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Abstract. Activity of the nuclei of galaxies and stellar mass
systems involving disk accretion to black holes is thought
to be due to (1) a small-scale turbulent magnetic field in
the disk (due to the magneto-rotational instability or MRI)
which gives a large viscosity enhancing accretion, and (2)
a large-scale magnetic field which gives rise to matter out-
flows and/or electromagnetic jets from the disk which also
enhances accretion. An important problem with this picture
is that the enhanced viscosity is accompanied by an enhanced
magnetic diffusivity which acts to prevent the build up of a
significant large-scale field. Recent work has pointed out that
the disk’s surface layers are non-turbulent and thus highly
conducting (or non-diffusive) because the MRI is suppressed
high in the disk where the magnetic and radiation pressures
are larger than the thermal pressure. Here, we calculate the
vertical (z) profiles of the stationary accretion flows (with ra-
dial and azimuthal components), and the profiles of the large-
scale, magnetic field taking into account the turbulent vis-
cosity and diffusivity due to the MRI and the fact that the
turbulence vanishes at the surface of the disk. We derive
a sixth-order differential equation for the radial flow veloc-
ity vr(z) which depends mainly on the midplane thermal to
magnetic pressure ratioβ>1 and the Prandtl number of the
turbulenceP=viscosity/diffusivity. Boundary conditions at
the disk surface take into account a possible magnetic wind
or jet and allow for a surface current in the highly conduct-
ing surface layer. The stationary solutions we find indicate
that a weak (β>1) large-scale field does not diffuse away as
suggested by earlier work.
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1 Introduction

Early work on disk accretion to a black hole argued that a
large-scale poloidal magnetic field originating from say the
interstellar medium, would be dragged inward and greatly
compressed near the black hole by the accreting plasma
(Bisnovatyi-Kogan and Ruzmaikin, 1974, 1976) and that
this would be important for the formation of jets (Lovelace,
1976). Later, the importance of a weak small-scale magnetic
field within the disk was recognized as the source of the
turbulent viscosity of disk owing to the magneto-rotational
instability (MRI; Balbus and Hawley, 1991). Analysis of
the diffusion and advection of a large-scale field in a disk
with a turbulent viscosity comparable to the turbulent mag-
netic diffusivity (as suggested by MRI simulations) indicated
that aweaklarge-scale field would diffuse outward rapidly
(van Ballegooijen, 1989; Lubow, Papaloizou, and Pringle,
1994; Lovelace, Romanova, and Newman, 1994, 1997). This
has led to the suggestion that special conditions (nonax-
isymmetry) are required for the field to be advected inward
(Spruit and Uzdensky, 2005). Recently, Bisnovatyi-Kogan
and Lovelace (2007) pointed out that the disk’s surface layers
are highly conducting (or non-diffusive) because the MRI is
suppressed in this region where the magnetic energy-density
is larger than the thermal energy-density. Rothstein and
Lovelace (2008) analyzed this problem in further detail and
discussed the connections with global and shearing box mag-
netohydrodynamic (MHD) simulations of the MRI.

Here we calculate the profiles through the disk of station-
ary accretion flows (with radial and azimuthal components),
and the profiles of a large-scale, weak magnetic field tak-
ing into account the turbulent viscosity and diffusivity due
to the MRI (in anα-description)and the fact that the turbu-
lence vanishes at the surface of the disk. A full explanation
of this work will be given elsewhere (Lovelace, Rothstein,
and Bisnovatyi-Kogan, 2009). Related calculations of the
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disk structure were done earlier by Königl (1989), Li (1995),
Ogilvie and Livio (2001) but without taking into account the
absence of turbulence at the disk’s surface. Recent work calls
into question theα-description of the MRI turbulence in ac-
cretion disks and develops a closure model which fits shear-
ing box simulation results (Pessah, Chan, and Psaltis, 2008).
Furthermore, there is evidence that the MRI turbulence re-
tains dependences on the microscopic viscosity and diffu-
sivity and consequently on the microscopic Prandtl number
(Lesur et al., 2007; Fromang et al., 2007). Analysis of these
issues is deferred to a future study.

