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Abstract. Politano and Pouquet’s law, a generalization processes. Detailed understanding of the energy cascade pro-
of Kolmogorov’'s four-fifths law to incompressible MHD, cess at MHD-scales is a prerequisite for studies of this cou-
makes it possible to measure the energy cascade rate in ipling. Here we focus on one particular aspect of MHD-scale
compressible MHD turbulence by means of third-order mo-turbulence which is of some practical importance, namely,
ments. In hydrodynamics, accurate measurement of thirdthe determination of the energy cascade rate from measured
order moments requires large amounts of data because ttuata.
probability distributions of velocity-differences are nearly = MHD-scale turbulence in the solar wind is often modeled
symmetric and the third-order moments are relatively small.using the theory of incompressible MHD because of its rel-
Measurements of the energy cascade rate in solar wind turative simplicity, even though the solar wind is known to be
bulence have recently been performed for the first time, butompressible. In the solar wind, the energy density of MHD
without careful consideration of the accuracy or statisticalturbulence is comparable to the plasma thermal energy at 1
uncertainty of the required third-order moments. This pa-AU (Belcher and Davisl971) and the turbulent energy cas-
per investigates the statistical convergence of third-order moeade is believed to significantly heat the solar wind plasma
ments as a function of the sample si¥e It is shown that as it flows from~1 AU to several tens of AU. Theoreti-
the accuracy of the third-momem(tav||)3> depends on the cal work has shown that plasma heating caused by dissipa-
number of correlation lengths spanned by the data set and tion of the turbulence can likely explain the observed radial
method of estimating the statistical uncertainty of the third-temperature profile of the solar wind which decreases more
moment is developed. The technique is illustrated using bottslowly than would be the case if the expansion were adia-
wind tunnel data and solar wind data. batic (Matthaeus et g1.1996 Zank et al, 1999 Matthaeus
et al, 1999 Smith et al, 2001, Isenberg et al.2003. To
refine these theories, accurate measurements of the energy
] cascade rate are needed. Recently, the energy cascade rate
1 Introduction ¢ has been directly measured for the first time in the solar

. . wind using a generalization of Kolmogorov's four-fifths law
In the solar wind, coupling between large- and smaII-scaIe(MacBride et al.2005 Sorriso-Valvo et a].2007 MacBride
turbulence occurs at kinetic scales defined by the ion gyro; al, 2008 Marino et al, 2008. Before discussing this, it

radius and the ion gyro-period. At these scales, the turbulen;;nay be helpful to provide some background information on
energy cascade undergoes a transition from large mag”et‘kolmogorov’s four-fifths law.

hydrodynamic (MHD) scales to small plasma kinetic scales o tyrbulent flows in ordinary incompressible fluids such
where the energy is ultimately dissipated by collisionless g zir or water the energy cascade mais often measured

indirectly by means of the energy dissipation rate
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where v is the kinematic viscosity and the coefficient 15 The study by Sorriso-Valvo et al. (2007) used approximately
arises from the assumption that the turbulence is isotropi2000 data points to compute the third-order moments while
(Pope 200Q p. 134). The energy cascade rate can also bahe study by MacBride et al. (2008) used close t§ dfta
measuredlirectly by means of Kolmogorov's four-fifths law  points. The purpose of the present work is to investigate the
accuracy of third-order moments as a function of the sample
3 4 size N (the number of data points used in the analysis). An
<(5UH) > = —5eh ) important conclusion is that the accuracy of third-order mo-
ments depends on the number of correlation lengths spanned
by the data set (defined below). The number of correlation
Su(r) =[x + 1) —v(@)] - &, (3)  lengths determines the accuracy and statistical uncertainty of
third-order moments computed from measured data, not the
is the component of the velocity fluctuation in the direction number of data pointd'. It turns out that for turbulence stud-
of the displacement and the lengthscale lies in the in-  ies where the skewness of the distribution is usually small
ertial range Kolmogoroy, 1991 Frisch 1995. Note that the accurate estimation of third-order moments requires large
Kolmogorov's four-fifths law Eq. %) is independent of the amounts of data. The reason is partly because the third mo-
kinematic viscosity and can be applied even when the kine- ment is not an absolute momefht|3) but a signed moment
matic viscosity is unknown, but the accurate evaluation of the(x3) and, therefore, is subject to cancellation effects. The
third-order moment Eq2j requires much more data than the theory describing the convergenge of these moments is illus-
second-order moment EdL)( trated using turbulence data from the ONERA/Modane wind
Kolmogorov’s four-fifths law was originally derived for tunnel. The same techniques can be applied to third-order
homogeneous isotropic turbulence and a similar law wagnoments in solar wind turbulence which exhibit similar be-
later derived by Monin for homogeneoasisotropic tur- havior.
bulence; sedodesta et al2007) for references.Politano Previous investigations of the accuracy of higher order
and Pouque(1998ab) generalized these fundamental re- moments by Dudok de Wit and Krasnoselskikh (1996) and
sults of Kolmogorov and Monin from the theory of incom- Dudok de Wit (2004) were restricted &bhsolutemoments.
pressible hydrodynamic turbulence to incompressible MHDIt should be emphasized that the present study is concerned
turbulence. It is important to emphasize that Politano andwith algebraic (signed) third-order moments nabsolute
Pouquet’s law holds for both isotropic and anisotropic tur- moments.
bulence, although this fact was not explicitly mentioned by
Politano and Pouquéi9983. This is especially important
in MHD where statistical isotropy may not hold in the pres- 2 Theory
ence of an ambient magnetic field. A derivation of Politano
and Pouquet’s law which is similar to Frisch’s derivation of
Kolmc_)gorovs four-fifths I,aw is given byPodest42008. . Given N independent samples, x, ..., xy drawn ran-
Politano and Pouquet’s law has recently been applied tod T
S : omly from a probability distributiory (x), the moments of
obtain direct measurements of the energy cascade rate in tf}ge distribution can be estimated as
solar wind under the simplifying assumption that the turbu-
lence is isotropiclacBride et al.2005 Sorriso-Valvo et al. 1 &
2007 MacBride et al, 2008 Marino et al, 2008. MacBride  (x) >~ v an, 4)
et al.(2008 have also investigated a non-isotropic 1D/2D hy- n=1
brid model that is believed to be descriptive of the solar wind.

