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Abstract. Landslides are natural hazards occurring in re-ber of landslides in an inventory and divided bg. The
sponse to triggers of different origins, which can act with analysis of landslide inventory maps shows thdt) ex-
different intensities and durations. Despite the variety ofhibits two regimes: an increasing behaviour for small land-
conditions that cause a landslide, the analysis of landslideslides and a power-law scaling, with a negative scaling ex-
inventories has shown that landslide events associated witponent, for large landslides. Several investigators have re-
different triggers can be characterized by the same probabileently proposed different frequency-size probability distribu-
ity distribution. We studied a cellular automaton, able to re-tions to describe the landslide size statistics. Stark and Hov-
produce the landslide frequency-size distributions from cat-us (2001) address the use of a modified Pareto (power-law)
alogues. From the comparison between our synthetic probadistribution, characterized by a double (positive and nega-
bility distribution and the landslide area probability distribu- tive) power scaling, to describe historical inventories, i.e. in-
tion of three landslide inventories, we estimated the typicalventories that include events occurred over time. Malamud
size of a single cell of our cellular automaton model to beet al. (2004a), instead, analyse fresh inventories, i.e. invento-
from 35-100 4, which is important information if we are ries accomplished shortly after a landslide event, and propose
interested in monitoring a test area. To determine the probaan inverse-gamma probability distribution, characterized by
bility of occurrence of a landslide of sizewe show thatitis a power-law decay for medium and large landslides and an
crucial to get information about the rate at which the systemexponential rollover for small landslides. Both these ap-
is approaching instability rather than the nature of the trig-proaches retrieve the characteristic distribution a posteriori
ger. By varying such a driving rate, we find how the prob- as the best fit of data sets of specific events.

ab|||ty distribution Changes and, in Correspondence, how the Converse|y, we propose a cellular automaton model (CA)
size and the lifetime of the most probable events evolve. Weaimed at reproducing the landslide size distribution a priori
also introduce a landslide-event magnitude scale based on thg/ means of some characteristic parameters (Piegari et al.,
driving rate. Large values of the proposed intensity scale argop6a). In this way, our attention is mainly focused on the
related to landslide events with a fast approach to instabilitydetermination of the key ingredients that lead a landslide of
ina |Ong distance of time, while small values are related tOSiZES to have a probabmty of occurrenqﬁs), rather than
landslide events close together in time and approaching infinding a general frequency-size distribution. We find that
stability slowly. the behaviour o (s) strongly depends on the ratet which

the system approaches instability, changing from power-law
to non power-law behaviour.

1 Introduction In the following, we analyse the behaviour of both the
probability density function (pdf) of having a landslide of

The occurrence of a landslide the sizesotan be quanti- ~ Sizes, p(s), and the pdf of having a landslide of lifetimg,
fied by the landslide size probability density functigris), ~ P(7L), in the limit of vanishingv and for finite values of.
which is defined as the ratio between the number of land-We discuss the shift of the maximum pfs) with the in-

slides with size between and s+ss and the total num- creasing ofv in connection with the behaviour ¢f(z.), by
indicating a change in the dynamics of the landslide process.

) ) Moreover, we compare the syntheti¢s) of our CA with
Correspondence tcE. Piegari the real landslide area pdf of three landslide events provid-
BY (esterpiegari@gmail.com) ing an estimate for the units of measure of the CA cells. We
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| time stepAt. The parameter controls the rate at which all
sites are driven towards instability, while the differeddze-

5=1-maxfe,} tween the instability thresholg;, and the largest; value is
et +m)': 6,(t) + 5+ AL just a technical expedient to treat the limit of vanishing driv-
ing ratev. In this case, only the site (or very few sites) with

e;=max{e;} reaches the instability threshold first. The sec-
Y ond rule, Eq. B), is a relaxation rule: when a cell becomes
o (480 =y () + o (1) unstable (i.ee;>e:;), it affects, via a chain reaction, the sta-

& = e bility of the neighbour cells, as a fractigf,(; of ¢; toppling

on nn(i). After a failure, we set;=emin with emin=1075.

