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Abstract. Three methods, return period, power-law fre- 1 Introduction

quency plot (concentration-area) and local singularity in-

dex, are introduced in the paper for characterizing peak flonHumankind has always been faced with water resource prob-
events from river flow data for the past 100 years from 1900lems — floods and droughts. Flood disasters have been more
to 2000 recorded at 25 selected gauging stations on rivers idevastating in terms of deaths, suffering, and economical
the Oak Ridges Moraine (ORM) area, Canada. First a tra<damages are concerned, versus other natural hazards e.g.,
ditional method, return period, was applied to the maximumearthquakes, volcanoes, and wild fires etc. (Kundzewicz et
annual river flow data. Whereas the Pearson lll distributional., 1993). Despite the progress in science and technology,
generally fits the values, a power-law frequency plot (C-A) humans are still vulnerable to extreme hydrological events.
on the basis of self-similarity principle provides an effective The losses increase due to the continuing development of
mean for distinguishing “extremely” large flow events from costly infrastructure, rise in population density, and decrease
the regular flow events. While the latter show a power-lawof buffering capacities such as deforestation, urbanization,
distribution, about 10 large flow events manifest departureand draining wetlands. Despite heavy expenditures on both,
from the power-law distribution and these flow events can bestructural and non-structural measures of flood and drought
classified into a separate group most of which are related te@ontrol, extreme hydrological events continue to present a
flood events. Itis shown that the relation between the averagbazard in developed and developing parts of the world. Un-
water releases over a time period after flow peak and the timelerstanding floods and droughts, their mechanisms, charac-
duration may follow a power-law distribution. The exponent teristics, and regularities is of crucial importance for water
of the power-law or singularity index estimated from this assessments, water allocation, design and management of
power-law relation may be used to characterize non-linearitywater resource systems.

of peak flow recessions. Viewing large peak flow events or Human use their perception to judge if an event is extreme.
floods as singular processes can anticipate the application dfor example, extreme events are defined by Sarewitz and
power-law models not only for characterizing the frequencyPielke (2001) as an occurrence that, relative to some classes
distribution of peak flow events, for example, power-law re- of related occurrences, is notable, rare, unique, profound, or
lation between the number and size of floods, but also forotherwise significant in terms of its impacts, effects, or out-
describing local singularity of processes such as power-lancomes (Sarewitz and Pielke, 2001). This contextual defini-
relation between the amount of water released versus releasion characterizes an extreme event both from its innate at-
ing time. With the introduction and validation of singular- tributes, and from the influence of the events. From natural
ity of peak flow events, alternative power-law models can beprocesses viewpoint, the extreme events can be characterized
used to depict the recession property as well as other typeby non-linear and stochastic models, among them the most
of non-linear properties. sophisticated methods should be the space-time multifrac-
tal proposed by Schertzer and Lovejoy (1994) also seen in
Tessier et al. (1996) which provides a natural framework for
analyzing and modeling scale invariant geodynamical pro-