valid for isotropic turbulence, where

2.1 Uncorrelated time series

N
The method used in all these studies consists of the evalty?) ~ i 2 :x2 (5)
. . S . . N n
uation of certain third-order moments which are similar to n=1
those in Eq. 2), except that for incompressible MHD turbu- N
lence the relevant third-order moments contain combinations(x3> 1 3 (6)
) o ; . -~ E n
of velocity and magnetic field fluctuations (or, equivalently, N =~

fluctuations in the Elsasser variables). From the linear scal-
ing of these third-order moments, the energy cascade rate istc. Now focus attention on the third moment and let
obtained without any knowledge of the dissipation processes N
Ior th(_a viscous and resistive dissipation coefficients in the SOLa(N) = 1 Zxr? @)
ar wind. N —~

The solar wind studies mentioned above have not given
careful consideration to the convergence properties of thirdNote thatM3(N) is itself a random variable whose prob-
order moments which raises the question: how much datability distribution can be derived, in principle, from the
is required to accurately estimate the third-order momentspdf f(x) of the random variable. Now suppose that we
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know the mean and standard deviation of the random varinecessary to use the correlation length or correlation time

able M3(N) denoted byuz andos, respectively. [f(x3)0,
then for M3(N) to be an accurate estimate @f) the stan-

dard deviation must be small compared to the mean, that is,

03(N)
u3(N)

This condition can be used to estimate the sample Kize

(8)

required to obtain an accurate estimate of the third moment M_
3

Hereafter, it is assumed that3) 0.
From Eq. ¥) and the independence of thg, the first and
second moments dff3(N) are

1
<mw»=ﬁg¥b—w> (9)
and
1 N N
(Ma(N)P) = =5 D > teen)
n=1m=1
= 208+ Y2092 o
Thus, the variance is
1
o2(N) = ([M3(N)]?)— (M3(N))? = ﬁ[<x6> - (x%?] (12)
and
6 1/2
EFJ;EL_ (12)
uz| /N |[(x3)2

The value of N required to make the last equation small
(«1) depends on the ratix®) /(x3)2 and, therefore, de-
pends on the distribution functiorf(x). If the ratio
x8)/(x3)2 is on the order of unity, theivV>10° may be ade-
guate. But, if this ratio is much larger than unity, thgrwill
have to increase accordingly. The relation EtR)(shows

that to increase the accuracy of the third-moment by a factor

of ten requires an increase in the sample $¥zby a factor
of 100. This slow rate of convergence imposes practical lim-

of the time serie@,,:x,? and replaceV in Eq. (12) by the
number of correlation lengths

T
N.=—
Tc
whereT = Nt is the temporal record length amdis the
sampling time. Thus, Eq. (12) takes the modified form

(13)

6 1/2
03 1 (x°)
AL e
or, equivalently,
12 .6 1/2
Bl (2T g (15)
U3 N (x3)2

wheret.=nt;. Note that this is almost the same as Eq. (12)
except for an additional scale factol2. Because the corre-
lation times of the sequences andynzxfj can be different

it is important to use the correlation timg of the sequence
ya=x> in Egs. 13—(15) when analyzing the third-order mo-
ment.