We mention that any other finite level would work (Jensen,
1998) and our numerical results do not change up to values
of emin=10"1. During each iteration of Eq2}, an amount

of ¢; is lost from the system, that is the difference between
Fig. 1. Flow chart of the cellular automaton model. The param- ¢; and the amounf;,,e¢; added to each of the four neighbour
eterv represents the driving rate, i.e. the rate at which instability sites. Only if>_ f,,=1, the algorithm conserves the dynam-
is approached, while thég,, coefficients quantify how instability . . nn

is transmitted from a cell to its nearest cells. The subinagX) ical variable of the system.

stands for all nearest neighbours of the ¢dlle., nn(i)=up, down, . Thus, another crucial parameter of the CA is the quan-
left, right). tity C= Z fan that fixes the degree of conservation of the

any e, >¢e, ?

no yes

system. Contrary to most numerical models for avalanches
g—|ergarten and Neugebauer, 2000; Hergarten, 2003), we
consider a nonconservative cage<1, to describe land-
slide processes, since many complex dissipative phenomena
(Fredlund and Rahardjo, 1993) can contribute to stress trans-
2 The Cellular Automaton model (CA) fer processes. The dependence of the CA pdf'as shown

in Piegari et al. (2006a), while the dependence on the coeffi-
In order to simulate a landslide event, we partition a naturalcients f,,, has been studied in detail in Piegari et al. (2006b).

also propose an intensity scale related to the rate at which th
system approaches instability.

slope by means of a two-dimensional square grid.efL In particular, we have found that the pdf of having a land-
cells. Each cell of the grid represents an area characterizedslide with s cells involved, p(s), has a negative power-law
by a local value of the factor of safetlyS. In slope stabil-  exponent that is a decreasing function@fwhile it is not

ity analysis, the factor of safety;S is defined in terms of  significantly affected by the values of the coefficierits in

the ratio of the maximum shear strengthax given by the  the range of values that supply power-law distributions.
empirical Mohr-Coulomb expression, to the disturbing shear The algorithm of the proposed CA is illustrated by the flow
stresst (Fredlund and Rahardjo, 1993). MS>1, resisting  chart shown in Fig. 1: the inner loop of the chart describes
forces exceed driving forces and the slope remains stablehe stages of an individual landslide, while the outer loop
Slope failure starts when the safety factor reaches the criticalescribes a sequence of landslide events. We study the spatial
value FS=1. To simplify numerical simulation, we consider and temporal pdf of the CA once the system has attained a
the inverse of the local factor of safety=1/FS; as the dy-  stationary state in its dynamics, i.e. the mean value of the
namical variable of our model. We start from a random initial dynamical variablee;, on the grid sites fluctuates between
stable configuration, i.e. we attribute to each cell a uniformly an average value.

distributed random value @f with O<e; <1vi. The dynam- We notice that the values of the transfer coefficierfs,
ics of the CA model is defined by the following two rules:  may be different for each site, by opening the possibility to
ei(t + A1) = e;(1) + 8 + vAL treat with relaxatioq .processes.that 'take into account the to-
8 = e, — max{e;) (1)  pography of a specific slope (Piegari et al., 2009).
- l

enn(i)(t + At) = enniy(t) + funiyei(t)

e = ep —>
= ch {€i=€min

() 3 Probability density functions of landslide events of
definite size and lifetime
wherenn(i) denotes the four neighbour sites of the overcrit-
ical sitei (i.e.nn(i)=up, down, left, right). To aid the reader, In this section, we discuss the behaviour of both the proba-
a list of variables used in the text is given in Table 1. bility density functions, pdf, of having a landslide of size
The first rule, Eqg. 1), is an overall driving that provides p(s), and of having a landslide of lifetimg,, p(z.), in the
an increase of; at the same rate approaching the system tolimit of vanishingv and for finite values ob. In the pro-

the instability thresholde;,=1. We set to 1 the elementary posed CA model, the sizeis defined as the number of cells
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Table 1. Variables used in the text.