2 Theory

We consider the non-ideal magnetohydrodynamics of a thin
axisymmetric, viscous, resistive disk threaded by a large-
scale dipole-symmetry magnetic fieldB. We use a cylin-
drical (r, φ, z) inertial coordinate system in which the time-
averaged magnetic field isB=Br r̂+Bφφ̂+Bzẑ, and the time-
averaged flow velocity isv=vr r̂+vφφ̂+vzẑ. The main equa-
tions are

ρ
dv
dt

=−∇p+ρg+
1

c
J × B+Fν, (1)

∂B
∂t

= ∇×(v × B)−∇ × (η∇ × B). (2)

These equations are supplemented by the continuity equa-
tion, by ∇ × B=4πJ/c, and by∇ · B=0. Here,η is the
magnetic diffusivity,Fν

=−∇ · T ν is the viscous force with
T ν

jk=−ρν(∂vj/∂xk+∂vk/∂xj−(2/3)δjk∇ · v) (in Cartesian
coordinates), andν is the kinematic viscosity.

We assume that both the viscosity and the diffusivity are
due to magneto-rotational (MRI) turbulence in the disk so
that

ν=Pη=α
c2
s0

�K

g(z), (3)

whereP is the magnetic Prandtl number of the turbulence
assumed a constant of order unity,α≤1 is the dimension-
less Shakura-Sunyaev (1973) parameter,cs0 is the midplane
isothermal sound speed,�K≡(GM/r3)1/2 is the Keplerian
angular velocity of the disk, andM is the mass of the central
object. The functiong(z) accounts for the absence of turbu-
lence in the surface layer of the disk (Bisnovatyi-Kogan and
Lovelace, 2007; Rothstein and Lovelace, 2008). In the body
of the diskg=1, whereas at the surface of the disk, at sayzS ,
g tends over a short distance to a very small value∼10−8,
effectively zero, which is the ratio of the Spitzer diffusivity
of the disk’s surface layer to the turbulent diffusivity of the
body of the disk.

We consider stationary solutions of Eqs. (1) and (2) for a
weak large-scale magnetic field. These can be greatly sim-
plified for thin disks where the disk half-thickness, of the

order of h≡cs0/�K , is much less thanr. Thus we have
the small parameterε=h/r=cs0/vK�1. In the following
we use the dimensionless heightζ≡z/h. The three mag-
netic field components are assumed to be of comparable
magnitude on the disk’s surface, butBr=0=Bφ on the mid-
plane. On the other hand the axial magnetic field changes by
only a small amount going from the midplane to the surface,
1Bz∼εBr�Bz (from ∇·B=0) so thatBz≈ const inside the
disk. As a consequence, the∂Bj/∂r terms in the magnetic
force in Eq. (1) can all be dropped in favor of the∂Bj/∂z

terms (withj=r, φ). The velocity components are assumed
to satisfy v2

z�c2
s0 and v2

r �v2
φ . Consequently,vφ(r, z) is

close in value to the Keplerian valuevK(r)≡(GM/r)1/2.
Thus,∂vφ/∂r=−(1/2)(vφ/r) to a good approximation.

With these assumptions, the radial component of Eq. (1)
gives

∂br

∂ζ
=

βρ̃

ε

(
1−kp ε2

−u2
φ

)
+α2β

∂

∂ζ

(
ρ̃g

∂ur

∂ζ

)
, (4)

where ρ̃≡ρ(r, z)/ρ0 with ρ0≡ρ(r, z=0). The midplane
plasma beta isβ≡4πρ0c

2
s0/B

2
0 , wherekp≡−∂ lnp/∂ lnr is

assumed of order unity andp=ρc2
s . Note thatβ=c2

s0/v
2
A0,

wherevA0=B0/(4πρ0)
1/2 is the midplane Alfv́en velocity.

The rough condition for the MRI instability and the asso-
ciated turbulence in the disk isβ>1 (Balbus and Hawley,
1991). In the following we assumeβ>1, which we refer to
as a weak magnetic field. We normalize the field compo-
nents byB0=Bz(r, z=0), with br=Br/B0, bφ=Bφ/B0, and
bz=Bz/B0≈1. Also, uφ≡vφ(r, z)/vK(r) and the accretion
speedur≡− vr/(αcs0). For the assumed dipole field sym-
metry,br andbφ are odd functions ofζ whereasur anduφ

are even functions.
In a similar way one can derive an equation for∂bφ/∂ζ

from the toroidal component of Eq. (1). Thez-component
of Eq. (1) corresponds to hydrostatic equilibrium forβ>1.
Equations for∂uφ/∂ζ and∂br/∂ζ follow from Eq. (2).