Correspondence tQ. Cheng cesses including rain, runoff and river flows. In this frame-
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distribution with algebraic tails with exponenrtyp, which in terms of their impacts, effects, or outcomes. These types
is related to multifractal phase transition and self-organizedof events are relatively rare due to their abnormality and in-
criticality (SOC) (Bak et al., 1987). The extreme events volving long processes of energy and material accumulation.
might cause divergence property of statistical moments withwhether these processes cause significant impact depend on
spatial scaling (Lovejoy and Schertzer, 1995). Similar behav-where and when they happen. As a matter of fact, singular
ior was found by Turcotte and Greene (1993) in river flows. processes affect human society in two sides: providing re-
These works have provided framework for identifying statis- sources and causing hazards. On the one hand, with proper
tical property of extreme events. From a practical point of technology the energy released or material accumulated dur-
view, however, one needs sophisticated software and gooahg the singular processes could be utilized as resources for
knowledge of multifractal modeling in order to use these human society development, for example mineral resources,
methods to characterize the properties of extreme events anah the other hand, the explosive energy release and anoma-
to appreciate the effectiveness of these methods. Furthdous concentration of materials including toxic materials can
research on separation of regular and extreme events is relso cause hazardous impacts on ecological and human sys-
quired to develop guidelines for an optimal choice of thresh-tems. This paper explores non-linear modeling techniques
old in consideration of both physical and statistical charac-to identify and characterize singular hydrological events —
teristics of extreme hydrologic processes (Nguyen, 2001)floods from historical data collected from river flow gaug-
This paper explores some simple methods for characterizing stations. It will introduce three methods: return period,
ing extreme river flow events. Instead of “extreme nature” of frequency plot (C-A method) and singularity index for iden-
events, we will consider “singularity” of the events. Singular tification and for characterization of singular events — floods.
geo-processes including physical, chemical and biologicalThe first method is the traditional and used by hydrologists
processes may resultin anomalous amounts of energy releager quantifying an extreme hydrological event by estimating
or mass accumulation or matter concentration that, generallyhow long such an event happens likely. The second method
are confined to narrow intervals in space or time (Cheng,is also commonly used for characterizing distribution of hy-
2007a). It has been found that the end products of thesdrologic events and for separating “regular” from “extreme”
non-linear processes including cloud formation (Schertzerevents (Cheng et al., 1994). The third method was proposed
and Lovejoy, 1987), rainfall (Veneziano, 2002), hurricanesand applied for identifying and characterizing local singular-
(Sornette, 2004), flooding (Malamud, Turcotte and Barton,ities observed in the complex maps used in mineral explo-
1996), landslides (Malamud et al., 2004), earthquakes (Turration (Cheng, 2007a; Cheng and Agterberg, 2009). These
cotte, 1997), mineral deposits (Agterberg, 1995) and minerthree methods were applied to the river flow data collected
alization (Cheng, 2007a) have in common that they can bdrom 1900-2000 at 25 river gauging stations in the Oak
modeled as fractals or multifractals. Total amount of ore Ridges Moraine (ORM), southern Ontario, Canada.
and metals in hydrothermal ore deposits often have Pareto
tails (Turcotte, 1997). Hydrothermal mineral deposits also
can exhibit non-linear features for ore-mineral and associate@ Study area and data
toxic element concentration values in rock and related sur-
face media such as water, soil, stream sediment, till, humudhe study area of the Oak Ridges Moraine (ORM) is located
and vegetation (Cheng, 2007a; Cheng and Agterberg, 2009)n southern Ontario, Canada. This is one of the most devel-
As a singular process, extreme river flow or floods have beemped areas in Canada. The moraine is characterized by its
extensively studied from non-linear processes point of view.rolling hills and river valleys extending 160 km from the Ni-
Several interesting characteristics of river flow fluctuationsagara Escarpment to Rice Lake, and was formed 12 000 years
were reported: the river flow series have power-law tailsago by advancing and retreating glaciers. The moraine con-
in the probability distribution (Murdock and Gulliver, 1993; tains the headwaters of 65 river systems and has a wide diver-
Turcotte and Greene, 1993; Movahed and Hermanis, 2008)ity of streams, woodlands, wetlands, kettle lakes, kettle bogs
which will be confirmed with the data used in the current pa-and significant flora and fauna. It is one of the last remaining
per; river flow series are long-range correlated (Hurst, 1951)continuous green corridors in southern Ontario containing 30
River flow series are multifractals (Lovejoy and Schertzer, per cent forested area. A comprehensive introduction about
1995). Gupta (2004), Gupta and Waymire (1990) and Guptéhydrology of southern Ontario can be found in the Hydroge-
et al. (1996) have systematically investigated the statisticablogy of Ontario Report (Singer et al., 2003). The moraine’s
self-similarity or scale invariance in the spatial variability of sands and gravel deposits absorb rain and snow melt. The
rainfall, channel network structures and floods. This frame-underground water is then stored in layers of sand and gravel
work provides foundations for solving the global problem of (aquifers), filtered and slowly released as cool fresh water to
prediction of floods from ungauged and poorly gauged basinghe 65 rivers and streams flowing north into Lakes Simcoe
(Gupta, 2004). and Scugog and south into Lake Ontario.

From singularity point of view, singular events are usu- The Oak Ridges Moraine area experiences a wide range
ally rare but not necessarily unique, profound, or significantof weather conditions through an average year. Precipitation
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includes deep winter snow, heavy spring and summer thun- esssiaamaoross
derstorms, and, sometimes, lengthy summer dry spells. The 3
temperature is moderate most of the time and, annually, there §
is approximately 600 to 1000 mm of precipitation including
snow in winter season and rainfall in other seasons across
the ORM area (Brown et al., 1968). Snowfall mainly in De-
cember to March accounts for about 15 per cent of the to-
tal annual precipitation. In the summer, widespread daily-
long rainfalls are rare. Instead, showery precipitation is the
general rule. This frequently results in precipitation varying
widely from place to place. In addition, this kind of precipi- ‘
tation may come as short but intense downpours that quickly f&
run into drains and streams. A thunderstorm that results in [
20 or 30 mm of rain in just one hour does little to relieve the
moisture deficit that comes with a long period of dry weather
(Brown et al., 1968; Singer et al., 2003).

