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Abstract. Long’s equation describes two dimensional strat-
ified atmospheric flow over terrain which is represented by
the geometry of the domain. The solutions of this equation
over simple topography were investigated analytically and
numerically by many authors. In this paper we derive a new
terrain following formulation of this equation which incorpo-
rates the terrain as part of the differential equation rather than
the geometry of the domain. This new formulation enables
us to compute analytically steady state gravity wave patterns
over complex topography in some limiting cases of the pa-
rameters that appear in this equation.

1 Introduction

Long’s equation (Long, 1952, 1953, 1955, 1959) models the
flow of stratified incompressible fluid in two dimensions over
terrain. When the base state of the flow (that is the unper-
turbed flow field far upstream) is without shear the numeri-
cal solutions (in the form of steady lee waves) of this equa-
tion over simple topography (i.e. one hill) were studied by
many authors (Drazin, 1961, 1967; Durran, 1992; Lily, 1979;
Peltier, 1983; Smith, 1980, 1989; Yih, 1967; Davis, 1999).
The most common approximation in these studies was to set
Brunt-Väis̈alä frequency to a constant or a step function over
the computational domain. Moreover the values of two phys-
ical parameters which appear in this equation were set to
zero. (These parameters control the stratification and disper-
sive effects of the atmosphere – see Sect. 2.) In this (singu-
lar) limit the nonlinear terms and one of the leading second
order derivatives in the equation drop out and the equation
reduces to that of a linear harmonic oscillator over two di-
mensional domain. Careful studies (Lily, 1979) showed that
these approximations set strong limitations on the validity of
the derived solutions (Peltier, 1983).
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Long’s equation also provides the theoretical framework
for the analysis of experimental data (Shutts, 1988, 1994;
Jumper, 2005) under the assumption of shearless base flow.
(An assumption which, in general, is not supported by the
data; Humi, 2004b.) An extensive list of references appears
in (Baines, 1995; Carmen, 2002; Yih, 1980).

An analytic approach to the study of the solutions of this
nonlinear equation was initiated recently by the current au-
thor (Humi, 2004a, 2006, 2007). We showed that for a base
flow without shear and under rather mild restrictions the non-
linear terms in the equation can be simplified. We also iden-
tified the “slow variable” that controls the nonlinear oscilla-
tions in this equation. Using phase averaging approximation
we derived for self similar solutions of this equation a for-
mula for the attenuation of the stream function perturbation
with height. This result is generically related to the presence
of the nonlinear terms in Long’s equation. The impact that
shear has on the generation and amplitude of gravity waves
was investigated by us in (Humi, 2006). A new representa-
tion of this equation in terms of the atmospheric density was
derived in (Humi, 2007).

One of the weak aspects of Long’s equation is related to
the fact that the terrain is represented by the shape of the do-
main and the boundary conditions. As a result the impact of
different terrains on the solution of this equation can only be
studied numerically. Furthermore discretization errors which
occur in the representation of the terrain render it impractical
to consider complex terrain. In part these errors are due to the
scale of the terrain relative to the computational domain. Ac-
cordingly only simple topographies which were represented
by one hill were considered in the literature. Furthermore
even for these simple topographies only approximate bound-
ary conditions were applied at the terrain. (See discussion in
Sect. 2.)

With this motivation it is our objective in this paper to de-
rive a terrain following formulation of Long’s equation in
which the terrain is incorporated as part of the coefficients of
the differential equation, and the computational domain is al-
ways a rectangle. This new representation makes it possible
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to derive new analytic insights about the solution of this
equation in some limiting cases. It will make it easier also
to study how the solution varies as a function of the terrain
and other parameters that appear in the equation.

The plan of the paper is as follows: Sect. 2 presents a short
review of Long’s equation and some aspects of its solutions.
In Sect. 3 we derive the new formulation of this equation.
Section 4 considers Long’s equation in some limiting cases
of the parameters that govern the solution of this equation. In
particular we provide a closed form analytic solution of this
equation in the limiting caseµ=β=0 over general topogra-
phy. A first order perturbation expansion is developed for the
case of “low lying topography” with closed form expression
for the stream function in integral form. We end up in Sect. 5
with a summary and conclusions.