Integration of the∂bφ/∂ζ equation fromζ=0 (where
bφ=0 and∂uφ/∂ζ=0) to the exterior of the disk (ζS+ where
g=0) gives the average accretion speed,

ur=u0−
2bφS+

αβ6̃
, (5)

which is the sum of a viscous contribution,u0≡3εkν (with
kν≡∂ ln(ρc2

s0r
2/h)/∂ ln(r)>0 of order unity), and a mag-

netic contribution (∝ bφS+) due to the loss of angular
momentum from the surface of the disk where necessarily
bφS+≤0 (Lovelace, Romanova, and Newman, 1994). Here

ur≡
∫ ζS

0 dζ ρ̃ur/6̃, 6̃≡
∫ ζS

0 dζ ρ̃, and theS+ subscript in-
dicates evaluation outside the disk. A similar integration of
the∂br/∂ζ equation implies that

brS=PζS〈ur 〉 , (6)

where〈. . .〉=
∫ ζS

0 dζ(. . .)/ζS .
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The equations forur , uφ, br , & bφ can be combined to
give a single equation forur(ζ ),

α4β2 ∂2

∂ζ 2

(
g

∂

∂ζ

(
ρ̃g

∂

∂ζ

(
1

ρ̃

∂

∂ζ

(
ρ̃g

∂ur

∂ζ

))))

−α2βP
∂2

∂ζ 2

(
g

∂

∂ζ

(
ρ̃g

∂

∂ζ

(
ur

ρ̃g

)))

−α2βP
∂2

∂ζ 2

(
1

ρ̃

∂

∂ζ

(
ρ̃g

∂ur

∂ζ

))

+α2β2 ∂2

∂ζ 2

(
ρ̃g

(
ur − gu0

))
+P2 ∂2

∂ζ 2

(
ur

ρ̃g

)
+3βP2ur

g
=0 . (7)

This equation is integrated fromζ=0 out to the surface of the
disk ζS where the boundary conditions apply. Becauseur is
an even function ofζ , only ur(0), u′′

r (0), anduiv
r (0) need to

be adjusted in order to satisfy the boundary conditions at the
disk surface (Lovelace et al., 2009).

Note that the value ofbφS+≤0 is not fixed by the solution
for the field/flow inside the disk. Its value can be determined
by matching the calculated surface fieldsbrS andbφS+ onto
an external magnetic wind or jet solution. Stability of the
wind or jet solution to current driven kinking is predicted to
limit the ratio of the toroidal to axial magnetic field com-
ponents at the disk’s surface|bφS+| to values

∼
<O(2πr/Lz)

(Hsu and Bellan, 2002; Nakamura, Li, and Li, 2007), where
Lz is the length-scale of field divergence of the wind or jet at
the disk surface. From known wind and jet solutions we es-
timate 2πr/Lz≈π (Lovelace, Berk, and Contopoulos, 1991;
Ustyugova et al., 1999; Ustyugova et al., 2000; Lovelace et
al., 2002). The quantityur/u0−1=2|bφS+|/(αβ6̃u0) is the
faction of the accretion power going into the jets or winds
(Lovelace et al., 1994). For the mentioned upper limit on
|bφS+|, we findur/u0−1

∼
<O[2π/(αβ6̃u0)]. From Eq. (6)

we havebrS=(PζSu0)(〈ur 〉/u0). Therefore, forβ�1 and
〈ur 〉≈u0, we havebrS≈PζSu0.

The matching of internal and external field/flow solutions
has been carried out by Königl (1989) and Li (1995) for
the case of self-similar [Bz(r, 0)∼r−5/4] magnetocentrifu-
gally outflows from the disk’s surface. These outflows occur
under conditions where the poloidal field lines at the disk’s
surface are tipped relative to the rotation axis by more than
30◦ which corresponds tobrS>3−1/2

≈0.577 (Blandford and
Payne, 1982). The outflows typically carry a significant mass
flux. For the internal field/flow solutions discussed in §4 with
β�1, we conclude thatbrS is sufficiently large for magne-
tocentrifugal outflows only for turbulent magnetic Prandtl
numbers,P

∼
>2.7. Shu and collaborators (e.g., Cai et al.,

2008, and references therein) have developed detailed “X-
wind” models which depend on the disk having Prandtl num-
bers larger than unity.

bφS

br S

u r u0

0

1

2

1 1.5 2 2.5

br S P

P

=1

=2( )

( )

+

Fig. 1. Radial and toroidal field components (normalized toBz)
at the disk’s surface as a function of the average accretion speedur

(normalized by the viscous accretion speedu0). For this plotβ=100
and Prandtl numbersP=1 and 2. Note thatbφS+ is given by Eq. (5)
and is independent ofP andbrS is given by Eq. (6).

