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Abstract. The evolution of internal solitary waves (ISWs)
propagating in a rotating channel is studied numerically in
the framework of a fully-nonlinear, nonhydrostatic numeri-
cal model. The aim of modelling efforts was the investiga-
tion of strongly-nonlinear effects, which are beyond the ap-
plicability of weakly nonlinear theories. Results reveal that
small-amplitude waves and sufficiently strong ISWs evolve
differently under the action of rotation. At the first stage
of evolution an initially two-dimensional ISW transforms
according to the scenario described by the rotation mod-
ified Kadomtsev-Petviashvili equation, namely, it starts to
evolve into a Kelvin wave (with exponential decay of the
wave amplitude across the channel) with front curved back-
wards. This transition is accompanied by a permanent ra-
diation of secondary Poincaré waves attached to the leading
wave. However, in a strongly-nonlinear limit not all the en-
ergy is transmitted to secondary radiated waves. Part of it
returns to the leading wave as a result of nonlinear interac-
tions with secondary Kelvin waves generated in the course
of time. This leads to the formation of a slowly attenuating
quasi-stationary system of leading Kelvin waves, capable of
propagating for several hundreds hours as a localized wave
packet.

1 Introduction

Oceanic internal solitary waves (ISWs) are typically the most
energetic vertical motions of the World Ocean. In some
places, their amplitude reach 100 m or even more (Wesson
and Gregg, 1988; Yang et al., 2004). These waves produce
shear currents and turbulence (Garrett, 2003) that mix wa-
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ter and supply nutrients from the abyss to the surface photic
layer and enhance biological productivity (Briscoe, 1984).

There are a number of mechanisms of internal wave gen-
eration. It is commonly believed that one of the princi-
pal sources of oceanic internal waves is the interaction of
barotropic tides with prominent bathymetric features. There
are many parameters that control their generation, subse-
quent evolution and ultimate dissipation, such as tidal ex-
cursion, bottom topography, and background stratification.
The rotation of the Earth plays a fundamental role in the dy-
namics of baroclinic tidal waves (Vlasenko et al., 2005), both
in generation and their disintegration into packets of ISWs.
Gerkema and Zimmerman(1995) andGerkema(1996) were
probably the first to find that in weakly nonlinear nonhydro-
static media, sufficiently strong rotation suppresses disinte-
gration of progressive baroclinic tidal wave into packets of
short ISWs. This theory was recently revised byHelfrich and
Grimshaw(2008), who considered how the balance between
hydrostatic and nonhydrostatic parts of the long-wave solu-
tion influences its disintegration into a packet of ISWs. How-
ever, after its generation these short-scale ISWs are mostly
unaffected by rotation due to the fact that nonhydrostatic dis-
persion exceeds substantially the rotational dispersion. A no-
ticeable effect can be expected when these two dispersions
are comparable.

In a very general theoretical context, the influence of ro-
tation on ISWs was considered in a number of papers where
the Ostrovsky’s equation (Ostrovsky, 1978), which incorpo-
rates weak nonlinearity and rotational dispersion, was sub-
jected to an asymptotic analysis. One of the conclusions was
that internal waves of permanent form cannot exist in rotat-
ing systems (Leonov, 1981).

Under weak rotation, when a KdV solitary wave is used
as the initial condition of the Ostrovsky equation, it decays
due to radiation of inertial gravity waves (Grimshaw et al.,
1998). Details of the dynamics were described byGilman et
al. (1996): radiated long inertial waves eventually steepen to
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produce a new solitary wave, which in turn fades out repeat-
ing the process of wave-radiation and further formation of a
new solitary wave. The long-term behaviour of this recurrent
mechanism was recently investigated in detail byHelfrich
(2007). It was found that in a strongly-nonlinear case not all
the energy of the initial wave radiates with secondary waves.
A certain part of initial energy (up to a half in some cases)
can accumulate in a packet of amplitude modulated solitary
waves that propagate through a long wave envelope. The
group velocity of the envelope is less than the phase speed
of every individual solitary wave. As a result, solitary waves
emerge in the tail, propagate forward through the envelope
growing in amplitude until the middle of the packet, to fi-
nally attenuate and decay at the leading edge.

Rotational effects develop even more dramatically in con-
strained systems like straits and channels. The influence of
lateral boundaries leads to the formation of radiated Poincaré
waves and a trapped Kelvin wave. This was observed for the
first time in a laboratory tank byMaxworthy (1983), who
conducted experiments with stratified fluids and pointed out
that rotation causes the wave crest of the solitary wave to be
curved backwards. The findings were later confirmed byRe-
nouard et al.(1987), who also noticed that the leading Kelvin
wave is accompanied by a train of small amplitude waves
trailing the main disturbance.