2 Long’s equation – a short overview

In two dimensions(x, z) the flow of a steady inviscid and
incompressible stratified fluid is modeled by the following
equations:

ux + wz = 0 (1)

uρx + wρz = 0 (2)

ρ(uux + wuz) = −px (3)

ρ(uwx + wwz) = −pz − ρg (4)

where subscripts indicate differentiation with respect to the
indicated variable,u=(u,w) is the fluid velocity,ρ is its den-
sity p is the pressure andg is the acceleration of gravity.

We can non-dimensionalize these equations by introduc-
ing

x̄ =
x

L
, z̄ =

N0

U0
z, ū =

u

U0
, w̄ =

LN0

U2
0

w

ρ̄ =
ρ

ρ̄0
, p̄ =

N0

gU0ρ̄0
p (5)

whereL represents a characteristic horizontal length, and
U0, ρ̄0 represent respectively the free stream velocity and av-
eraged base density (i.e. hereρ̄0 is a constant).N2

0 is an
averaged value of the Brunt-Väis̈alä frequency

N2
= −

g

ρ0

dρ0

dz
(6)

whereρ0=ρ0(z) is the base density.
In these new variables Eqs. (1)–(4) take the following form

(for brevity we drop the bars)

ux + wz = 0 (7)

uρx + wρz = 0 (8)

βρ(uux + wuz) = −px (9)

βρ(uwx + wwz) = −µ−2(pz + ρ) (10)

where

β =
N0U0

g
(11)

µ =
U0

N0L
. (12)

β is the Boussinesq parameter (Davis, 1999) (this name has
nothing to do with the “Boussinesq approximation”) which
controls stratification effects (assumingU0 6=0) andµ is the
long wave parameter which controls dispersive effects (or the
deviation from the hydrostatic approximation). In the limit
µ=0 the hydrostatic approximation is fully satisfied (Smith,
1980, 1989).

In view of Eq. (7) we can introduce a stream function9
so that

u = 9z, w = −9x . (13)

Using this stream function we can rewrite Eq. (8) as

J {ρ,9} = 0 (14)

where for any two (smooth) functionsf, g

J {f, g} =
∂f

∂x

∂g

∂z
−
∂f

∂z

∂g

∂x
(15)

Equation (14) implies that the functionsρ,9 are dependent
on each other and we can express each of them in terms of the
other. Thus we can write9 as9(ρ) (or ρ asρ(9); Humi,
2007).

After a long algebra one can derive the following equation
for 9 (Dubreil, 1934; Long, 1953; Davis, 1999)

9zz+µ
29xx−N

2(9)

[
z+
β

2

(
92
z+µ

292
x

)]
=S(9) (16)

where

N2(9) = −
ρ9

βρ
(17)

is the nondimensional Brunt-V̈ais̈alä frequency. We observe
that in this definitionN2 is a function of9. (As a result it can
be an additional source of nonlinearity in Eq.16.) This is in
contrast to the previous definition of this quantity in Eq. (6)
which depends only on the base state. In the following we
assume without loss of generality that the direction of base
flow is from left to right along the x-axis. Furthermore we
assume it to be a function ofz only.
S(9) is some unknown function which is determined from

the base flow. To carry out this determination ofS we con-
sider Eq. (16) asx→−∞ and express the left hand side of
this equation in terms of9 only. (Assuming that distur-
bances do not propagate far upstream; Baines, 1995; Yih,
1980). Equation (16) is referred to as Long’s equation.

For example if we let

lim
x→−∞

9(x, z) = z (18)
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i.e. consider a shearless base flow with lim
x→−∞

u(x, z)=1 then

S (9) = −N2 (9)

(
9 +

β

2

)
(19)

and Eq. (16) becomes:

9zz+µ
29xx−N

2(9)

[
z−9 +

β

2

(
92
z+µ

292
x−1

)]
=0. (20)

It is evident from this derivation that different profiles for the
base flow asx→−∞ will lead to different forms ofS(9)
(Humi, 2006).