DCB - Duffins Creek Basin
HRE - Humber River Basin
CRE - Credit River Basin

ESSSM",’N‘!SI 1 ESB63137/N4794511

Fig. 1. Shaded relief of the digital elevation model of the ORM

On occasion. this area receives the effects of the remnan DEM data from Kenny, 1997). Lines represent the major basins of
lon, thi Vv e area. White dots represent the locations of river gauging stations

of a tropical storm or hurricane moving through the easteMgposen for the study. Labels in the boxes are the IDs of gauging
part of the United States. Occurring from mid-summer t0 gations.
autumn, these systems may result in an all-day rainfall that
can be quite heavy. Precipitation amounts from these sys-
tems can also be somewhat variable over relatively short diseharge on river flow could be modeled (Cheng et al., 2001,
tances. When Hurricane Hazel hit the area in October 19542006; Cheng, 2004). The conventional SCS method (Soil
181.6 mm of rain was recorded at Snelgrove station: how-Conservation Service) of the US Department of Agriculture,
ever, only 38.1 mm at Alton station just 22 km northwest of Soil Conservation Service (1972) and IHACRES (Identifica-
Snelgrove at the same time (Singer et al., 2003). tion of Unit Hydrographs and Component Flows from Rain-
Land-use in the ORM area is largely rural, with forest and fall, Evaporation, Stream flow data) developed by Jakeman et
agricultural practices dominating the landscape although ital. (1990), Jakeman and Hornberger (1993) and Jakeman et
includes the Greater Toronto Area that is a highly industrial-al. (1994) have been applied to predict annual runoff volume
ized area. Increasing population and residential developmerih the river system including ungauged basins from observed
in this area has led to residential development expandingrecipitation records (Cheng et al., 2004).
into the rural areas. Land-use changes, primarily the build- In order to identify and characterize flood events from the
ing of residential subdivisions, the construction of roads andsingularity point of view, we have selected 25 gauging sta-
the paving of parking lots, increase the imperviousness otions in the Oak Ridges Moraine (ORM) area (data from
the ground surface. Consequently, this surface runoff result${YDAT CD-ROM User's Manual, 1996). These stations
in dramatic increases in wet weather flows of the headwatehave records of mean daily flow @#s) and daily rainfall
streams on the Moraine causing erosion and degradation afata since 1900. The locations of the gauging stations are
these fragile systems (STORM-Coalition, 1997). shown in Fig. 1 superimposed on a selected digital eleva-
Various modeling exercises conducted on the study areaion model (DEM) showing the landscape of the ORM area
have demonstrated that runoff volumes observed at the rive(Kenny, 1997). Daily flow data from these stations are used
gauging stations in the drainage basin networks are highlyto calculate return period using Pearson llI distribution. The
correlated with the baseflow caused by ground water dissame dataset were analyzed by C-A method for separating
charge, snow melting, direct flow caused by rainfall as wellflood events from regular river flow events. The peak flow
as the physical properties of drainage basins (Cheng et algvents identified by return period and C-A method were fur-
2006). It has been found that the delay response of surther analyzed by local singularity analysis.
face runoff (river peak flow) to heavy precipitation events
varies across the study area depending on the physical prop-
erties of drainage networks and stream systems such as ttf8& Return period
complexity of drainage basin boundaries, glacier sediment
types, land-use types, and surface inclination (Ko and ChengTraditionally extreme climate events are considered rare both
2004). It has been demonstrated that long-term persistency of their intensity or volume and in the frequency of their
river flow is related to the characteristics of drainage basinsoccurrence. Ecosystems and human societies are adaptive
(Ko and Cheng, 2004; Cheng et al., 2006, 2008). The in-to normal climate conditions. They are generally poorly
teraction between groundwater and surface runoff also haequipped to cope with such extreme events. As a re-
been investigated so that the influence of groundwater dissult, the occurrence of extreme events often has far greater
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detrimental impacts on ecosystems and human society thabeen reported that the background or regular and anomaly
average climate conditions (Hengeveld, 2000). The identifi-or extreme events may follow different distribution based on
cation and characterization of extreme hydrological events isvhich one can separate these two populations (Cheng et al.,
one of the most important concerns of hydrologists. 1994). As a matter of fact, many singular processes result
Climatologists use a variety of statistical criteria to iden- in end products with fractal or multifractal distributions. Ex-
tify extreme events (IPCC, 2001). Return period denotes amples include number and size distribution of earthquakes,
recurrence interval of defined hydrological events. Itis a stadandslides, forest fires, and floods (Turcotte, 2001). Power-
tistical measure of how often an event of a certain size islaw distribution has the unique property of scale invari-
likely to happen. Flood size can be treated as a random variance and self-similarity (generalized self-similarity in case
able and the return period defined as the mean period of evertf anisotropy scaling). Since power-law function can be eas-
reoccurrence. For example, a large flood event with 100-yeaily plotted as linear function on double log-scale, it is often
return period likely reoccurs in 100 years but it does not nec-intuitive to inspect whether values follow power-law distri-
essarily happen again after exactly 100 years. For a probabution or self-similar distribution. Therefore, these types of
bility distribution of event sizeX, P(X>x), estimated from  plots can be applied to inspect and to separate populations
a long series of events in unit of year, the return period ofbased on distinct generalized self-similarities of populations.
event with sizex can be calculated from the inverse of the For example, a 2-D concentration-area fractal method (C-A)
probability of the event, or, proposed for separating geo-anomalies from background on
1 the basis of distinct power-law relations has been commonly
= m 1) used in exploration geochemistry for anomaly identification