The detailed analysis of the evolution process of ISWs
in a rotating channel was performed in a number of the-
oretical works (Grimshaw, 1985; Katsis and Akylas, 1987;
Grimshaw, 1988; Melville et al., 1989; Grimshaw and Tang,
1990; Akylas, 1991). The analysis is normally based on the
Rotation Modified Kadomtsev-Petviashvili (RMKP) equa-
tion for the wave amplitudeA(x, y, t), wherex, y andt are
along-channel, across-channel coordinate and time, respec-
tively. With the appropriate boundary conditions at the lat-
eral boundaries (y=0, l) the problem on evolution of weakly
nonlinear internal waves in a rotating channel reads:

(At + νAAx + λAxxx)x +
1

2
c0(Ayy − γ 2A) = 0, (1)

Ay + γA = 0, y = 0, l. (2)

Herec0 is the linear phase speed andγ=R−1
0 is the inverse

internal Rossby radius which provides a measure of rotation.
The parametersν andλ are coefficients of nonlinearity and
dispersion respectively, both dependent of the associated ver-
tical modeg0 calculated from the eigen-value problem:

d2gj

dz2
+

N2

c2
j

gj = 0, j = 0, 1, ... (3)

gj (−H) = gj (0) = 0, j = 0, 1, ... (4)

Here N(z) is the buoyancy frequency andH the water
depth.

Grimshaw(1985) was the first to formulate the problem
(1)–(2). It was used for the study of propagation of weakly

nonlinear internal waves in a continuously stratified rotating
shallow-water channel in the case when the rotation as well
as nonlinearity, three-dimensional effects and dispersion are
weak and of the same order. Conditions (2) constrain the
choice of initial solitary form satisfying Eq. (1) by waves in
which their mass in planes parallel to lateral walls varies ex-
ponentially across the channel. An attempt to find a solitary-
wave solution of the RMKP equation in the form suggested
by Maxworthy (1983) (with straight or curved wave front)
was not successful because of the boundary conditions (2).
This problem was studied numerically for two-layer fluid
by Katsis and Akylas(1987), who noticed that the initially
straight-crest SIW transforms into a wave with exponential
decrease of amplitude (characteristic of a Kelvin wave) with
wave crest curved backwards. The wave suffered remarkable
attenuation due to the radiation of secondary perturbances.
Similar results were obtained byGrimshaw and Tang(1990)
for continuously stratified fluids.

The system of waves satisfying both the RMKP Eq. (1)
and boundary conditions (2) was suggested byGrimshaw and
Tang(1990) in the form:

A =

∞∑
n=0

An(x, t)φn(y), (5)

where φ0=e−γy ; φn= cos(nπy
l

) −
γ l
nπ

sin(nπy
l

), n=1, 2...

are the complete set of orthogonal functions in whichn=0
represents the trapped Kelvin mode, andn≥1 the radiated
Poincaŕe modes. The following equations for the wave am-
plitude of each mode was found:

A0t + λA0xxx +
1

2
ν

{
∞∑

p=0

∞∑
q=0

C0pq(ApAq)x

}
= 0 (6)

(Ant + λAnxxx)x+b2
nAn−

1

2
ν

{
∞∑

p=0

∞∑
q=0

Cnpq(ApAq)xx

}
=0 (7)

HereCnpq=

∫ 0
l φnφpφqdy∫ 0

l φ2
ndy

, b2
n =

1
2c0(γ

2
+

n2π2

l2
). Note that

Eqs. (6) and (7) are coupled in the nonlinear terms, and, as
pointed out byGrimshaw and Tang(1990), this is the ulti-
mate cause that inhibits the existence of a stationary solution.
To illustrate the mechanism, let us suppose the inexistence of
Poincaŕe modes att=0 (Ai=0, i=1, .., n, for t=0). In this
case (6) admits the solitary wave solution which, together
with the transversal Kelvin modeφ0, forms a Kelvin soli-
tary wave taken as initial condition. Following Eq. (7), the
Kelvin mode itself will excite the Poincaré modes, which in
turn subtract energy from the initial wave and are radiated
backwards due to their lower phase speed.

If one takes a straight-crest wave across the channel for the
initial wave asRenouard et al.(1987) did, it starts to evolve as
discussed above transforming into exponentially decreased
across the channel wave with curved backwards front. Even
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though the wave profile consistent with the boundary condi-
tion (2) is taken as the initial wave, it also starts to evolve
according to the scenario described byKatsis and Akylas
(1987) andGrimshaw and Tang(1990). One of the conclu-
sions of these papers was that the exponential decrease of the
wave amplitude across the channel is not a crucial condition
for the wave evolution.

Thus, we used this result as a justification of our approach
to take a straight-crest ISW as initial condition for the in-
vestigation of its long-term evolution. The new element in-
troduced in this study is that our analysis is not restricted to
only weakly-nonlinear waves. The initial amplitude can be
as large as 100 m or more for oceanic-scale waves (as ob-
served in many places), which demands the application of a
fully-nonlinear approach.