3 Textbook example

An example is now given to illustrate the theory described in
Sect. 2. Consider the slightly skewed distribution function

(14 a(x + a)le"C+0?/2,

folx) = (16)

1
2

where the parametercharacterizes the skewness of the dis-

tribution. The distribution has zero meafx)=0, and re-
duces to the Gaussian distribution whes0. If y=x+«,

the pdf ofy is

) = = +aye 72, (17)

V2n

The moments of the distribution EqL4) can be computed
from the characteristic function

itations on estimates of third-order moments obtained from

experimental data.
2.2 Correlated time series

For applications to turbulence, the random variabige a ve-
locity difference such asv and the sequenag, xo, ..., xn
is usually not mutually stochastically independent. For ex-

ample, two velocity increments that overlap in space or time
are usually correlated to some degree. In this case, the numgy®

ber of “independent samplesV in the above theory should

be replaced by the number of correlation lengths of the quan

tity under consideration. For the third-order momefyit is

www.nonlin-processes-geophys.net/16/99/2009/

F ) = / FOE dy = L+ iakye™ (18)
by means of the well known relations
F'(0) = i(y),
F'(0) = i%(y?), (19)
F"(0) = i%(y%),

etc. After some tedious calculations, the first six moments
are found to be

) =
2 1’

3, (20)

(y
(y9) =
y°) =
(h =3
{y°) = 150,
(y8) = 15.
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Fig. 1. Power spectrum of longitudinal velocity fluctuations mea-
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4 A practical approach

When working with experimental turbulence data the dis-
tribution function f(x) is usually unknown so that the ra-
tio (x8)/(x3)2 in Eq. (12) cannot be evaluated. A practical
approach is to compute the third-momeug(N) from the

data and then construct the empirical distribution function
for M3(N), whereN is now fixed (a constant). This too may
be impractical because of the large number of data points
required. However, the distribution function fof3(N) con-

tains more information than is needed. Just a few indepen-
dent estimates of the third-momev (N ), perhaps 10, may

be sufficient to obtain a rough estimate of the ratio in BY. (
The number of sampled can then be increased until the
ratio so obtained satisfies the inequality E8). (This is a
simple way of controlling the accuracy of third-order mo-
ments estimated from turbulence measurements. The effec-
tiveness of the method can be improved by increasing the
number of independent estimatesif(N) used to compute

the mean and standard deviation. The standard deviation ob-
tained from the data provides a rough estimate of the 1-

sured in the Modane wind tunnel (blue dots). For comparison, theerror for the third-order moment.

red line is proportional tof_5/3, Kolmogorov’s theoretical iner-
tial range spectrum. The inertial range extends from approximatel
10Hz to 16 Hz. The onset of the dissipation range is indicated by
the change in slope around319z.

Thus, from the relationx”)={((y—a)"), the first six mo-
ments of the variable are

(x) =0,

(x3) =1-a?

(x3) = 203,

<x4> =3—6€(2—3Ol4 (21)
(x°) = 2003 + 4a®,

(x8) = 15— 4502 — 450* — 545,

For the particular distribution Eql16), the ratio Eq. 12
takes the form

1/2
o3 1 |15— 4502 — 450% — 545 /
—|=— 5 -1 (22)
“3 VN 4o

For«=0.25, for example, this becomes

111
B - == (23)
U3 VN

This ratio is small iftN>10P. In this idealized example where
the distribution functionf (x) is known, the number of sam-
ples required to obtain an accurate estimate of the third mo

ment from experimental data can be computed explicitly. For>

turbulence data acquired in the laboratory, such precise est
mates cannot be computed a priori because the distributio
function f (x) is unknown.
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A more precise analysis can be performed by comput-

YMing histograms, means, and standard deviations of the third-

momentM3(N) for progressively larger values of. Accu-

rate values of the mearg(N) and standard deviatiars(N)

can be obtained for values 8f much smaller than the record
size. Fitting the measured ratje3/u3| to the functional
form A/«/N, whereA is an adjustable parameter, it is then
possible to extrapolate the ratie@s/ 3| to larger N where
direct calculations have poor statistics or are unattainable as
a consequence of the limited record size. An alternate fit-
ting function isA/N? where A and p are two adjustable
parameters. From this extrapolation it is possible to deter-
mine the value of the sample si2erequired to achieve any
desired accuracy of the raties/u3| and, therefore, of the
third-order momentM3(N). This approach is accurate and
effective as long as sufficient data are available and requires
no apriori knowledge of the distribution functiofi(x) or its
moments. The same technique can also be applied to accu-
rately determine moments of any order provided sufficient
data are available.