For a general base flow in an unbounded domain over to-
pography with shapef (x) and maximum heightH0 the fol-
lowing boundary conditions are imposed on9

lim
x→−∞

9(x, z) = 90(z) (21)

9(x, τf (x)) = constant, τ =
H0N0

U0
(22)

where the constant in Eq. (22) is (usually) set to zero. As to
the boundary condition atx→∞ it is appropriate to set

lim
x→∞

9(x, z) = 90(z)

(in spite of the fact that Long’s equation contains no dissipa-
tion terms). However over finite computational domain only
radiation boundary conditions can be imposed in this limit.
Similarly asz→∞ it is customary to impose (following Dur-
ran, 1992) radiation boundary conditions. (The imposition of
these boundary conditions is discussed in detail in Sect. 4.1.)

For the perturbation from the shearless base flow

η = 9 − z (23)

Equation (20) becomes

ηzz−α
2η2
z+µ

2
(
ηxx−α

2η2
x

)
−N2 (η) (βηz−η)=0 (24)

where

α2
=
N2 (9) β

2
. (25)

We observe that when|τ |�1 the boundary condition
Eq. (22) can be approximated by

η (x,0) = −τf (x). (26)

WhenN is constant eq. (24) is invariant with respect to
translations inx, z and hence admits self-similar solutions of
the formη=f (kx+mz) (Humi, 2004a). These solutions are
interpreted as gravity waves that are generated by the flow
over the topography.

From a numerical point of view it is a common practice
(Durran, 1992; Lily, 1979; Davis, 1999) to solve Eq. (24)
in the limit β=0 andµ=0 with constantN over the domain.
However observe that the definition ofN in Long’s equation

is given by Eq. (17) and it depends on9. In some other nu-
merical simulations the computational domain is divided into
subdomains whereN is constant in each subdomain but this
led to numerical instabilities at the interface between these
subdomains.

In these limits Eq. (24) reduces then to a linear equation

ηzz +N2η = 0 . (27)

We observe that the limitβ=0 can be obtained either by let-
ting U0→0 orN0→0. In the following we assume that this
limit is obtained asU0→0 (so that stratification persists in
this limit and the leading term inN0 is not zero).

Equation (27) is a singular limit of Long’s equation as
one of the leading second order derivatives drops whenµ=0
and the nonlinear terms drops out whenβ=0 andN is con-
stant. This approximation and its limitations were considered
numerically and analytically (Drazin, 1967; Durran, 1992;
Humi, 2004a, 2006) and was found to be justified only under
strong restrictions even under the assumption that the base
flow is shearless. Nevertheless it is used routinely in the
actual analysis of atmospheric data (Shutts, 1988; Jumper,
2005; Baines, 1995).

The general solution of Eq. (27) is

η(x, z) = q(x) cos(Nz)+ p(x) sin(Nz) (28)

where the functionsp(x), q(x) have to be determined so that
the the boundary conditions derived from Eqs. (22), (26) and
the radiation boundary conditions are satisfied. These lead in
general to an integral equation forp(x) andq(x) and it easy
to show (Davis, 1999) thatp(x)=H [q(x)] whereH [q(x)]

is the Hilbert transform ofq(x). The boundary condition on
the terrain becomes;

q(x) cos(τNf (x))+H [q(x)] sin(τNf (x))=−τf (x) . (29)

This integral equation has to be solved numerically (Drazin,
1961; Durran, 1992; Davis, 1999; Kar, 1995).

3 Terrain following formulation

To derive a terrain following formulation of Long’s equation
which incorporates the terrain in the coefficients of the dif-
ferential equation (rather than the shape of the domain) we
introduce Gal-Chen transformation. If the height of the (bot-
tom) terrain is described by a sufficiently smooth function
z=h(x) and the height of the computational flow region is
finite, i.e.h(x)≤z≤H , whereH is a constant, then this trans-
formation is given by

x̄ = x, z̄ = H
z− h(x)

H − h(x)
. (30)