For Prandtl numbers sayP
∼
<2.7, the values ofbrS are too

small for there to be a magnetocentrifugal outflow. In this
case there is an outflow of electromagnetic energy and an-
gular momentum from the disk (with little mass outflow)
in the form of a magnetically dominated or “Poynting flux
jet” (Lovelace, Wang, and Sulkanen, 1987; Lovelace, et al.,
2002) also referred to as a “magnetic tower jet” (Lynden-
Bell, 1996, 2003). MHD simulations have established the
occurrence of Poynting-flux jets under different conditions
(Ustyugova et al., 2000, 2006; Kato, Kudoh, and Shibata,
2002; Kato, 2007). Laboratory experiments have allowed the
generation of magnetically dominated jets (Hsu and Bellan,
2002; Lebedev et al., 2005).

Figure 1 shows the dependences of the surface field com-
ponents on the accretions speed forα=0.1 andβ=100.

Figures 2 and 3 show a sample solution of Eq. (7)
for ε=0.05, α=0.1, β=100, andP=1 where we find
ur/u0=1.30, bφS+=−0.321, andbrS=0.276 . For this so-
lution both the densityρ(ζ ) and g(ζ ) are take to be step
functions going to zero atζm=

√
2 (see Lovelace et al., 2009).

Note that the solution has a “channel” structure with the mid-
plane region of the disk flowing radially outward and the re-
gions closer to the disk’s surfaces flowing radially inward.

3 Conclusions

A study is made of stationary axisymmetric accretion flows
[vr(z), vφ(z), vz≈0] and the large-scale, weak magnetic field
[Br(z), Bφ(z), Bz≈const] taking into account the turbulent
viscosity and diffusivity due to the MRI and the fact that the
turbulence vanishes at the surface of the disk as discussed by
Bisnovayi-Kogan and Lovelace (2007) and Rothestein and
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Fig. 2. Radial flow speedvr=−ur (normalized toαcs0) as a func-
tion of ζ=z/h and a sample poloidal(Br , Bz) magnetic field line
for β=102 andP=1.
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Fig. 3. Toroidal magnetic fieldbφ=Bφ/Bz and toroidal velocity
δuφ=(vφ−vK )/vK (with vK the Keplerian velocity) for the case
whereβ=100 andP=1. The jump in the toroidal magnetic field at
the disk’s surface is shown by the dashed line.

Lovelace (2008). We derive a sixth-order differential equa-
tion for the radial flow velocityvr(z) which depends mainly
on the ratio of the midplane thermal to magnetic pressures
β>1 and the Prandtl number of the turbulenceP= viscos-
ity/diffusivity. Boundary conditions at the disk’s surfaces
take into account the outflow of angular momentum to mag-
netic winds or jets and allow for a surface current flow in
the highly conducting surface layers. In general we find that
there is a radial surface current but no toroidal surface cur-
rent. Stability of the winds or jets will limit the ratio of the
toroidal to axial field at the disk’s surface|bφS+| to values

∼
<π . The stationary solutions we find indicate that a weak
(β�1), large-scale field does not diffuse away as suggested
by earlier work (e.g., Lubow et al., 1994) which assumed
brS≥3−1/2.

The flow/field solutions found here in a viscous/diffusive
disk and are different from the exponentially growing chan-
nel flow solutions found by Goodman and Xu (1994) for an
MRI in an ideal MHD unstable shearing box. Channel solu-
tions in viscous/diffusive disks were found earlier by Ogilvie
and Livio (2001) and by Salmeron, Königl, and Wardle
(2007) for conditions different from those considered here.
In general we find that the magnitude of the toroidal magnetic
field component inside the disk is much larger than the other
field components. The fact that the viscous accretion speed
is very small,∼αεcs0, means that even a small large-scale
field can significantly influence the accretion flow. We find
that Prandtl numbers larger than a critical value estimated to
be 2.7 are needed in order for there to be magnetocentrifugal
outflows from the disk’s surface. For smallerP, electromag-
netic outflows are predicted. Owing to the stability condi-
tion, |bφS+|

∼
<π , the fraction of the accretion power going

into magnetic outflows or jets is
∼
<constβ−1

∼B2
z .

Analysis of the time-dependent accretion of the large-scale
B−field is clearly needed to study the amplification of the
field and build up of magnetic flux in the inner region of
the disk. One method is to use global 3-D MHD simula-
tions (Igumenshchev et al., 2003; Hirose et al., 2004; De
Villiers et al., 2005; Hawley and Krolik, 2006; McKinney
and Narayan, 2007; Igumenshchev, 2008), but this has the
difficulty of resolving the very thin highly conducting sur-
face layers of the disk. Another method is to generalize the
approach of Lovelace et al. (1994) taking into account the
results of the present work. This is possible because the ra-
dial accretion time (r/|ur |) is typically much longer than the
viscous diffusion time across the disk (h2/ν).
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