5 lllustration using wind tunnel data

The technique described in the previous section shall now
be applied to study turbulence data from the ONERA
wind tunnel in Modane, France, characterized by a Taylor-
scale Reynolds numbe®; ~2500 Kahalerras et al.1998
Malécot et al.200Q Gagne et a).2004). This particular data

et is a time series consisting a#4x 10’ data points with a
sampling rate of 25 kHz and an average velocity of 20.37 m/s.
H’he inertial range extends froml0 Hz to~10° Hz as in-
ferred from the power spectrum shown in Fig. 1.

www.nonlin-processes-geophys.net/16/99/2009/
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Fig. 2. Histograms of the third-order moments(N) for the time lagr=20 ms obtained from Modane wind tunnel data using samples of
sizeN=2x 103, N=2x10% N=2x10°, andN=2x 108, In each case, the total number of moments computghism, the offset between
adjacent data blocks i8, and the sample mean and standard deviatigando3 have units (m/S). For the cas&v=2x 103 the range of

M3 values in the histogram extends fron70.23 to 49.80 (not shown). The rangeM§ values shown in each of the other three histograms
are all inclusive.

Now, consider the third-order moment blocks yields a sufficient statistical sample. Note, however,

that when the offset is smaller thanv the third-order mo-

3 3 ments obtained from successive data blocks become depen-
(Gop?) = {[v@®) —v(t + 0T (24)  dent (because the blocks overlap) and, consequently, to ob-
wherer=1/50 s or, equivalentlyf=1/7=50Hz. This time tain good statistics it is advisable not to letbecome much
lag is chosen for study because it lies inside the inertial ranggmaller thanV. This tradeoff is unavoidable when working
displayed in Fig. 1. with records of finite length.

The third-order moment is computed using a contiguous The set of third-order moments obtained for a given sam-
series ofN data points. A set oV contiguous data points Ple sizeN are used to generate a histogram of third-order
is called a data block. A series of successive data blocks arBloments as shown in Fig. 2. The number of third-order mo-
then used to compute a series of third-order moments, on&€ntsNmom is equal to the number of data blocks employed
for each data block. The first data point in a given data blockin the calculation. As expected, the width of the distribu-
is separated from the first point of the next successive datdons as measured by the standard deviation is a decreasing
block by an offsetn where, ideallyyn=N. When the sam- function of N.  Moreover, the results for the ratio of the
ple sizeN is not small compared to the record size, smallerstandard deviation to the mean are in approximate agreement

values of the offset: are used so that the total number of data With the N=1/2 convergence rate predicted by the theory in

www.nonlin-processes-geophys.net/16/99/2009/ Nonlin. Processes Geophys., 111 9909
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Fig. 3. Empirical results for the quantitje3/3| as a function

of the sample sizev for the time lagr=20 ms obtained us-
ing Modane wind tunnel data (upper plot); the theoretical curve
304/+/N, Eq. (15), is drawn in red. The numbaimom of third-
momentsM3(N) used to compute the meary and standard devi-
ationog are shown in the middle plot. The autocorrelation function
of the difference serie&v,)3 is used to determine the correlation
time t,~90r, used in equation (15}, is the point where ACE0.5
(bottom plot).
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Sect. 2. Thus, increasiny by a factor of ten causes a de-
crease in the ratio of the standard deviation to the mean by a
factor of ~3.

The third-order moment obtained using all available data
is M3=—0.406 (m/s}. Note that the meaps displayed in
Fig. 2 is approximately independent &f. This is to be ex-
pected because for any sequence of numbers partioned into
successive non-overlapping blocks, the average of the mean
values for each data block is equal to the mean value of the
entire record. In practice, the data blocks may not completely
cover the given record because the record size is not divisible
by N and, therefore, the equality is only approximate. This
explains the approximate independence.gfN) versusN
in Fig. 2. See also Eq)and (L1) which predict thajc3(N)
is independent oV andos(N)~1/N1/2,

How much data is required to obtain an accurate estimate
of the third-order moment? This depends, of course, on the
level of error which is tolerable for the application at hand.
The relative error is measured by the raig/us|. This
quantity is plotted as a function @f in Fig. 3 (upper plot).

To ensure a reasonably large number of third-moments
Nmom, the offsetm between successive data blocksis N
when N <10° andm=N/2 whenN>10°. The number of
third-momentsNmom is shown in the middle plot in Fig. 3.
The theoretical relation Eq. (15) takes the form

o3(N) | _ 304

w3a(N)|— N’

where the value 304 is obtained using the empirical values
of the sixth momentMe=1695 (m/sf, the third moment
Mz=—0.4062 (m/s§, and the correlation time,~90, de-
fined as the time where the autocorrelation function equals
1/2 (Fig. 3). Inspection of the theoretical curve, the red
line in Fig. 3, shows that to achieve the level of precision
los/u3|<0.1 would requireN > 10’ data points or, equiva-
lently N.>1.1x 10° correlation lengths. The total number of
data points contained in the data set.¥4k 10"

One can see from this example that accurate estimation
of third-order moments from turbulence data requires a very
large record length. Under circumstances where sufficiently
large data sets are not available, the technigues described
here and in the last section can be used to estimate the errors
in the third-moment as quantified by the standard deviation
o3 and the empirical ratitws/u3|.