Under this transformation we have

∂

∂x
=

∂

∂x̄
+G12 ∂

∂z̄
,
∂

∂z
=

1
√
G

∂

∂z̄
(31)
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where
1

√
G

=
H

H − h(x)
, G12

=
1

√
G

(
z̄

H
− 1

)
h′(x). (32)

Furthermore the expression of the Laplace operator becomes

∇̄
2

=
∂2

∂x̄2
+

[
1

G
+

(
G12

)2
]
∂2

∂z̄2
+2G12 ∂2

∂x̄∂z̄
+[

∂G12

∂x̄
+G12∂G

12

∂z̄

]
∂

∂z̄
. (33)

Under this transformation the continuity Eq. (7) becomes

∂u

∂x̄
+G12∂u

∂z̄
+

1
√
G

∂w

∂z̄
= 0. (34)

However, if we introduce

v =
1

√
G

(
w +

√
GG12u

)
(35)

then it is a simple algebra to show that Eq. (34) can be rewrit-
ten as
∂

∂x̄

(√
Gu
)

+
∂

∂z̄

(√
Gv
)

= 0. (36)

From this equation we see that we can introduce a “terrain
following stream function”ψ so that

ū =
√
Gu =

∂ψ

∂z̄
, v̄ =

√
Gv = −

∂ψ

∂x̄
. (37)

Multiplying Eq. (8) by
√
G we can rewrite this equation in

the following form:

ū
∂ρ

∂x̄
+ v̄

∂ρ

∂z̄
= 0. (38)

Using Eq. (37) this can be rewritten as

J̄ {ρ,ψ} = 0 (39)

where J̄ is defined as in Eq. (15) but with differentia-
tions with respect to(x̄, z̄). Equation (39) implies that
ρ(x̄, z̄)=ρ(ψ(x̄, z̄)) (and vice versa).

To eliminate the pressure term from Eqs. (9) and (10) we
differentiate Eq. (9) by z and apply the operatorµ2 ∂

∂x
to

Eq. (10) and subtract. We obtain

βµ2ρx(uwx+wwz)−βρz(uux+wuz)+

βµ2ρ(uwx+wwz)x−βρ(uux+wuz)z=−ρx . (40)

Using Eq. (8) the first two terms in this equation can be writ-
ten as

βµ2ρx(uwx+wwz)−βρz(uux+wuz)=β
[
µ2 (−ρzwwx+

ρxwwz)−ρzuux+ρxuuz
]
=
β

2

[
ρx(u

2
+µ2w2)z−

ρz

(
u2

+µ2w2
)
x

]
=

β

2
√
G

[
ρx̄

(
u2

+µ2w2
)
z̄
−

ρz̄

(
u2

+µ2w2
)
x̄

]
=

β

2
√
G
J̄ {ρ, u2

+µ2w2
} . (41)

Using Eqs (35) and (37) to re-expressu2
+µ2w2 we have

β

2
√
G
J̄
{
ρ, u2

+µ2w2
}

=
β

2
√
G
ρψ J̄

{
ψ,µ2 (ψx̄)

2
+

2µ2G12ψx̄ψz̄+

[
1

G
+µ2

(
G12

)2
]
(ψz̄)

2
}

(42)

The third and the fourth terms in Eq. (40) can be rewritten
using Eq. (7) as

βµ2ρ(uwx+wwz)x−βρ(uux+wuz)z=βρ
[
u
(
µ2wx−uz

)
+v

(
µ2wx−uz

)]
=−

βρ
√
G
J̄ {ψ, χ} (43)

whereχ=µ2wx−uz is the vorticity. Expressingχ in terms
of ψ we have

χ = −∇̄
2
µψ (44)

where

∇̄
2
µ = µ2

{
∂2

∂x̄2
+2G12 ∂2

∂x̄∂z̄
+

[
∂G12

∂x̄
+G12∂G

12

∂z̄

]
∂

∂z̄

}
+

[
1

G
+µ2

(
G12

)2
]
∂2

∂z̄2
(45)

is the “terrain following Laplace operator”.
Finally for the right hand side of Eq. (40) we have

− ρx = −
1

√
G
J̄ {ρ, g} = −

ρψ
√
G
J̄ {ψ, g} (46)

where

g (x̄, z̄) = z̄+ h (x̄)