This paper investigates numerically the propagation of
ISWs in a rotating rectangular channel focusing on long-term
effects of rotation on their structure and evolution. It is orga-
nized as follows: Sect. 2 describes the numerical model and
its initialisation. In Sect. 3 the reference numerical experi-
ment is discussed. Sensitivity runs are examined in Sect. 4.
Finally, Sect. 5 contains discussions and conclusions.

2 Model description and initialisation

Some results on modelling of ISWs propagating in the Strait
of Gibraltar have been recently reported byVlasenko et al.
(2009). One conclusion was that this strait is too short for
weak rotational dispersion to introduce any substantial cor-
rections into the wave field. The rotational effects in the
Strait of Gibraltar typically account for only about 10% of
wave amplitude. The purpose of this paper is to study the
situations of long-term evolution in order to clarify the ulti-
mate stage of propagation of strongly nonlinear ISWs under
the action of rotation. In doing so, we simplify the bottom
topography considering only rectangular straight channels.
This circumstance excludes any effects related to the scatter-
ing of internal waves by variable bottom topography. Hence,
all changes in the wave structure can be attributed to the in-
fluence of rotation. Specifically, in our analysis the parame-
ters of the channel and propagating waves were taken close to
those observed in the Strait of Gibraltar: the width and depth
were 17 km and 600 m respectively, the vertical fluid strati-
fication as presented in Fig.1, and amplitudes of incoming
ISWs from 10 to 90 m.

The Massachusetts Institute of Technology general circu-
lation model (MITgcm), which is a fully non-linear non-
hydrostatic hydrodynamic model, was used in our study. A
detailed description of the model can be found in the paper
by Marshall et al.(1997). At first stage the model was used
for the preparation of the initial fields. It was initialized by
the first-mode solitary wave of depression obtained from the
Korteveg-de Vries (KdV) equation. This wave represents a
stationary weakly non-linear solution of the KdV equation. It

0  0.004 0.008
600

500

400

300

200

100

0

0.1
|

0.3
|

0.5
|

0.7
|

0.9
|

1.0

26.68 27.16 27.64 28.12 28.61 29.09

N (sec−1)
D

ep
th

 (
m

)

g
1
(z)

c
1
=1.05 ms−1

N(z)

σθ(z)

g
1

σθ

Fig. 1. Solid line: density profile used in the numerical experiments.
Dashed line: associated buoyancy frequency. Dashed-point line:
Normalizad vertical wave displacement of the first baroclinic mode.

does not however satisfy the fully nonlinear non-hydrostatic
equations in the case of large amplitude waves considered
here. Hence, being inserted into the numerical model the
wave starts to evolve (even without rotation) eventually trans-
forming into a new steady-state wave in which strong nonlin-
earity is in balance with all other effects. It takes about 20–30
wavelengths for the leading wave to evolve into an isolated
stable ISW well detached from the secondary wave tail. This
leading ISW is taken hereafter as initial field for our numeri-
cal experiments.

The computational domain included a rectangular grid
with resolution of1x=50 m, 1y=900 m, along and cross-
channel respectively, and vertical step1z=7.5 m in the
upper 300 m layer and 50 m below it. This configura-
tion turned out to be quite realistic to capture all the de-
tails of the three-dimensional evolution of ISWs. All
other model parameters were as follows: vertical turbulent
viscosity and diffusivity coefficients wereνV =10−3 m2 s−1

andκV =10−5 m2 s−1 respectively, whereas horizontal coeffi-
cients wereνH =κH =10−2 m2 s−1.

At the eastern boundary of the domain we set zero values
for all wave disturbances provided that the wave do not reach
this boundary. At the western boundary, the radiating type
Orlanski open boundary conditions were used. Regarding
the latter, we note that in addition the western boundary is
taken far enough to prevent any reflected unphysical signals.
At the closed boundaries, the non-slip condition is imposed.
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3 Reference experiment

In this section we analyse the reference experiment (RE), in
which the evolution of a 83 m-amplitude ISW in a rectangu-
lar channel ofl=17 km width is investigated. Note that the
latitude in the RE is equal to 60◦, which is higher than the
latitude of the Strait of Gibraltar (36◦). Higher latitude was
taken in order to enhance the effect of rotation; weaker rota-
tion is considered later.

Figure 2 shows a plan view of the wave field at several
stages of the ISW evolution. The free surface perturbations
produced by the internal waves are used as a tracer of wave
fronts. This method of visualization is possible because inter-
nal waves of depression produce small-scale elevations at the
free surface (a few centimetres, in fact), while internal waves
of elevation produce similar small-scale depressions (eleva-
tion and depression are illustrated in dark and light colour,
respectively). For instance, Fig.2a shows the initial plane
ISW of depression of 83 m amplitude.