Variable  Description Equation/Section
introduced

o Critical index that controls how the finite-size cutoff scales with the system size. Eqg. (4)

B Critical index related to the renormalization of the probability density function Eq. 4

v Parameter that controls the rate at which instability is approached. Eqg. (1)

a Coefficient ins* xa=A*. Sect. 3.2

A Area of landslide. Sect. 3.2

A* Landslide area corresponding to the maximum of the probability density function of havin§eat. 3.2

landslide of area.
C Level of conservation of the syste@i=>_ f,,. Sect. 2
nn

e Inverse of the local value of the safety factor for the ¢ell Sect. 2

ern Instability threshold. Eq. (2)

emin Relaxation threshold. Eq. (2)

Jnn Instability transfer coefficients. Eqg. (2)

FS Safety factor. Sect. 2

FS Local value of the safety factor for the cell Sect. 2

g Scaling function of the ratio/L%. Eqg. (4)

L Square root of the total number of cells. Sect. 2

My Magnitude of a landslide event, withf; =log; o (%) Eq. (7)

nn(i) Neighbour sites of the overcritical sit€up, down, left, right). Eqg. (2)

p(s) Probability density function of having a landslide of size Sect. 1

p(tL) Probability density function of having a landslide of lifetime Sect. 3

s Total number of cells that reach the instability threshold in a chain relaxation process. Sect. 3

s* Value ofs corresponding to the maximum pf’s). Sect. 3.2

<s> Mean value of. Eq. (5)

tr Landslide lifetime: number of loops up to when an unstable site exists. Sect. 3

<tp> Mean value of; . Eq. (6)

1L Time interval between two landslide events in a specific area. Sect. 4

that reach the instability threshold in a chain relaxation pro-The scaling properties of the system are investigated by
cess, and, therefore can be considered a proxy for the area finite-size-scaling analysis (Privman, 1990), i.e. itis assumed
of a real landslide. The lifetime of an avalanche event, that the pdf scales with the system size as:
is defined by the number of avalanching loops up to when
an unstable site exists, and, therefofecan be considereda p(s, L) ~ L™# . g (%) , 4)
proxy for the lifetime of a landslide. L
whereg is a so-called universal scaling function ghdndo
3.1 The limit of vanishing driving rate are known as critical indices that describe the scaling prop-
erties of the systemp is related to the renormalization of
In the limit v=0, the model provides results similar to the distribution function, while: controls how the finite-size
those of the most studied cellular automaton for earthquakes;utoff scales with the system size.dfs, L) is a power law,
i.e. the Olami-Feder-Christensen model (OFC) (Olami et al. then 1 B=£ (Christensen and Olami, 1992).
1992). In such a limit, no scales characterize the model: the We calculate the indiceB, « and8 by considering statis-
connections between the sizeand the linear dimension of tics of over 18 events per run and fix the values of the
the systemL, as well as the connections between the life- anisotropic transfer coefficient,,, which we set equal to:

timer; andL, are described by a scale-independent relation,fup=0.1, fdown=0.3, fieft=fright=0.2. This choice for the
i.e. by a power-law. fan values implies thalC=3}" f,,=0.8. The results are

Let p(s, L) be the probability density of having alandslide shown in Figs. 2 and 3. In Fig. 2, we plot the product
of sizes in a system of linear sizé. If p(s, L) isapower £ ,(s, L) as a function of the ratie/L* for two different

law, we can define the power law expones, linear sizeL, in a log-log scale. We find the values of the
critical indicesa=1.43 andf=2.34, as the values for which
ps, L) ~ s~ 1B, (3)  the two curves are overlapped. The value of the exponent of
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Fig. 2. LP p(s, L) vs.s/L for two values of the linear system sizes, Fig. 3_‘ L p(tgLS’ L)(;/s. t%L"T;or t\/\io valufesél off_the Imerla_r Sys
L=35 andL=70. The values of the finite scaling exponents that tem sizes,L.=35 andL=/0. e values of the finite scaling ex-

determine the overlapping of the curves arel.43 andf=2.34. ponents that determine the overlapping of the curvesrar#.03
Variables on axes are unitless andB=1.70. Variables on axes are unitless.