(
1 −

z̄

H

)
Combining all the results contained in Eqs. (41)–(46) we

can re-express Eq. (40) in the following form:

J̄

{
ψ, ∇̄2

µψ−
N2 (ψ) β

2

[
µ2 (ψx̄)

2
+2µ2G12ψx̄ψz̄ +

(
1

G
+µ2

(
G12

)2
)
(ψz̄)

2
]

−N2 (ψ) g (x̄, z̄)

}
=0 (47)

whereN2(ψ) is defined as in Eq. (17). Hence it follows that,

∇̄
2
µψ−

N2 (ψ) β

2

[
µ2 (ψx̄)

2
+2µ2G12ψx̄ψz̄+(

1

G
+µ2

(
G12

)2
)
(ψz̄)

2
]

−N2 (ψ) g (x̄, z̄)=S (ψ) . (48)

This is the terrain following form of Long’s equation. At this
juncture it might be asked why one can not “save” this deriva-
tion and apply the terrain following transformation (30) di-
rectly to (16). Doing so will yield an extremely complicated
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equation. This has been avoided in our derivation by the use
of the “terrain following stream function” in Eq. (37).

To determine the functionS(ψ) in Eq. (48) we assume that

lim
x̄→−∞

h(x̄) = 0

and that (as an example)ψ satisfies

lim
x→−∞

ψ(x̄, z̄) = z̄. (49)

It follows then that

S(ψ) = −N2(ψ)

(
ψ +

β

2

)
(50)

and Long’s equation becomes:

∇̄
2
µψ−

N2 (ψ) β

2

[
µ2 (ψx̄)

2
+2µ2G12ψx̄ψz̄+(

1

G
+µ2

(
G12

)2
)
(ψz̄)

2
]

−N2(ψ)

[
g (x̄, z̄)−ψ−

β

2

]
=0. (51)

In this representation the flow domain is a rectangle
[a, b]×[0, H ] or an infinite stripe[−∞,∞]×[0, H ]. The
boundary condition at the bottom topography is

u · n = 0

where n is the normal to the topography which is de-
scribed by the curveh(x). Hence this normal is given by
n=(−h′(x),1). Using Eqs. (35) and (37) this leads to the
boundary condition

ψ(x̄,0) = constant (52)

and this constant can be chosen to be zero. The other bound-
ary condition that has to be imposed onψ is a radiation
boundary condition at̄z=H (which implies that the outgo-
ing wave is not reflected by the boundary).

To obtain an equation for the perturbation from the base
state we set

ψ(x̄, z̄) = z̄+ η(x̄, z̄). (53)

Substituting this in Eq. (51) we obtain the following (exact)
equation forη

∇̄
2
µη+N

2 (η) η−
N2(η)β

2

[
µ2 (ηx̄)

2
+2µ2G12ηx̄ (ηz̄+1)+(

1

G
+µ2

(
G12

)2
)[
(ηz̄)

2
+2ηz̄

]]
=

−µ2

(
∂G12

∂x̄
+G12∂G

12

∂z̄

)
+N2 (η)

{
h (x̄)

(
1−

z̄

H

)
+

β

2

[(
1

G
+ µ2

(
G12

)2
)

− 1

]}
. (54)

4 Analytic solutions of Long’s equation

In the traditional representation of Long’s equation the to-
pography determines the shape of the flow domain and as
a result it is not feasible to obtain analytic solutions to this
equation even in some limits of the parametersβ andµ. We
now show that this problem can be overcome in some limit-
ing cases when the terrain following formulation of this equa-
tion is used.

We consider two limiting casesβ=0,µ=0 andβ 6=0,µ=0
we also assumeN2(ψ)=constant. For brevity we drop in the
following the bars overx, z.