So far in this section the analysis of the third-moment has
been carried out for one time lag=1/50s. The same anal-
ysis can be carried out for many different time lags and, in
this case, the errdes/us| is typically an increasing func-
tion of time lagt throughout the inertial range (for a fixed
sample sizeV). The third-order moment as a function of the
time lagt computed using all available data is shown in the
upper plot in Fig. 4. For the data shown in Fig. 4, estimates
show that the relative errdes/us| lies approximately in the
range 009<|o3/u3|<0.3 for t<0.1 s and|o3/u3|=0.3 for

(25)

www.nonlin-processes-geophys.net/16/99/2009/



J. J. Podesta et al.: Accurate estimation of third-order moments from turbulence measurements 105

7>0.1s. Hence, the third-moments are sufficiently accurate T
for the present purpose only fox0.1s. 0

To estimate the energy cascade eatsing Kolmogorov's
four-fifths law Eq. @), the quantity—5((sv;)3)/4r is plot-
ted versusr in the lower panel in Fig. 4. Note that com-
pressibility effects are negligible because the Mach num-
ber is much less than unity and, therefore, the application
of Kolmogorov’s four-fifths law is justified. In the lower
panel in Fig. 4, the data lie approximately on the horizontal
line e=1.8 J/kg-s throughout the rangex20~4<t<102s.
Thus, the value of the energy cascade rate determined by 3
Kolmogorov's four-fifths law ise~1.8 J/kg-s. Note that 10
the range 210 %<tr<10"?s where where an apparent Y """"_3' """"_2' """"_l'
plateau is formed does not coincide with the inertial range 10 10 10 10
103<7<101s inferred from Fig. 1. Because the dissipa- ©(s)
tion range lies just beyond the spectral break nedHi0in
Fig. 1 (Pope, page 237), this implies that the region where the
four-fifths law holds includes part of the dissipation range.
It is also puzzling why the four-fifths law breaks down for - .
>10"2s in Fig. 4 since the inertial range appears to extend i ]
to r~10"1s in Figure 1. Consequently, Kolmogorov’s four-
fifths law does not hold throughout the entire inertial range as
the theory seems to predict. The reason for these discrepan-
cies is unknown at the moment. However, results for the scal-
ing of the third-order moment in Fig. 4 are in agreement with
Gagne et al(2004 who analyzed the same Modane data.

An independent estimate of the energy cascade rate is ob-
tained using Eq.1). If the measured signal is approximated

T
r il

~((3v)% (m/s)°

H
OO

|
%
Oéa

—5((8v)>)/4r (J/kg-s)

by the truncated Fourier series 10 i vl vl vl O

0% 10° 10% 10" 10°

(N/2)-1 .
v = Y. Vkexp(lzy;kt), (26) ©(s)

k=—N/2

where N is the record lengthT=N Az, and Az is the sam-  Fig- 4. The third-order momen(3v)®) versus time lag com-
ling time, then the time average 312 is given b puted using t.he entire record of Modane wind turmel data _(upper
ping ge ahv/o1) 9 y plot). The ratlo—5<(8v‘|)3)/4r versusr, wherer=uvt is the spatial

separation (lower plot). The horizontal line in the lower plot is the

2 2 NJ2
8_v — 2_77 Z |ka|2 27) value 1.8 J/kg-s. The data fee>0.1s is uncertain and should be
ot T ) e &1 ’ disregarded.
where ]
estimates of(dv/dr)2) from the Modane data should be ac-
1 N1 i2mkn curate. (Although Fig. 6.16 in Pope’s book is drawn for the
Vie = N Z Un X N (28)  caseR,=600, a similar plot in the casR, =2500 is almost
n=0 indistinguishable from the cagg, =600.) Note that the value

of n given in Table 1 oMalécot et al (2000 is in error, the
gorrect value is given in Yann Matot's thesis and also in
Kahalerras et a[1998 and inGagne et al(2004 where the
same Modane data is used.

In summary, it has been shown that the energy cas-
cade rate=1.8 J/kg-s obtained by Kolmogorov's four-fifths
law is in rough agreement with the energy dissipation rate
ediss=2.6 J/kg-s obtained from Eql).

is the discrete Fourier transform of the sequengev(nAr)
which is easily evaluated using the FFT. Using the entire dat
record to evaluate Eq27) and the value=2x10"°m?/s,
the energy dissipation rate obtained from Ed) (s
ediss=2.6 JIKg-s.