the negative power-laws-(1+B), is obtained from the lin-  slides, we find a positive power-law, while for medium and
ear fit of the curves, by neglecting the points relative to thelarge landslides the CA model provides a negative power-
cut-off due to the finite size of the CA. We notice that the law. We studied the evolution of the positive and negative
values obtained fog and g in Fig. 2 differ from those pro-  power-law exponents with the driven Piegari et al. (2006b)
vided by the OFC model for the same level of conservationand we found that the slope coefficient of the negative power-
C=0.8 (Christensen and Olami, 1992). In contrast to thelaw is not a monotonic function aof, while for the positive
anisotropy investigated in the OFC model, the anisotropy in-power-law the slope coefficient is an increasing function of
troduced in our modelling breaks the up-down symmetry. Itv.
has showed that such a symmetry breaking can change the We compare our synthetic pdf with those coming from
universality class in driven non-equilibrium systems (Pruess+three landslide inventories and the inverse gamma distribu-
ner and Jensen, 2002). tion proposed by Malamud et al. (2004a). Figure 4 shows
In Fig. 3, we report the produdt? p(z,., L) as a function  this comparison considering the synthetic distributions ob-
of the ratioz; /L* for the same values df shown in Fig. 2. tained for three sets of the parameteendC (v=0.003 and
We find the values of the critical indices=1.03 and8=1.70  C=0.5; v=0.003 andC=0.4; v=0.005 andC=0.4). In the
as the values for which the curves, corresponding to differenfigure, our distributions are plotted as a function of the land-
values of the linear size, are overlapped. The slope of th&lide area, which is a measure of the size of the cells involved
linear fit (solid line) gives the value of the exponent of the in the avalanche event. We convert the landslide sirgthe
negative power-law-(14-B)=—1.65. corresponding area by multiplying the unitary size of a cell
A landslide lifetime distribution in nature would be a func- for an area factos. Such a factor has been obtained by im-
tion that records the number of landslides with time durationposing thats* xa=A*, wheres* is the size corresponding
betweery; andr+35r;, divided by the total number of land- to the maximum of a synthetic pdf amtf* is the area cor-
slides in a complete landslide inventory and dividedShy. responding to the maximum of the pdf from real data. As it
The authors are not aware of landslide lifetime distributionscan be seen, the agreement between the synthetic and the real
from empirical data and suggest an inventory analysis as &urves is quite good. By varying the value of the conserva-

further testing of the model. tion level C, while v is kept fixed, we find that the slope of
the negative power-law changes smoothly up to include all
3.2 Finite values of the driving rate the real data. IiC is kept fixed, small variations of take

into account the tiny differences in the slope of the rollover
Let us focus, now, on the features of the model when finitefor small landslides. In Fig. 4, it is also shown the inverse
values of the driving rate are taken into account. As dis- gamma distribution (black solid line) proposed by Malamud
cussed in previous papers (Piegari et al., 2006a, b), wheet al. (2004a). As observed, the agreement between such a
the driving ratev increases, the landslide size pdf developscurve and our synthetic distribution is also quite good, with
a maximum that shifts towards larger sizes. For small land-the difference that the inverse gamma distribution is found a
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posteriori as the best fit of the real data and it is unique for all 10°
the landslide events, while our pdf is generated a priori from

the proposed CA model and depends on the values of some ,q: &%
key parameters. We point out that, for very large areas, the [
deviation of the synthetic pdf from the real ones is an effect ”g 10
of the finite size of the system that produces the cut-off. If
grids with largerL are considered, such a cut-off shifts to
larger areas.