4.1 The limiting caseβ=0,µ=0

In this case Eq. (51) simplifies to

∂2ψ

∂z2
+GN2ψ = GN2

[
z+ h(x)(1 −

z

H
)
]

(55)

whose general solution is

ψ=A(x) cos(νz)+B(x) sin(νz)+
[
z+h(x)(1−

z

H
)
]
. (56)

Hereν=N
√
G andA(x), B(x) are functions which have to

be determined from the boundary conditions.
The boundary condition (52) implies A(x)=−h(x). To

determineB(x) we must apply the radiation boundary con-
dition asz→∞ on the solution. To this end we must insure
that the vertical group velocity of the wave is positive. Using
the dispersion relation for hydrostatic flow given in (Baines,
1995, p. 181) this group velocity is:

cg =
Nk sgn(ν)

ν2
(57)

wherek is the horizontal wave number. We deduce then that
the vertical group velocity is positive whenkν≥0.

To impose this condition on the solution (56) we express
A(x), B(x) in Fourier integral form

A(x)=

∫
∞

−∞

a(k)eikxdk, B(x)=

∫
∞

−∞

b(k)eikxdk (58)

wherek is the horizontal wave number. We deduce then that
the solution (56) can be written as

ψ =
1

2

{∫
∞

−∞

(a (k)−ib (k)) ei(kx+νz)dk +

∫
∞

−∞

(a (k)+

ib (k)) ei(kx−νz)dk
}

+

[
z+h(x)

(
1−

z

H

)]
(59)

To satisfy the radiation boundary condition forz→∞ the
first and second integral must vanish fork<0 andk>0, re-
spectively. Thereforea(k) andb(k) must satisfy

a(k) = −i sgn(k)b(k) (60)
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which implies that B(x) is the Hilbert transform of
A(x)=−h(x) i.e.

B(y)=−H(h(x))=−
1

π
P.V.

∫
∞

−∞

h(x)

x − y
dx . (61)

This represents a complete analytic solution of Long’s equa-
tion for this limiting case.

In particular if

h1(x) =
1

(1 + x2)3/2
(62)

then

B1(x) =
2

π

[
x

1 + x2
+

a sinhx

(1 + x2)3/2

]
. (63)

Similarly if h(x) is given by a “witch of Agnesi“ curve

h2(x) =
a2

(a2 + x2)
(64)

then

B2(x) = −
ax

a2 + x2
. (65)

Since the Hilbert transform is linear one can use these results
to compute the stream function (in this limit of the parame-
ters) over any terrain that is composed ofh(t) which the sum
(up to translations) of the height functions given above or
any others for which the Hilbert transform can be computed
analytically. For example if

h(x)=
c1(

1+x2
)3/2+

c2(
1+ (x−5)2

)3/2+
c3a

2(
a2+ (x+5)2

) (66)

(whereci , i=1, 2, 3 are constants) then

B(x) = c1B1(x)+ c2B1(x − 5)+ c3B2(x + 5) (67)

It should be noted however that in these expressionsψ

represents the “terrain following stream function” which was
defined in (37). We can recover the flow field(u,w) from
this function using (37) and (35). From this vector field it is
easy to compute the “regular” stream functionφ(x, z). Fig-
ures 1 and 2 depict the regular stream functions for the ter-
rains given by (62) and (66) respectively. These figures were
obtained by direct evaluation of the formulas given above.

We compare now these analytic results with the solution
methodology that has been used previously in the literature
as was discussed Sect. 2. First we note that this analytic so-
lution requires only the direct (and simple) computation of
the Hilbert transform of the terrain functionh(x). This is a
straightforward procedure even if it has to be done numeri-
cally. On the other hand to computeq(x) using (29) requires
in general the solution of an integral equation. To do so one
must use an iterative algorithm which might turn out to be un-
stable or non-convergent over complex terrain. Furthermore
there is the issue of applying the boundary conditions onψ
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Fig. 1. The regular stream functionφ over one hill centered atx=0
with height h(x)=εh1(x) whereh1 is given by Eq. (62), ε=0.1,
N=1,β=0,µ=0.

at the terrain. To this end the procedure discussed in Sect. 2
requires the use of the approximations that lead to (26). As
a result the equation that is used to computeq(x) (Eq.29) is
also an approximate equation which will yield at best approx-
imate solution for this function. On the other hand the appli-
cation of the boundary conditions using the procedure dis-
cussed in this section is exact and does not place constraints
on the height of the terrain.

