted that the above two examples based on
solar wind data from Ulysses and ACE are distinctly differ-
ent from each other and from the example based on Modane
wind tunnel data. The Ulysses study pertains to the radial
magnetic field component at high heliographic latitudes and
the ACE study pertains to the radial velocity component in
the ecliptic plane. These studies provide two separate ex-
amples of the estimation of third-order moments and their
uncertainties using solar wind data. For wind tunnel data,
Kolmogorov’s four-fifths law predicts the third-order veloc-
ity moment scales linearly in the inertial range. For solar
wind data, neither the third-order moment of the radial ve-
locity component nor the third-order moment of the radial
magnetic field component is predicted to scale linearly. The
latter examples simply serve to illustrate the application of
statistical convergence techniques to solar wind data. It is
of interest to note, however, that the third-order moment of
the radial velocity component in the solar wind was found
to scale approximately linearly in the study by MacBride et
al. (2008) and appears to provide the dominant contribution
to the energy cascade rate estimated from the scaling rela-
tions of Politano and Pouquet (1998).

In conclusion, the present study has some noteworthy im-
plications for measurements of the energy cascade rate in the
solar wind. Empirical estimates of the energy cascade rate in
the solar wind have recently been obtained under the assump-
tion that the turbulence is approximately incompressible and
isotropic so that the third-moment scaling relations of Poli-
tano and Pouquet (1998) for homogeneous isotropic incom-

pressible MHD turbulence could be applied. In the studies by
Sorriso-Valvo et al.(2007) andMarino et al.(2008) the num-
ber of data points employed to compute the required third-
order moments was around 2000. As shown in the present
study, this number is insufficient to obtain accurate estimates
of third-order moments in the solar wind. This may explain
why Sorriso-Valvo et al.(2007) andMarino et al.(2008) did
not find a linear scaling of the third-order moments in some
of the intervals they studied, and why they found it was rare
for linear scaling to be observed simultaneously for both of
the Elsasser variables. Although MacBride et al. (2008) did
not use the convergence tests proposed here, they used large
enough data sets that the third order moments in the Poli-
tano and Pouquet scaling laws became insensitive to adding
more data. To obtain stable estimates of the third-moments,
this convergence criterion required the use of at least one
year of ACE plasma and magnetic field data, roughly 106

data points. In the future, the convergence of third-order mo-
ments and the associated error estimates that such conver-
gence studies provide should become an integral part of any
analysis of solar wind data involving third-order moments.
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