The wave pattern presented in Fig.2a–c reveals that the
above discussed effects related to the influence of rotation on
the propagation of a weakly nonlinear ISW, i.e. formation of
a leading Kelvin wave with strong attenuation due to the radi-
ation of secondary Poincaré waves, take place in a strongly-
nonlinear case as well. After 14.4 h of evolution (Fig.2b) the
initially plane ISW loses its original two-dimensional struc-
ture and starts to radiate secondary Poincaré waves. Due
to this energy leakage its amplitude rapidly decreases from
83 m to about 60–68 m during this early stage of evolution
(see black solid numbers in Fig.2, representing the wave am-
plitude at the positions where they are located). In addition
to that, the leading wave gradually transforms into a Kelvin
wave with its front curved backwards (Fig.2c–f), as it was
discussed in the aforementioned papers on the dynamics of
weakly nonlinear waves.

The similarity between the evolution of weak and strong
waves does not hold however for a long period of time.
At the latest stages of evolution, weakly nonlinear and
strongly nonlinear waves behave differently. In contrast to
weak ISWs, which slowly attenuate and gradually vanish
transforming their energy to the radiated Poincaré waves,
the large-amplitude ISW produces also a fairly pronounced
wave packet of secondary Kelvin waves attached behind (see
Fig. 2g). This is quite a new result which has not been re-
ported yet.

It is assumed that the formation of a packet of secondary
Kelvin waves is possible because of the large quantity of
energy accumulated in the initial ISW. As a result, not all
the energy of the initial wave is radiated with the Poincaré
waves, but part of it remains allocated in the leading wave
packet. A similar result on the formation of a localized sec-
ondary wave packet from the initial large ISW propagating
in infinite rotating basin has been reported recently byHel-
frich (2007). The process of self-organisation of secondary
Poincaŕe waves into a packet of Kelvin waves is shown in

Fig. 2. Sea surface topography produced by a ISW of depression at
different stages of evolution. Initial amplitudes of propagating wave
was 83 m. Surface elevations and depressions are shown by black
and white colours, respectively. The black numbers on the wave
fronts represent the wave amplitude (in metres) at their particular
positions. The contours containing the leading and secondary waves
indicate the volume where total energy is calculated.

Fig. 2b–g. At the first stage, the radiated waves are relatively
weak with their crests tilted backwards. The strongest waves
experience multiple reflections from the channel boundaries.
It is interesting that the wave amplitude at the point of reflec-
tion is much larger than in the middle of the channel. This
is a manifestation of a nonlinear effect of wave interaction
when the obliquely propagating ISWs, incident and reflected
from the wall, generate the Mach stem in the place of their
crossing, i.e. near the wall in the present case. Several of
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those fragments are seen in Fig.2b, c and d (compare wave
amplitudes in the place of reflection with the central parts of
the channel).

In the course of time, the Mach stems gradually transform
into a system of secondary Kelvin waves. Analysis of their
position gives an amazing result that Mach-stem fragments
overcome the leading wave even though they are weaker
(the distance between the leading and second wave decreases
from 14.1 km att=14.4 h to 9.5 km att=49.4 h and 7.1 km at
t=70.3 h). This effect cannot be explained in terms of tra-
ditional nonlinear dispersion because the amplitudes of the
secondary wave are substantially smaller untilt=40 h, how-
ever the distance between the leading ISW and secondary
waves decreases over time. During the evolution, the sec-
ond wave gets stronger adsorbing the energy from the lead-
ing wave and gradually approaching it (compare panels d, e
and f). Finally, after 120 h the initial large-amplitude ISW
transforms into a well rank-ordered packet of internal Kelvin
waves with their fronts curved backwards. This structure is
followed by a wave tail with chaotic spatial distribution of
amplitudes (see Fig.2d).

An explanation of this transformation (fast wave tail prop-
agation, in particular) can be found in terms of permanent
energy radiation. In fact, the system of secondary waves
propagating behind the leading ISW is not a quasi-stationary
structure, but a system where new born waves are perma-
nently generated. In the course of evolution, the leading ISW
continuously loses its energy decreasing in amplitude and de-
celerating due to the nonlinear dispersion. As a result of the
wave weakening, the new-born radiated wave is generated
closer and closer to it. This effect has an analogy with the
structure of a shock wave produced by a propagating super-
sonic object in which the Mach cone gets wider when the
speed of the object decreases.

To confirm the hypothesis that the structure of the attached
wave tail remains quasi-stable only due to the fact of a per-
manent transfer of energy from the leading wave to the tail,
an additional numerical experiment has been conducted. The
initial condition for this experiment was the wave fields taken
from the RE att=10 h when both the leading Kelvin ISW
and the attached radiated Poincaré waves are well developed.
They are shown in Fig.3a1. In order to prevent the effect of
the continuous energy transfer to the wave tail, the wave field
was “truncated” by removing the leading ISW. The resulting
field is presented in Fig.3 (compare panels a1 and a2). The
evolution of the truncated wave system is shown in Fig.3 by
panels b2 and c2, whereas panels b1 and c1 show the wave
field corresponding to the RE (without cutting of the leading
ISW) at the same times.