From an experimental geophysical point of view it has
been a common practice to assume that the gravity wave gen-
erated by a flow over terrain is of the form sin(kx+mz) (or
similar) (Shutts, 1988; Jumper, 2005; Eckermann, 1999; De-
wan, 1998). This has led to difficulties in the eduction of this
wave from experimental data. Our results show that this form
of the wave is incorrect (at least in principle). Furthermore as
Fig. 2 demonstrates complex terrain can alter drastically the
shape and amplitude of this wave due to interference effects.

4.2 The limiting case|h(x)|�1, β�1

Under these limiting conditions it is appropriate to introduce
an order parameterε so that

h(x) = ε h1(x) (68)

and consider a two parameter expansion of the stream func-
tion in ε andβ viz.

ψ (x, z)=ψ (0) (x, z)+βψ (1) (x, z)+εψ (2) (x, z)+O
(
ε2, β2, εβ

)
(69)

The first order expansion of (51) in the parametersε andβ
yields the following equations forψ i , i=0, 1, 2.

µ2ψ (0)xx +ψ (0)zz +N2ψ (0)=N2z (70)
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µ2ψ (1)xx +ψ (1)zz +N2ψ (1)−
1

2
µ2N2

(
ψ (0)x

)2
=0 (71)

µ2ψ (2)xx +ψ (2)zz +N2ψ (2)=
(
1−

z

H

)
[
N2h1+µ

2
(
h′′

1ψ
(0)
z + 2h′

1ψ
(0)
xz

)]
−

2h1

H
ψ (0)zz (72)

It is easy to see that the solution to (70) subject to the the
boundary conditions (49), (52) is

ψ (0)(x, z) = z. (73)

Due to this result (71) (72) simplify and it is straight forward
to see that the general solution to these equations is

ψ (1) (x, z) =∫ N/µ

0
sinλz [A1 (ω) cos(ωx)+B1 (ω) sin(ωx)] dω+

∫ N/µ

0
cosλz [C1 (ω) cos(ωx)+D1 (ω) sin(ωx)] dω , (74)

whereµ2ω2
+λ2

=N2. Similarly,

ψ (2)(x, z) =∫ N/µ

0
sinλz[A2(ω) cos(ωx)+B2(ω) sin(ωx)]dω+

∫ N/µ

0
cosλz[C2(ω) cos(ωx)+D2(ω) sin(ωx)] dω+

H − z

H
h1(x). (75)

Applying the boundary condition (52) to theψ (1)(x, z) and
ψ (2)(x, z) we infer thatC1=D1=0 and∫ N/µ

0
[C2(ω) cos(ωx)+D2(ω) sin(ωx)] dω=−h1(x) . (76)

The radiation boundary condition implies that∫ N/µ

0
[A2(ω) cos(ωx)+B2(ω) sin(ωx)]dω=−H(h1(x)) (77)

andA1=B1=0. Thus, in the present settings, the first order
contribution of theβ terms vanishes when the base stream
function satisfies (49). This can be verified directly by per-
forming a one parameter perturbation expansion onψ viz. by
lettingβ=εβ1 and

ψ(x, z) = ψ (0)(x, z)+ εψ (1)(x, z)+O
(
ε2
)

(78)

When the topography is given by Eq. (64) with a=1 it is
easy to show using Eq. (76) thatD2=0 andC2(ω)=−e−ω.
Similarly (using Eq.65) we obtainA2=0 andB2(ω)=−e−ω.
Substituting this data in Eq. (74) we can computeψ (2) by
numerical integration. We observe however that these inte-
grals are highly oscillatory and appropriate numerical rou-
tines have to be used to evaluate them accurately. The results
of these computations withµ=0.25 (re-expressed in terms of
the regular stream functionφ) are shown in Fig. 3.

x

z

Contour plot of the Stream Function

 

 

−10 −5 0 5 10
0

1

2

3

4

5

6

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Fig. 2. Same as Fig. 1 buth(x) is given by Eq. (66) with
c1=c2=c3=1 anda=1.
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Fig. 3. The regular stream functionφ over one hill centered at
x=0 with heighth(x)=εh1(x) whereh1 is given by Eq. (64) with
a=1, ε=0.25,N=1, β=0, µ=0.25. The computations are based on
Eqs. (73) and (74).