Moreover, it is worth noticing that the comparison with the
real data, shown in Fig. 4, allows us to determine the typical
size of a single cell of our grid, which is crucial information if
we are interested in monitoring a test area. In detail, we find
that the area of a single cellranges from 35 rto 60 nf in
the caseC=0.4, and it is of the order of 100%in the case
C=0.5.

As discussed in Malamud et al. (2004a), even if the three
lands.“de I.nvemones (.)f Fig. 4 correspond to three differ- ig. 4. Landslide probability densities as a function of the area.
ent triggering mgchanlsms, they seem to obey. the same .pd ymbols are used for the three landslide inventories from Malamud
From the analysis of our CA, we realize that triggers of dif- ¢t 41 (2004a). The black solid line corresponds to the inverse gamma
ferent origins can affect the stability of a slope with the sameqistribution proposed by Malamud et al. (2004a). The colour lines
rate of approaching instability, i.e. with the sameSuch an  refer to our synthetic curves for different values of the driving rate
observation suggests that to characterize the probability of and the conservation levél, as shown in the legend.
occurrence of landslide events in a specific area, it is crucial
to get information about such a ratethat controls the time
evolution of the slope stability, rather than the nature of the3.3 Analysis of the landslide dynamics with the driving
triggering mechanism. rate

It is worth pointing out that varying in the CA model
means changing the rate at which the system reaches instdo better understand the features of the model by varying the
bility. As fresh inventories come from a mapping carried out driving ratev, we study the evolution o (s) in connection
shortly after a triggered landslide event, it can be describedvith the behaviour op(7;) with increasing.
by a synthetic pdf corresponding to a fixed value ofince it In Figs. 5 and 6, we plot, respectively(s) and p(z;) for
seems reasonable to assume that the landslides are essentiallfferent values of and for a smaller system linear size than
triggered with the same rate to approach instability. On thethat of Fig. 4, to reduce the computation time. In the limit of
contrary, an historical inventory, which is the sum of many vanishing driving rate, it has been shown that the distribution
landslide events over time, very likely includes landslidesfunction p(s) describes avalanche events that are essentially
corresponding to different rates of their approach to insta-compact clusters of sites (Pietronero and Schneider, 1991;
bility, and, therefore, the relative pdf could be considered aPiegari et al., 2006a). In such a case, the instability starts
weighted average of distributions with differant from a single cell and, then, propagates to neighbour cells

As discussed in detail below, we find that large values ofgenerating avalanche events of sizes that are power-law dis-
v cause the simultaneous instability of large areas. This featributed. Increasing the value of the driving rateneans to
ture of the model could explain the shift to the right of the enhance the chances to generate the simultaneous instability
pdf maximum that describes historical inventories: as timeof more than one cell. Thus, the largeiis, the larger the
moves on, the evidence of smaller landslides is more likelynumber of relaxation chain processes that may originate in
to be lost, and the historical inventories include just the mostthe system. For this reason, we realize that the sizeor-
catastrophic events corresponding to larger values dhs responding to the maximum qf(s) for finite values ofv,

a result, the rollover of the pdf moves to the right. Finally, is essentially an estimate of the total number of cells that,
we notice that our explanation for the shift of the maximum at the start, simultaneously reach instability. Interestingly
rollover typical of historical inventories is compatible with enough, we find that (see Fig. 5), for a given range of very
that proposed by Malamud et al. (2004b). They attribute thelow v values, the maximum gf(s) is followed by a power-
shift of the pdf maximum to the incompleteness of the histor-law regime that resembles the landslide frequency-size dis-
ical inventories caused by the erosion: when going to histortributions from catalogues. As it can be seen in Fig. 5, a
ical data sets, the evidence for the existence of many smalldiurther increase of causes a crossover to a clearly differ-
and medium landslides is lost due to wasting processes overnt regime where power-laws are no longer apparent and a
time and, therefore, an historical inventory turns out to con-bell-shaped distribution emerges, whose peak shifts towards
tain only the largest landslides (Malamud et al., 2004b). larger sizes and shrinks up. In this limit, an avalanche event

O Umbria snowmelt
o Northridge earthquake

& Guatemala rainfall
Inverse Gamma

—— CA pdf, »v=0.003, C=0.5
—— CA pdf, v=0.003, C=0.4
———————— CA pdf, v=0.005, C=0.4

Probability Density (ki

10* 10° 10?