. L . and environmental geochemistry for regional pollution pat-
whereT is the return period in years(X>x) is the prob- 9 y 9 P P

bility of th t with val K>r Thi ton | tern recognition (Cheng et al., 1994). This method is based
3. “ty Oth te evehn wi ﬂ:/a ue g b_'l?c. f IS equatlon_tlr?- ._on a relation associating concentration (or density) valjie (
alt():(?vgxs i z; (;a: )y'T'Eri]:arefeoFeroinaorldlg fc)o r?gvivae: ey(;nt rsézeand the area (or accumulative number) within which concen-
X). - .
i = L tration values are above a threshpld A(v>p)) as
occur it needs to have a period Bfyears so thal’ P=1, that pldAv=p))

is T=1/P. Aw=p)=Cp~F 2)

The P_earson Type lll, or Gamma distribution_describes th%herec and g are two parameters determining the power-
probability of occurrence of an event as ?.PO'SSO” PrOCeSI4w relation Eqg. B). This implies thatd (v>p) is a decreas-
When the population of events is very positively skewed, theing function ofp. Depending upon the uﬁderlying processes

data are fitted by Log Pearson Type lll Distribution. This that generated the concentration values, the relationZq. (

type of distribution is determined by three parameters th"’?tmay exist only for large or small values in the two tails or

are rglated to the mean, vanance a‘?d ;kewness (')f.the d'?f)r multiple ranges of values each of them represented by
tnbujuon._ The Pearson Type I.” Dlstnbgno_n was originally a single power-law relation with constant C and exporgent
appl!ed n h_ydrology fo describe the distribution of annual Multiple values of C ang an lead to determination of breaks
maximum dlscharge (Fos.ter.and Alden, 1924).  The I‘ogof concentration values separating concentration values into
Pearson Type Il Distribution is commc_)nly used to calculate ranges with the concentration values and areas following a
flo_cl)_g reClIJrrenc?s (\ﬁgssman andILd§W|i, 2003). ded at ingle power-law relation. This method will be adopted in
he values o maximum annual discharges recorded at aly;q paper for characterizing river flow discharges. The total
stations in the area over the past 100 years from 1900 to 200 umber of days with discharge above a threshold can be an-

Wr? re ?rt]tetdl_by :;Og Peatrson Iﬁygetllltl) I?_lstrlbutmn.” Rf(.atSL{[Ir:S alyzed in the same way as cumulative area in concentration
showthat Log Fearsontype istribution generally ItS € _ % oq analysis. Given a series of daily flow recorded at a

data although the values in the two tails show deviations frc.)mgauging station, one can use a variable threshold so that the
the model. From the Pearson type Il curve one can deriv

Shumber of days with flow rate above the threshold can be cal-

the protbgp'“tty of anty gl\:en fd|s;:harge f[h:t'Fm wrn, calm ?ﬁculated and the data plotted against the threshold on a log-log
fclon\éer © tm t?] atn estima eoo triurqggzoM. olrgeséamp dej lot. If the flow rates reflect the end product of self-similar
oodeven's that occur on Hctober  viay » aNd UK hcesses one would expect to see a power-law relation be-