The spatial separation between two consecutive mea
surementg=vAr=0.8 mm is roughly three times the Kol-
mogorov scale;~0.3 mm; the normalized wavenumber is
kn~2.4. Because most of the dissipation occurs in the
wavenumber rangén<1 (Pope 200Q p. 237, Fig. 6.16),
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distance from the sun decreased from 2.80 AU to 2.17 AU as
its heliographic latitude remained betweeid0 and—81 de-
grees. The reversal of the solar magnetic field in the southern
hemisphere was completed in 19%hpdgrass et al2000
so the data used here contains only one magnetic sector. The
time tags on the data show some data have a 1/2 s cadence,
some data have a 1 or 2 s cadence, and there are also data
gaps of various sizes. The 1/2 s data is downsampled to 1 s
and the data gaps are left intact to create a time series with
a uniform cadence of 1 s. Times when data are missing are
marked with fill values (such data are easily omitted from
the analysis). There are a total aBBx10° data points in
the time series and 23.55% of these points are missing data
markers (fill values). The average valueRy for the entire
time series is-0.526 nT.

The power spectrum for the Ulysses data shown in Fig. 5
is strikingly similar to that of the wind tunnel data in Fig. 1.

=
o

PSD [(nT)*/Hz]

=
o

1073

-4l

10 . """'_3' * """'_2' * """'_1' —— 0 From Fig. 5, the inertial range appears to extend from less
10 10 10 10 10 than 103Hz to approximately 10'Hz. The time lag
Frequency (Hz) =60 s or, equivalentlyf=t"1=1.67x10"?Hz is chosen

for analysis because it lies inside the inertial range. The

same procedures used to analyze the Modane data are em-
Fig. 5. Power spectrum of t_he rgdial magnetic field comporié;a_t “ployed for the Ulysses data except that missing data is ex-
for the Ulysses d%t/ag used in this study (blue dots). The red line is;) ged from the analysis. Consequently, a data block of size
pr(i'%ort'onal tof = The 'nlert'al range extends "0”? 'e.ss t.han M contains less that samples (because of the presence of
LO™*Hz to approximately 10°Hz. The onset cglthe dissipation fill values) and the actual number of samplésraries from
fange is indicated by the change in slope arounddz. block to block. Only those data blocks whe¥e-0.55M are
included in the analysis and the average number of samples
N taken over all blocks of a given si2# is defined to be the
sample sizeV for that run.
In this section, we present two examples to illustrate the con- The results of the statistical analysis of Ulysses data for
vergence of third-order moments for solar wind data. Thethe time lagr=60 seconds are shown in Fig. 6. The sizes of
first example uses 1 s data for the radial magnetic fieldthe data blocks used in the analysis afe-2x10%, 2x1C?,
componentBg measured above the poles of the sun by theand 2¢<10°. The offset from one data block to the nextis
Ulysses spacecraft. The second example uses 64 s data f§ the upper plot and//2 for the other two plots. The al-
the radial solar wind velocityz measured in the ecliptic ~gebraic sign ofz3 is negative except in the lower plot, how-

6 lllustration using solar wind data

plane near 1 AU by the ACE spacecraft. ever, the sample size in the lower plot is too small to yield
adequate statistics. The value of the third-moment obtained
6.1 Analysis ofBg using Ulysses data using the entire data record8.9x10~° (nT)3, a very small

value. To gain some idea of the error, the error of the mean
The radial magnetic field componeBk (in spacecraft RTN 03/Nr}1/02m estimated from Fig. 6 is roughly>21.0~* (nT)3.
coordinates) was chosen because it enters the third-moment The theoretical relation Eg. (15) may be evalu-
(I5B|?5Bg) that appears in the law for the cross-helicity ated using estimates obtained from the data for the
cascade in MHD turbulencéd®desta et al2007 Podesta  third-moment M3=—8.9x10"2(nT)3, the sixth-moment
2008. Ulysses data was chosen because it is devoid of magazg—=2.1x10-2 (nT)®, and the correlation time,~21s de-
netic sector crossings which are usually present in data aqermined from the autocorrelation function for the sequence
quired near the ecliptic plane. The thlf_d'm0m¢(ﬁBR)3} (8 Bg)3. The values of the moments are uncertain, especially
changes algebraic sign in outward and inward magnetic sethigher order moments such &g which can be strongly af-
tors. For this reason, the presence of different magnetic sedected by the presence of outliers in the ddtarpury and
tors significantly complicates the analysis of this third-order Balogh 1997), however, they are used anyway to explore the
moment. fit to the data of the relation Eq. (15). Thus, the theoretical