Landslide Area (km®)
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Fig. 5. Evolution of the probability density(s) of landslides of  _;- a5 functions of the landslide mean lifetirae; > for different

size s with the driving ratev, in a log-log scale. A crossover yajyes of the driving rate, as shown in Figs. 5 and 6. Variables on
from power-law to non power-law behaviour is apparent and a bell-54a5 are unitless.

shaped (Gaussian) distribution emerges, whose peak shifts towards

larger sizes with increasing Variables on axes are unitless.
values ofv for which p(s) shows power-law scaling. Then,
p(tp) starts to bend for an increasing intervahofalues and

v of the dynamical processes causing landslides. An increase
of v causes an enhancement of the number of cells that ini-
tially reach instabilitys*. Initially, the largers* is, the larger

the lifetime of the more likely events, i.e. the larger is the
number of cells involved in avalanching loops that generate
chain relaxation processes. Then, we find that for a further
increase ofv, the maximum ofp(¢z;) moves towards lower
values oft;. To better explain this feature, we calculate for
each examined value ofthe predicted landslide mean size
<s> and the predicted landslide mean lifetirag, > respec-
tively defined as:

1
10 ' J=10° =107 =107 ] becomes, for very large, a bell-shaped distribution, whose
100 ,=10* »=25.10% v=2.10" ] peak shifts towards smaller lifetimes. The behavioys @f )
\ v=10" v=5.10" v=310" } at varying values ob reveals a continuous modification with

10° 10
t

L
Fig. 6. Evolution of the probability density(7;) of landslides of =85== /sP(S)dS ®)
lifetime 77, with the driving ratev, in a log-log scale. A crossover
from power-law to non power-law is apparent and a bell-shaped dis-
tribution emerges, whose peak shifts towards smaller sizes with in- < /L >= /lLP(tL)dfb (6)
creasingv. Variables on axes are unitless.

In Fig. 7, we report both* and<s> as a function ofkz; >

for the values ofv considered in Figs. 5 and 6. As it can
occurs because a very large number of cells instantaneouslye seen, botk* and <s> are increasing functions ofs; >
reach instability, instead of resulting from a propagation of aup tov~10-1. A further increase of causes larger events
local instability. characterized by smaller lifetimes. We realize that in this

Such features of the model, which demonstrate a change inegime the domino processes, which characterize the land-

the model dynamics with increasimgcan also be observed slide events for small and mediumare no more effective in
in the behaviour of the landslide lifetime distributigfizy ). causing avalanching processes and the instability is reached
As seen in Fig. 6, the probability density functipir; ) has  simply because a very large number of cells almost instan-
a non-trivial behaviour withv. In the limit of vanishingy, it taneously reach the critical threshold. Thus, it is reason-
shows a power-law scaling that is well evident for the sameable to consider that a very largedescribes the effects of
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critical strengths of triggering mechanisms that cause landvalues, which captures the heterogeneity of the soil, fluctu-
slide events involving very large areas in a short time. ate around a mean value as response to the interaction with
Finally, we notice that from our study it follows that the climate and/or external perturbations. Only if the action of
value of the parameteris strictly connected to the maximum a trigger causes a monotonic change (a decrease) ¢i3he
rollover s*. The analysis of landslide inventories has shownvalues, the whole system moves towards the instability in
that landslide events associated with different triggers carthe timev=1. It follows that the characteristic time~?! is
be characterized by the same probability distribution, andalways smaller thai; and, therefore)M;=log,q % is
therefore, by the same’. Since in the proposed CA model positively defined. We point out that the limit case0 is not
s* is essentially an estimate of the most likely number of cellsattainable in actual landslide processes (where physical inter-
that simultaneously reach instability at the start of the land-actions are controlled by finite characteristic times), whereas
slide processes, we argue that such a quantity for a triggeredery small finite values of describe mass movements char-
event inventory is not a mere artefact of limited mapping res-acterized by only a chain process, typical of rockfalls, which
olution (Guzzetti et al., 2002; Malamud et al., 2004a, b) andare not considered in this work.
might represent éixedthickness of an unconsolidated layer . Eq. 7), it follows that large values of the proposed
situated at the upper part of a slope as _3‘9'9933‘90_' by Katz ar]Htensity scale are related to events with long time distances
Aharonov (2006). It is also WOF.th noticing that |n.the CA and short build-up stress times? (i.e. with fast approaching
model the absence of a rollover in the frequency-size probag insapiity), while small values of:;, correspond to events
bility Q|str|but|qn is fou_ndlnth'e limit ofvgry smallvalues'of close together in time and approaching instability slowly.
v, which describe chain reactions that originate from as'ngleObvioust, the quantitys can be measured only if the sys-
cell and are power-law distributed. Thus, in our approach the, . i< time monitored, in such a way it would be possible to