1947 reached peak flows 23.3, 17.6, and 17&nrespec- tween the days and flow rate. Otherwise, one could use the

tlve.Iy, then, from the curve we can estimate th"?‘t the rEturnplot to test whether the flow rates originated from the same
periods should be 77, 30, and 29 years, respeciively. population. Applied to river flow data observed at Cataract
Station on Credit River from 1900 to 2000 and to avoid the
4 Power-law frequency distribution mixing of river flow due to rainfall and snow melt, we only
analyze daily flow data from May 1 to November 30 each
Probability plot is a common way to plot river flow data and year. The river flow threshold values are subdivided into 51
power-law tails have been reported by several authors (Murgroups with an interval of 0.46 and minimum and maximum
dock and Gulliver, 1993; Turcotte and Greene, 1993). It hasvalues of 0.28 i¥s and 23.3 #s, respectively. The number
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Fig. 2. Log-log plot of number of days ND{f) against the flow  Fig. 3. Frequency analyses of maximum annual peak flow/gn
rate (f in m/s) at Cataract Station. Both axes are in natural loga-from Cataract Station on Credit River. Straight line segments are
rithmic transformed scale. fitted by least square method. Log is natural log.

of days with flow data fail in each of these intervals were
calculated and are shown in Table 1 and plotted on Fig. 2.  Following the same principle, we can reconsider the an-
The frequency values of number of days versus flow datahual maximum flow data previously fitted by log Pearson il
generally shows a linear trend on the log-log plot, althoughfunction. The results are shown in Fig. 3 which shows three
the values in the two tails clearly departure from the lin- Straight-line segments providing a good fit to the data with
ear trend. The main segment of the p|0t shows a |inea|CUtOﬁ values that separate the maximum annual flow values
relation between log-transformed number of days and log{nto three distinct groups. The group on the far right side
transformed flow data log [ND{ £)]=2.76 log (f)+9.45with  gives a cutoff value 14 according to which one can identify a
squared linear correlation coefficieR$=0.999. This ensures group of large maximum annual flow values. The results are
that the number of days and flow data follows the power-lawsimilar to those in Table 2 except for the event in 1915.
relation ND& £)=12708f 276, From the plot one can see
that 10 large flow points with flow discharge above 1¥sn
depart from the straight line and the actual events in this5 Singularity of peak flow
group are shown in Table 2. The plot in Fig. 2 may indicate
that the main flow data except the 10 large flow data showAs discussed previously, flood events can be considered as
a type of self-similarity. The differences between the distri- singular processes which release anomalous amounts of wa-
bution types of the main values and the large values mighter within a relative short period of time. This type of singu-
reflect different underlying processes or be due to errors inarity can be characterized by the local singularity index pro-
data recording. However, the data from most stations in theposed by Cheng (1999) for characterizing anomalous phe-
study area show similar characteristics and this may indi-nomena in exploration geochemistry. Under the assumption
cate that the difference is indeed due to different causes o06f local singularity, the behavior of the values around a sin-
large flow. Therefore, these large flow events can be idengular location is of chaotic property and can be only char-
tified as a separate group of extreme flow events that diffeacterized by average values often displaying scale invariant
from the main flow events which can be considered as regproperty that can be described as power-law relation between
ular flow events. The extreme flow events might be due toaverage value and size of the vicinity. The exponent of this
extreme weather conditions as occurred, for example, whempower-law model characterizes degree of singularity. In the
hurricane Hazel struck the Toronto area on 15 and 16 Octosituation of flood event, it is usually difficult or even impos-
ber 1954 with great amounts of precipitation. For example,sible to measure the flood flow exactly due to its variability
if the river discharge is beyond the river flow capacity, then and complexity. One can only estimate the daily or hourly
flooding would occur and river flow recorded at the gaug- average flow. However, degree of approximation of average
ing station could become less than what it would be withoutflow to the exact flow depends on both complexity of flow
flooding. Although the causes of the scale break need furthewithin the averaging period and how long the period is. If
investigation, their identification already provides useful in- the period is short enough the model should give a good ap-
formation about these events. Later in this paper it will be proximation for a simple regular flow series, whereas for a
shown that extreme flow events show strong local singularcomplex flow series, no matter how short the period of aver-
ity that can be further characterized using local singularityaging, it may not provide a good approximation. This type
analysis. of complexity can be quantified using the singularity index

www.nonlin-processes-geophys.net/16/503/2009/ Nonlin. Processes Geophys., 53352669



508 Q. Cheng et al.: Characterization of peak flow events with local singularity method

Table 1. Relationship between accumulative number of days with dischargés mbove an threshold and the threshold calculated from
flow data at the Catarack Station on Credit River.