4.3 The limiting caseβ 6=0, µ=0

In this limiting case Eq. (51) becomes

∂2ψ

∂z2
−GN2

{
−ψ+

β

2

[
1

G

(
∂ψ

∂z

)2

−1

]
+z+h(x)

(
1−

z

H

)}
=0. (79)

Since this is a nonlinear equation we can find an approxi-
mate analytical solution using first order perturbation expan-

sion under the assumption thatα2
=
N2β

2 �1 (which is sat-
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Fig. 4. The regular stream functionφ over one hill centered atx=0
with heighth(x)=εh1(x) whereh1 is given by Eq. (64) with a=1,
ε=0.1,α2=0.01,µ=0. The computations are based on Eqs. (82)–
(87).

isfied in most practical situations). Expressingψ approxi-
mately as

ψ = ψ0 + α2ψ1

and substituting this expression in Eq. (61) we obtain to order
zero and one in the parameterα2 the following equations

∂2ψ0

∂z2
+GN2ψ0 = GN2

[
z+ h(x)

(
1 −

z

H

)]
(80)

∂2ψ1

∂z2
+GN2ψ1−

(
∂ψ0

∂z

)2

= −G (81)

The boundary conditions onψ0, ψ1 are given by Eq. (52)
at z=0 and radiation boundary conditions asz→∞.

Solving these (linear) equations forψ0 andψ1 we obtain
the following expressions for their solutions

ψ0 (x, z)=A(x) cos(νz)+B(x) sin(νz)+
[
z+h(x)

(
1−

z

H

)]
(82)

ψ1(x, z)=C1(x) cos(νz)+C2(x) sin(νz)+f1(x, z)+f2(x, z)+f3(x) (83)

where

f1(x, z)=

(
A2(x)− B2(x)

)
cos (2νz)+2A(x)B(x) sin(2νz)

6
(84)

f2(x, z)=
(H−h(x)) ((νA(x)z+B(x)) cos(νz)+νB(x)z sin(νz))

Hν
(85)

f3(x) =
A(x)2 + B(x)2

2
(86)

where Eq. (32) was used to simplify Eq. (86).

Since V(80) is the same as V(55) it follows that
A(x)=−h(x) andB(x) is given by Eq. (61). Applying the
boundary condition Eq. (52) toψ1 we obtain

C1(x)=−
1

3

(
2A(x)2+B(x)2

)
−

1

ν

(
1−
h(x)

H

)
B(x) (87)

Similarly the radiation boundary condition leads to
C2(y)=−H(C1(x)). For a topography described by Eq. (64)
with a=1 we computedC1 andC2 (analytically) and used
(83) to calculateψ1. Figure 4 displays the corresponding
regular stream functionφ(x, z) whenα2

=10−3.

5 Summary and conclusions

We derived in this paper a terrain following formulation of
Long’s equation in which the topography is “absorbed” in the
coefficients of the differential equation representing the flow
rather than being part of the boundary conditions. We used
this representation to solve Long’s equation analytically in
some limiting cases and over complex topography. The new
formulation also opens the possibility to develop analytical
estimates which compare the solutions of this equation over
different topographies. The analytical and numerical treat-
ment of the solutions to Eq. (52) for general values ofµ and
β will be left to a subsequent publication.

From a geophysical point of view it well known that
some present models for the generation of gravity waves
over estimate this effect (Eckermann, 1999; Dewan, 1998;
Humi, 2004b). Partially, this is due to the fact that they use
oversimplified representation of the terrain. Furthermore
they do not take into account the effects that are due to
complex terrain (as demonstrated by our simulations). We
believe that the new form of Long’s equation will make it
easier to consider more realistic representations of the terrain
and its effect on the generation and propagation of gravity
waves.

Edited by: R. Grimshaw
Reviewed by: two anonymous referees
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