The “far field” of the radiated secondary Poincaré waves
in the RE and the “truncated” experiment (to the left of
x=120 km in panels3c1 and3c2) coincides almost perfectly.
The “far field” does not feel the truncation of the lead-
ing wave during the first 20 h of evolution at all (proba-
bly because of the large distance). On the other hand, the

Fig. 3. Evolution of ISW in the reference experiment (panels a1, b1
and c1, see also Fig.2) and the “truncated” experiment (panels a2,
b2 and c2) when the leading ISW was removed from the wave field
at t=10 h (compare panels a1 and a2).
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Fig. 4. (a) Same as in Fig.1g but covering a larger area. Panels
(b), (c), (d) show the isopycnalσθ=28.5 along the cross sections
indicated by white-dashed lines in panel (a).

“near-field” (betweenx=135 and 150 km in the same panels)
in both experiments is completely different. It is empty in the
“truncation experiment” (no internal wave signal is observed
in this zone), a fact which allows to conclude that the “near-
field” is really generated exclusively by the leading ISW, but
not by a superposition of overcoming old radiated waves and
new-born Poincaré waves.

Thus, the basic outcome from this analysis is that the
reconstruction and discussed “compression” of the leading
wave field at the early stage of the experiment can be at-
tributed to the high rate of energy loss of the leading ISW. On
the other hand, at the latest stages (whent>50 h) the wave
amplitude of secondary waves gets even larger than that in
the leading ISW (see Fig.2e–f). This is the reason why the
nonlinear effects due to the amplitude dispersion make an ad-
ditional compression of the packet possible. The nonlinear
collision of several incidentally propagating waves and en-
ergy transfer from overcoming stronger rear waves to weaker
leading waves (Fig.2f) result in the formation of a well rank-
ordered packet of Kelvin waves (see Fig.2g).

Let us consider some more spatial characteristics of the
“far-field” of the radiated waves. The large fragment of the
model domain is shown in Fig.4. Panel 4a represents the
plan-view of the wave field (surface elevation, as in Figs.2
and3) which can be characterised as a superposition of sev-
eral mostly regular systems of obliquely propagating internal
waves generated by multiple reflections from the boundaries.
This superposition leads to a less regular spatial distribution
of wave amplitude along the channel, as it is seen in Fig.4b–
d where the profile of isopycnalσθ=28.5 along the northern,
central and southern sections of the channel is presented. It
is clear that only the leading wave packet of Kelvin waves
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(see Fig.2). Dotted line represents the evolution of total energy of
the same initial wave (Fig.3a) propagating in a nonrotating channel.
(b) Rate of change of the total energy∂E/∂t over time.

is well rank-ordered whereas the amplitude of the radiated
wave tail is nearly randomly distributed (locally they are even
larger than the leading waves).

In order to evaluate the intensity of the energy leakage due
to radiation of Poincaré waves and to compare this loss with
the effect of viscosity, another numerical experiment was un-
dertaken. All conditions were kept the same as in the RE
except for the rotation, which was removed from the analy-
sis. As long as the nonlinearity and dispersion in the initial
ISW are in balance (see Sect. 2), all changes in its energy
(amplitude) can be attributed only to the viscous damping.
Figure5a shows the evolution of the total energy (kinetic and
available potential) for both cases, with and without rotation.
The influence of the viscosity on the wave damping is sub-
stantially weaker than from the rotation. At all stages the
total energy of the leading ISW is several times larger in the
case without rotation. This is the result of the wave radiation:
during the first 20 h, the total energy decreases several times
faster due to this effect rather than due to the viscous damp-
ing (see Fig.5b, where the rate of change of total energy is
presented).

It is interesting to remark that the energy of secondary
waves formed within the first 20 h (dashed lines in Fig.5)
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Fig. 6. Across channel variations of amplitude of the leading wave
at different stages of its evolution.

is practically conserved over the whole period of evolution.
The conservation of energy is established because of the
equilibrium between the energy leakage (viscosity, radiation)
and energy supply from the leading wave. Another important
outcome is that the leading ISW does not only lose energy,
but can also gain some part of it from the wave tail after 100 h
(see Fig.5) as a consequence of the nonlinear wave-wave
collision, as discussed above (see Fig.2f).

The high rate of energy loss of the leading wave during the
first part of the experiment is possible because of the radia-
tion of energetic Poincaré modes. In fact, the classification of
the leading SIW as a Kelvin wave is only correct after pass-
ing a transition time which is necessary to radiate such higher
order transversal modes. Evidence of Poincaré waves is ob-
served in Fig.6, where the transverse distribution of the am-
plitude of the leading wave is shown at different times. The
influence of large-amplitude Poincaré modes over the first
40 h of the experiment is clear from the transverse wave am-
plitude oscillations (compare panels in the upper row). With
the course of time these waves are radiated and a well devel-
oped exponential decrease of the wave amplitude across the
channel, peculiar to the Kelvin mode, is established (second
row in Fig. 6). Note that despite the shape of this curve is
fairly stable and close to the exponential one, the amplitude
of the leading wave gradually decreases due to a permanent
radiation damping.