The Ulysses data selected for analysis consists of a timeelation Eq. (15) takes the form

series of~1 s data from the vector-helium magnetometer
(Balogh et al. 1992 spanning the time interval from 1 July
1994 to 1 October 1994, 92 days. During this time Ulysses
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70

sol N= 1.73x10%
(29) |og/ugl = 25

50 p, =-2.1x10""

o3(N) | _ 7500
na(N)| N~

- . -3
For the three runs shown in Fig. 6 the theoretical values for £ a0t %3 =5.3x10 i
the ratiojos/u3| are 57, 19, and 6. These are roughly consis- 3 mom— 282
tent with the values found in Fig. 6. For all dafé~6x10° o 30r ’

and the relation Eq2Q) predicts a relative errrgts/ 3| ~3. 20}
Hence,u3~—8.9x10-°4+2.7x 104 (nT)3, which is consis-

tent with the estimates in the preceeding paragraph. 10

In summary, the large magnitude of the ratig/us is 0
partly due to the fact thats is close to zero and this makes it -0.02 0 0.02
impossible to obtain adequate convergence with the limited M, (nT)°

data used in this study. One may conclude from these results
that a much larger data set than the one used here is needed
to determine the third-moment 6B accurately. Neverthe-
less, the results presented here are still useful for determining
approximate upper and lower bounds for this third-order mo-
ment.

Counts

6.2 Analysis ofug using ACE data

Solar wind measurements of the radial velocity component
from the Advanced Composition Explorer (ACE) are ana-
lyzed in the same way. The ACE spacecraft is in orbit around
the Sun-Earth., libration point 24®, sunward of the Earth.
The ACE SWEPAM plasma instrument has a 64-second ca-
dence McComas et a).1998 and we use all data available
during the three year period from 2005 through 2007, about
1.4 million data points. Note that solar minimum is expected 2 T T T
to occur in late 2008 or early 2009. Non-overlapping data N = 9
blocks of 100 points (about 10000 blocks) to 256 000 data 15k IGS/_” = '1_4 i
points (5 blocks) are used. Each data block may include fill Ha :'
values (missing data markers) that are present in the time se- B
ries. All fill values are omitted from the analysis and any
data block in which the number of fill values exceeds 10% is
excluded from analysis. Third-order momentsof are cal-
culated for two different time lags,=256 s andc=2048 s.
The inertial range in the ecliptic plane near 1 AU extends
from about 1 s to about 1 h and, therefore, both of these time
lags lie in the inertial range. -1 -05 0 0.5 1

Figure 7 shows that in the solar wind, the ratio of the stan- M3 (nT)3 x107°
dard deviation of the third-moment to the average value of
the third-momentos/u3| has the sam&/—1/2 dependence
predicted by Eq. (15) as does the wind tunnel data analyzegtg. 6. Results from the analysis of the third order moment
in Sect. 5. Remarkably, the amplitude of this relation is quan-((s Bg)3) for the time lagr=60 s obtained using data from Ulysses
titatively similar for both wind tunnel data and solar wind first southern polar pass. The numbeéis the approximate sample
data, even though the solar wind has a fast/slow stream strucize used to compute the third-moment @fom is the number of
ture and the turbulence is magnetohydrodynamic in naturethird-order moments used to compute the statigtiggindos. The
As with the wind tunnel data, it appears from Fig. 7 that mean and standard deviation®g(N), denoted by:3 ando3, have
more than 10 solar wind velocity measurements are needed!nits (nTy. T5he Vaslue ofM3 obtained using the entire data record
to accurately determine the third-order momg@#vg)3) (er- 'S ~89x107(nT)”.
ror less than 10%). However, sample si2és10° may give
sufficient accuracy for some applications.

Counts
T
3
[e]
3

0.5F .

o
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LR L LR | T T 11117 and Eq. (15) becomeS

o3V | _ 322 (31)
us(N) | /N

These represent reasonable asymptotic fits to the data shown
in Fig. 7 asN becomes large.

What accuracy can be claimed for measurements of this
third-order moment in the solar wind? The upper plot in
2048 s Fig. 7 indicates that fov~1.4x10° data points the error
LA 256s is around~40%. The lower plot in Fig. 7 shows the mean

10_ Ll e vl L1 11l

10° 10° 10° 10° values of the third moments plus and minus the standard

N error of the meararg/N%zm, where Nmom is the number of
moments used to compute the mean. It appears that the rel-
10" ative error is roughly the same at both lags and that within
L the calculated errors the third moment is proportional to lag.

+ ++ + Such proportionality is most clearly demonstrated by com-
puting the third-moment as a function of the time la¢not
shown).