typ!cal power-law behaviour of rack-fall Size distributions, appreciate the temporal variations of the safety factor related
which do not show a rollover, can be explained as a result Ofto v. This is, surely, not an easy task, like the estimation of

a specific mechanism of instability propagation rather thanthe safety factor, but it is not an unattainable task.

the absence of an unconsolidated layer (Katz and Aharonov, . )
2006). Recently, in fact, Juanico et al. (2008) have demonstrated

experimentally our theoretical result (Piegari et al., 2006a)
concerning the existence of a crossover from power-law to
non power-law statistics with the driving rate. They exam-
ine avalanche statistics of rain- and vibration-driven granular

Whereas for earthquakes well-known magnitude scales hav@“des_ in sand mounds and give an estimate Bf terms of
xperimental parameters. Moreover, to evaluate the safety

been identified, which help the general understanding of theé S o
implications of an earthquake, for landslide events this isqu"’lCt_or_fqr shallow landslide, it is often_the app_roxmatlon of
is still open. Keefer (1984) has proposed a magnitude scal@" infinite-slope usgd fpr the expre§3|qu(S(Sldle, 1995;

to quantify the number of landslides in earthquake-triggere ontgomery and Dietrich, 1994; Dietrich et al., 1995; Wu

landslide events. Recently, Malamud et al. (2004a) have sug"zmd Sidle, 1995). By using this analytical expression for the

gested a landslide-event magnitude scale independent on tr?é’lfety factor, its time variation, i., has been evaluated by

triggering mechanism and based on the logarithm to the basl%/erson (2000) in relation to a pressure-head response func-

10 of the total number of landslides associated with an even yon, which depends on the intensity and duration of the trig-

Alternatively to these approaches, which relate the landslid®" (rainfall). Anoj[her approach f'or'the estimation of the
magnitude scale to the mapped mass movements, i.e. to trpafety factor, and its temporal variation, has been recently
visible effects of the triggering mechanisms, we attempt toProposed also by the authors (Piegari et al., 2009). In par-

relate the landslide event magnitude scale to the strength Otfcula}r, we suggest relating the local slope stability of pyro-
the trigger. We introduce, in fact, the intensity scafe in clastic covers to the local slope angle and the mean electrical

terms of the rapidity of the system to reach instability: resistivity value measured in a cell of thg grld test area. In
such a case, the value ofis related to variations of the wa-

@) ter content of the pyroclastic cover, which can be monitored
through the changes of the electrical resistivity values.

where A is a constant introduced to get dimensionless the Let us proceed now in giving an estimation of the land-
scaleM;. We defineA=log,q 77, with Ty, the time inter-  slide magnitude values based on the proposed intensity scale
val between two landslide events in a specific area. Such §Eq.7). From a previous analysis of the model in the range of
choice is motivated by the following consideration. As dis- parameter valuese [10*4, 1(TZ] andC=0.4 (Piegari et al.,
cussed above; is the rapidity at which the system reaches 2006a, b), we have found that the frequency-size distribution
instability, therefore~1 is an estimate of the time needed to exhibits inverse power-law behaviours with exponents simi-
build up the critical stress in the slope. In an actual slopelar to those of the pdf from real data. In this case, if we put
we realize that the random distribution of the safety factor7; equal to the largest value of  for which the distribution