Another evidence of wave attenuation and higher mode ex-
istence is shown in Fig.7, which shows the temporal vari-
ations of the wave amplitude at the northern, central and
southern section of the channel (see Fig.4a). The wave
amplitude of the experiment without rotation is included for
comparison. Unsteady transverse oscillations of amplitudes
last for about 40 h. The temporal growth of amplitude after
120 h is just a manifestation of the nonlinear collision of two
waves discussed above (see also Fig.2f and g).

Once examined, the evolution mechanism rises the ques-
tion of whether the leading packet of Kelvin solitary waves
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Fig. 7. The temporal dependence of amplitude along the northern
(dashed-dotted line), central (solid line) and sothern (dashed line)
sections of the channel (Fig.4a). The variations of amplitude for
the non-rotation experiment is depicted in dotted line.

Fig. 8. Extension of the wave field presented in Fig.2.

presented in Fig.2g is a stable or quasi-stable structure, or it
is under permanent reconstruction. In other words, we should
answer the question whether the energy radiation is still re-
markable at the latest stages of evolution or the wave pattern
preserves (at least partly) its quasi-permanent form. Figure8
shows an extension of the RE up to 518 h. Panels 8a–b re-
veals that the first scenario takes place: a secondary distur-
bance is formed in the far-field of the packet, overtakes it and
interacts with the leading wave packet (Fig.8c) according to
the process described above. As a result of this interaction,
the leading wave packet adsorbs the incoming wave, and a
new structure containing three internal waves emerges. The
latter, in fact, has a very similar structure as the initial one
but at a lower energy level. During the last 238 h (Fig.8c–e)
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Fig. 9. Same as Fig.2 but for an initial 31-metre amplitude ISW.

the amplitudes of the leading wave is reduced by about 40%.
Taking into account that in the RE the amplitude decrease
due to viscosity during the first 130 h (Fig.7) comprises a
similar value, one can conclude that the basic reason for the
wave damping at the latest stages of evolution is the viscous
dissipation rather than the radiation of secondary waves.

4 Sensitivity runs

4.1 Sensitivity to the initial wave-amplitude

In this section sensitivity of the model output to the ampli-
tude of the initial solitary wave is analysed. The evolution of
an ISW with 31 m amplitude (about three times smaller than
that in the RE) is presented in Fig.9. The evolution in this
case is quite similar to the RE (Fig.2), namely, fast atten-
uation of the leading wave accompanied by the generation
of radiated Poincaré waves, formation of Mach stems near
the wall (Fig.9b) with subsequent evolution into a secondary
Kelvin wave that overtakes the leading disturbance, and the
final formation of a wave train (see Fig.9c–e).

Nevertheless some details are certainly different in the two
numerical experiments. The secondary Kelvin wave is devel-
oped earlier in the RE (compare Fig.2 and Fig.9), and there
is no further formation of a third Kelvin wave as it occurred

Fig. 10. Same as Fig.2 but for incoming 10-m amplitude ISW.

in the RE (Fig.8a). After the interaction with the overtak-
ing secondary wave (Fig.9e), all transition processes in the
wave packet become slower, and the latter conserves quite
a stationary form for a long time (300 h at least) with weak
energy leakage. It is interesting that despite the fact that the
initial ISW was remarkably smaller than in the RE and, as
a result, its evolution also proceeds somehow differently, the
final wave fronts in both cases look quite similar (compare
Fig. 8c–e with Fig.9f–i).

A substantial sensitivity of the model results to the ini-
tial wave amplitude is more evident considering an ISW with
initial amplitude of 10 m (see Fig.10). In this case the Mach
stem is also clear (Fig.10b), but in contrast to the former
cases, it does not attach to the leading wave front, neither
in the beginning of the experiment, nor at any further mo-
ment in time. It seems that the collision of secondary wave
with the leading wave will never occur. After 500 h of evolu-
tion there is no substantial decrease of the distance between
the leading and second waves (compare panels d and e in
Fig. 10: the second perturbation att=501.4 h is still very far
from the leading wave as it was att=90.3 h). The secondary
Kelvin wave is quite weak having its maximum amplitude
of only 2.8 m. Therefore, an important conclusion from this
experiment is that the discussed above “compression” of the
leading Kelvin waves with formation of a quasi-steady form
of the wave packet does not take place in a weakly nonlin-
ear case. Probably there exists an amplitude (energy) thresh-
old above which the energy accumulated by the secondary
wave exceeds the energy leakage due to radiation and vis-
cous damping. Above this level, the effect of Kelvin waves
packet formation is persistent but below it the energy scatter-
ing due to radiation suppresses all other effects.