It is interesting that botlR;, ~2500 wind tunnel data and
solar wind velocity data require roughly the same number of
data points to obtain good convergence of third-order mo-

ments for time lags in the inertial range. In part, this may be

~u, (km/s)®

10 ot K ++H o+ i because both kinds of turbulenpe have similar Reynolds num-
| | | ] bers. The Reynolds number in the solar wind can crudely
S e be estimated using the hydrodynamic relatiom=Re¥/4,
10 10 1|8 10 10 whereL is the integral scale; is the Kolmogorv scale (dissi-

pation scale), anReis the Reynolds number based on the in-
tegral scale. Solar wind power spectra indicate fhat~10°
Fig. 7. Results from the analysis of the third-order moment and, therefore the Reynolds number is of ordet. Thhis is
((5vg)3) using ACE data for 2005-2007. Red triangles and blue €quivalent to a Taylor-scale Reynolds number
squares correspond to the time lags256 s and-=2048 s, respec-
tively. The upper plot shows the convergence of the fiatigis| as R, = (2—30R@l/2 ~ 2600 (32)
a function of the number of sampl@s, the solid lines are the the-
oretical predictions from Eq. (15), 47F1/2 and 322NY2. The ~ (Pope200Q p. 200, eqn. 6.64). Thus, the Reynolds numbers
lower plot shows the values of the third-order moment plus and mi-of Modane wind tunnel data and solar wind velocity data at
nus the error in the mean, that i$3:|:0’3/N#1/02m, where Nmom is 1 AU are similar.
the number of moments used to compute the mean.

7 Conclusions

Also plotted in the upper plot in Fig. 7 are the theoretical The purpose of this study is not to compute turbulent en-
curves, Eq. (15), for the two time lags studied. A rough esti-ergy cascade rates using third-order moments. The purpose
mate of Eq. (15) is obtained by using all data in the record toof this study is to show how the accuracy of third-order mo-
estimate the sixth-moment 86 (7), Mg, the third-moment  ments can be estimated and controlled. A simple theory is
M3z, and the correlation time. of the sequenc@vg(t)]°.  presented that describes the statistical convergence of third-
For the time lagr=256 s, this yields\/6~8.8x10° (km/sf,  order moments, such a&v;)3), as a function of the record
M3~2.5x10% (km/sf, andr./t~0.4. In this casen=1.6  |ength. Animportant conclusion is that the accuracy of third-

and Eq. (15) becomes order moments depends on the number of correlation lengths
spanned by the time series as expressed by Egs. (14) and (15).
o3(N) 477 The techniques described here are useful for assessing the ac-
—_— |~ — 30 ird- i i
13(N) N (30) curacy of third-order moments obtained using measured data.

Practical applications of the theory have been illustrated us-
ing wind tunnel data and solar wind data.

For the time lagr=2048 s, Mg~9.5x10° (km/sf,

M3~3.4x10% (km/sy, andt./t~0.4. In this casep=12.8
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For the accurate calculation of third-order moments from pressible MHD turbulence could be applied. In the studies by
wind tunnel data with a Taylor-scale Reynolds number Sorriso-Valvo et al(2007 andMarino et al.(2008 the num-
R;~2500, the number of data points required to obtain anber of data points employed to compute the required third-
error less than 10% at the time lag=20 ms isN=10’ or, order moments was around 2000. As shown in the present
equivalently, a record length spanning=10° correlation  study, this number is insufficient to obtain accurate estimates
lengths. For fluctuations of the radial solar wind velocity of third-order moments in the solar wind. This may explain
vg, the analysis of ACE data in the ecliptic plane near 1why Sorriso-Valvo et al(2007) andMarino et al.(2008 did
AU shows that for the time lags=256 s andr=2048 s the not find a linear scaling of the third-order moments in some
number of data points required for an accurate determinatiorf the intervals they studied, and why they found it was rare
of the third-order moment is also roughy=10". Thisis  for linear scaling to be observed simultaneously for both of
equivalent toN,=6.3x 10 and 78x10° correlation lengths  the Elsasser variables. Although MacBride et al. (2008) did
for t=256 s and 2048 s, respectively. Howevery10° data  not use the convergence tests proposed here, they used large
points may yield sufficient accuracy for some applications. enough data sets that the third order moments in the Poli-

For fluctuations of the radial magnetic field componBpt  tano and Pouquet scaling laws became insensitive to adding
over the poles of the sun at a heliocentric distance of apmore data. To obtain stable estimates of the third-moments,
proximately 2.5 AU, the value of the third-order moment is this convergence criterion required the use of at least one
close enough to zero that convergence of the third momenyear of ACE plasma and magnetic field data, roughl§ 10
could not be demonstrated using an interval of Ulysses datalata points. In the future, the convergence of third-order mo-
with approximately six million points (not including fill val- ments and the associated error estimates that such conver-
ues), a record consisting of approximately 8P correla-  gence studies provide should become an integral part of any
tion lengths. This suggests that third-order moments of solaanalysis of solar wind data involving third-order moments.
wind magnetic field components must be computed carefully
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