4 A proposal for a landslide-event intensity scale

ML = A+|Oglov
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T " T " T " T " ™) quently, are characterized by different probability distribu-
tions. For small values of, chain processes dominate the
100 4 —m—s J landslide dynamics: a few cells (a single cell in the limit of
] —e—<s> o ] vanishingy) initially reach the instability threshold and, then,
/./ /' the event occurs as the effect of the relaxation processes that
o = propagate the instability to neighbour cells. For very large
“ o / - values ofv, an increasing number of cells initially reach in-
A = ® = . . . . .
o] _/ stgpll|ty and the QOmlno effect is no more effective in deter-
: ./ : mining the Iand;hde event. |
IC ] We found quite a good agreement between the synthetic
/ pdf of the CA model and the landslide area pdf of three land-
slide inventories, and estimated the area of the cells of our
] , . , , , ] grid, ranging from 35rito 100nf. From the comparison
0.0 05 1.0 1.5 20 with the real data we realize that triggers of different ori-
M, gins can affect the stability of a slope with the same rate of
approaching the instability. Therefore, it is crucial to get in-
Fig. 8. The most probable event siz& and the predicted mean formation about such a rate, rather than the nature of the trig-
event size<s> as functions of the magnitud¥;, in the range [0,  gering mechanism.
2]. _The sizes are given on logarithmic axis avfg on linear axis. Finally, we propose a landslide-event magnitude scale re-
Variables on axes are unitless. lated tov, which is a first attempt to relate the magnitude
scale,M;, to the strength of the perturbation acting on the
resembles a maximum, i.&;=10%, we obtain a magnitude SyStém, instt—_aad of its visible effects. In such a classification
scale for landslides that varies in the ranges, <2. We  Of the landslide events, large values of the sddle corre-
remind the reader that in our theoretical approach, the charSPond to events with a fast approach to instability in a long

acteristic times—1 and7}, are unitless and they can be mea- distance of time, while small values éf,, correspond to
sured only if the model is applied to a specific monitored events with a slow approach to instability in a very close pe-
survey area. riod of time. Conversely, from the approach of Malamud et

Finally, in Fig. 8, we show the most likely event size al. (2Q04a) that predicts the same mean Iandsl'id(.a area for all
— corresponding to the maximum @f(s) — and the pre- Igndsllde events, from the; analysis of the statlst'lcal proper-
dicted mean event sizes>, as functions of the magnitude ties of our CA model, we find that both the most likely event
M; . The value ofs* and <s> are obtained from the dis- size and the mean event size are increasing functions; of

tributions that resemble the experimental ones shown in the

previous works (Piegari et al., 2006a, b). Conversely toAcknowledgementsThe authors thank B. Malamud for providing
the approach that proposes a genera| landslide probab|||t$he data of the three landslide inventories shown in Flg 4. The
distribution (Malamud et al., 2004a), we find that both the authors are also very grateful to the Editor and the Reviewers
characteristic sizes® and<s> increase with the magnitude for their valuable comments that significantly improved the
scale. The dependence af> on M; is essentially linear manuscript. The authors acknowledge the support of the Research

. . . Project PRIN 2007: “Evaluation of geophysical and geological
in a log-linear scale. Instead, the enhancement a$ such aspects of landslide susceptibility to severe natural events and

thats * — <s> in the limit of very large values o#/; (i.e., relative land zoning” (2007LE8ZCB03).

M >2). This evidence could be justified considering that for

such values oM, the frequency-size distribution becomes Edited by: B. Malamud

a good approximation of a Gaussian distribution, where theReviewed by: O. Katz and two other anonymous referees
most probable event coincides with the mean event.
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