It is worthwhile mentioning here that smaller solitary
waves lose their energy slowlier. This fact is evident in
Fig. 11 where the temporal dependence of the normalized
energy calculated for the initial 83, 31 and 10 m amplitude
ISWs is presented. This result is in line with the conclusion
formulated on the basis of the RMKP equation byAkylas
(1991), which under an assumption of weak rotation (R�l),
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Fig. 11. The total wave energy (kinetic and available potential) of
the leading ISW normalized by its initial energy. Solid, dashed
and dashed-dotted lines correspond to incoming 83, 31 and 10 m-
amplitude ISWs, respectively.

the radiation damping of the waves due to non-linear reso-
nance with Poincaré modes weakens when initial amplitude
decreases.

4.2 Sensitivity to rotation and width of the channel

The previous sections have shown that rotation is responsi-
ble for the wave damping due to the generation of secondary
Poincaŕe waves. It is entirely expected that this effect should
enhance with the increase of latitude. However, in a very
general oceanographic context, not only the Coriolis parame-
ter control the rotational effects. The measure of dependence
is defined by the ratio between the Coriolis force and the
pressure gradients. That is to say, any possible effect of ro-
tation can be evaluated comparing the internal Rossby radius
of deformation with a horizontal scale of the phenomenon.
As long as the cross-channel motions are governed by the
Coriolis acceleration, a natural horizontal scale in our case
should be the width of the channel.

Two additional experiments were conducted with the aim
of studying the sensitivity to rotation. In the first one, all the
parameters were kept the same as in the RE except for the
latitude which was decreased to 36◦ (to a value where the
Strait of Gibraltar is situated). In the second experiment, the
latitude remained the same as in the RE and the width of the
channel was two times larger.

An overall efficiency of the generation of radiated sec-
ondary waves can be estimated considering the energy loss.
Figure12 shows the temporal variability of the normalized
energy of the leading ISW for all cases compared. Provided
that the effect of ordinary dissipation due to viscosity is sub-
stantially weaker (it was discussed in Sect. 3, see Fig.5),
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Fig. 12. The total wave energy (kinetic and available potential) of
the leading ISW normalized by its initial value. Solid line represents
the RE. Dashed line corresponds to the latitude ofφ=36◦, while
dotted-dashed line was built for the channel withl=35 km (all other
parameters were as in the RE).

changes in the energy content can be mainly attributed to the
radiation damping.

Figure 12 confirms the assumption that the radiation
damping weakens with the decrease of the Coriolis param-
eter. The sensitivity run for the latitudeφ=36◦ shows that
the amount of energy of the leading ISW after 50 h of evo-
lution is several times larger in the slower rotating system
(compare dashed and solid lines in Fig.12). The implica-
tions of a slower radiation damping on the wave evolution
can be observed in Fig.13, showing the plan view of the near-
field of the sensitivity run. The evolution of the wave field
is similar to that of the RE but delayed in time, processes
proceed slower. For instance, a well-developed secondary
Kelvin wave generated from the initial Mach stem can be ob-
served in the RE after 70 h of evolution (see Fig.2e), whereas
similar structure for the latitudeφ =36◦ appears only af-
ter 220 h (see Fig.13e). Another example is that after the
collision with the leading wave, a quasi-stationary packet of
Kelvin waves in the RE is formed after 120 h (see Fig.2g)
while in this case the transition stage lasts more than 300 h
(see Fig.13f–i).

In the light of former discussions concerning the effect of
rotation, the temporal dependence of the energy of the ISW
propagating along the wider channel (dashed-dotted line,
Fig. 12) is completely unexpected. It almost perfectly co-
incides with the wave energy evolution in the RE (solid line,
Fig. 12). This fact is in contradiction with the commonly ac-
cepted idea that the effect of rotation should become more
important when the ratiol/R increases. Note, however, that
this is valid wheneverl∼=R, but for l�R an actual value ofl
does not play any remarkable role. For the configuration and
stratification considered hereR=8.3 km, which is about half
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Fig. 13. Same as Fig.2 but for latitude 36◦.

the channel width, and its twofold increase does not affect
substantially the integral characteristics of radiated waves.

Another (more quantitative) explanation of this effect can
be found in terms of the theory of nonlinear coupling of
Kelvin and Poincaŕe modes. The exchange of energy be-
tween these modes takes place because of the coefficients
|C0pq | (p+q=1, 2, ...) presented in Eq. (6), which do not
depend on all input parameters monotonously. Figure14
shows the dependence of the coefficients|C001| on the chan-
nel width for the parameters of the present study. The term
C001A

2
0A1 is really expected to be the main responsible for

the resonance between the modes, it follows from the fact
that the first modes dominate as it normally occurs in many
physical systems and can be observed in Fig.6.

The value of the coefficient|C001| is almost the same for
l=17 and 35 km, which is why the integral energy character-
istics of two processes are similar. It is important to remark
that zero value for|C001| is not an indicator that the energy
exchange between the modes is absent and they propagate
independently. In such a situation other coefficients|C0pq |

become more important in the energy balance. This is well
illustrated in Fig.14, where|C002|, |C003| are also shown.

The similarity of an integral energy balance of the two
cases discussed above does not mean that all kinematic char-
acteristics of two processes coincide as well. In wider chan-
nels the mechanism of reflection, formation of Mach stems
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Fig. 14. The dependence of coefficients|C001|, |C002|, |C003| on
the width of the channel. The mean value of the propagation speed
of the soliton during the first 100 h of evolution has been taken (c =

1.30 ms−1).

and their subsequent evolution into secondary Kelvin waves
looks more pronounced and more efficient (compare Fig.15
where the wave evolution in the wider channel is presented,
and2). In some aspects the wave evolution in a wider chan-
nel proceeds faster. For instance, the second event of sec-
ondary Kelvin wave formation in Fig.15 takes place after
118 h (see panel f), whereas in the RE it happened only after
200 h (see Fig.8b). Another striking feature is the formation
of the Mach stems in the middle of the channel (panels e and
f) which was less obvious in the RE.

5 Summary and conclusions

In this paper a long term evolution of strongly nonlinear
solitary waves in a rotating channel is investigated using
the fully-nonlinear non-hydrostatic Massachusetts Institute
of Technology general circulation model. All numerical ex-
periments are initialized using a two-dimensional internal
solitary wave. The process of wave evolution is studied over
several hundred hours in order to understand the long-term
influence of the rotation. One particular question was to find
out what could be an ultimate state of the wave field. An evi-
dent distinction of this study from several already completed
research (see, for instance,Akylas, 1991, and references
herein) is that in our approach we do not apply any restriction
on the wave amplitude, i.e. the problem is investigated be-
yond the applicability of the weakly-nonlinear rotation mod-
ified Kadomtsev-Petviashvili (RMKP) equation. The last cir-
cumstance allowed us to find several interesting features of
wave evolution which are not a direct consequence of the
RMKP equation. This remark concerns basically the for-
mation of a slowly attenuated packet of Kelvin waves as an
ultimate state of the evolution of a large-amplitude internal
solitary wave. At the first stage of evolution, an initially two-
dimensional ISW starts to evolve according to the classical
scenario described by the RMKP equation (e.g.,Katsis and
Akylas, 1987; Grimshaw and Tang, 1990). More specifically,
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Fig. 15. Same as Fig.2 but for a channel of 35 km width.

it starts to transform into a Kelvin wave (with exponential de-
cay of the wave amplitude across the channel) and its front
curved backwards. This transition is accompanied by a per-
manent radiation of secondary Poincaré waves attached to
the leading wave.

In a weakly nonlinear theory, such wave radiation in-
evitably leads to a damping and complete dissipation of
the whole wave field. However, as it was found here, the
strongly-nonlinear limit of this process allows for an extra in-
termediate stage of evolution, viz. the formation of a slowly
attenuating packet of leading Kelvin waves which is able to
propagate for several hundred hours as an allocated deter-
ministic object. The reason for this behaviour can be ex-
plained in terms of a permanent reconstruction and modifi-
cation of the leading wave packet due to the interaction with

the secondary wave tail. In fact the leading waves not only
lose their energy due to radiation but also recover part of it in
the course of interaction with secondary Kelvin waves. The
latter are permanently generated behind the leading waves,
accumulate the energy which is lost by the leading packet
and grow in amplitude. At a final stage they overtake the
leading wave returning in exchange some part of the lost en-
ergy. This process is discussed in Sect. 3 in greater detail and
is illustrated in Figs.2 and4.

An important role in this mechanism of wave-wave inter-
action is played by the Mach stems permanently generated
in the near-field due to the interaction of obliquely propa-
gating radiated waves reflected from the walls (they can be
identified in Figs.2, 8, 9, 13, 15). These fragments work
as points of energy condensation. The Mach stems absorb
energy from the leading wave eventually transforming into a
secondary Kelvin wave. Normally, they are more energetic
than the leading one, which is why they start to overtake the
latter returning part of energy. This process is sensitive to the
initial wave amplitude, rotation and channel width.

It is interesting that not all the initial waves were able to
follow the described mechanism of transformation from soli-
tary wave into a slowly decaying packet of Kelvin waves.
The numerical experiments clearly demonstrated that there is
an amplitude threshold below which the discussed scenario
does not take place. In our case it was the incoming 10-m
amplitude ISW which just attenuated after 500 h of evolution
without formation of the leading packet. This is probably the
reason why the result obtained here on the formation of the
packets of Kelvin waves was not reported in some other sim-
ilar works based on the RMKP equation. However, this con-
clusion is similar to that formulated byHelfrich (2007) and
Grimshaw and Helfrich(2008), who found (but for infinite
rotating basins) that the formation of packets of ISWs from
the initial ISW is possible if the initial accumulated energy is
large enough.
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Andalućıa, Spain (research project RNM 968). We are thankful to
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