Threshold Number Log Log Threshold Number Log Log
Discharge of Days Threshold Days Discharge ofDays Threshold Days
0.28 17970 —-1.26 9.80 12.25 14 2.51 2.64
0.74 14446 —-0.30 958 1271 11 2.54 2.40
1.20 7328 0.19 8.90 13.17 11 2.58 2.40
1.66 3391 051 8.13 13.63 11 2.61 2.40
2.12 1677 0.75 7.42 14.09 10 2.65 2.30
2.58 999 095 6.91 1455 9 2.68 2.20
3.05 618 1.11 6.43 15.01 9 2.71 2.20
351 399 1.25 5.99 15.47 7 2.74 1.95
3.97 276 1.38 5.62 15.93 6 2.77 1.79
4.43 196 1.49 5.28 16.39 6 2.80 1.79
4.89 152 1.59 5.02 16.86 4 2.82 1.39
5.35 113 1.68 4.73 17.32 3 2.85 1.10
5.81 89 1.76 4.49 17.78 2 2.88 0.69
6.27 74 1.84 4.30 18.24 2 2.90 0.69
6.73 61 191 411 18.70 2 2.93 0.69
7.19 55 1.97 4.01 19.16 2 2.95 0.69
7.65 43 2.03 3.76 19.62 2 2.98 0.69
8.11 39 2.09 3.66 20.08 2 3.00 0.69
8.57 35 2.15 356 20.54 2 3.02 0.69
9.03 30 220 340 21.00 2 3.04 0.69
9.49 27 225 330 21.46 2 3.07 0.69
9.95 24 230 3.18 21.92 2 3.09 0.69
10.41 19 234 294 2238 1 3.11 0.00
10.87 17 239 283 2284 1 3.13 0.00
11.33 16 243 277 23.30 1 3.15 0.00
11.79 15 247 271

recession flow only. Initial timep can be set the peak. To
avoid overlap of multiple peak flow, we further select flow
series showing single peak and there was no significant rain-

Table 2. Extreme flood events of cataract station.

Year Month Date Peak flow

(m3/s) fall after the peak flow. Assum@1, Q», ..., andQ, are the
daily flow data available; these data usually are in descend-

1915 11 20 12.7 ing order. The average flow within k days from the flow peak
18;2 g i(l) 122 can be calculated as follows:
1942 5 31 16.6 1K
1943 5 12 143 0*(< k) = p > o (3)
1947 6 3 16.8 i=1
1954 10 17 23.3 . . .
1956 5 11 17.6 At the singular location of a flow series, the average flow
1960 5 9 14 value Q*(<k) may follow a power-law relation with the mea-
1974 5 17 153 suring unitk.

0*(< k) = ck® 1= ck™2¢ (4)

where the exponemha=1-w and the constant ¢ are two in-
as will be shown below. Considering the short time perioddices. The former is independent of the averaging #nit
between heavy rainfall and peak flow caused by this rainfallwhereas the later has the same unipds The constant value
and the fact that there are not enough multiple daily flow datac determines the height of the cur@e (<k) whereas the ex-
before the flow peak to conduct statistical analysis, here weponentA« characterizes the shape of the curve. When the
will only use the flow series following the flow peak, i.e., for averaging unit tends to zerok— 0, the indexA« has the
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Table 3. Results obtained by means of singularity model and power-law model.

Date Set Year StartDay EndDay Peak fla/s Singularity Model Power-Law Model
Intercept Ao R2 Intercept o R?
1915 11/20 11/25 12.7 2.53 0.739 0.999 2.13 1.264 0.856
1917 07/11 11/16 12.3 2.47 0.570 0.986 2.28 0.826 0.705
1923 05/21 06/01 15.6 2.78 0.663 0.999 244 1.035 0.957
1924 05/10 05/14 15.3 2.73 0.585 1.000 2.61 1.104 0.967
1928 07/28 08/02 11.6 2.56 0.502 0.935 2.59 1.184 0.894
1942 05/31 06/10 16.6 2.80 0.598 0.999 2.56 0.967 0.942
1943 05/12 05/20 14.3 2.72 0.384 0.985 2.63 0.613 0.956
1947 06/02 06/13 17.3 3.05 0.499 0.948 3.00 0.927 0.928
1954 10/17 10/30 23.3 3.16 0.603 0.100 2.84 0.886 0.965
1956 05/11 05/30 17.6 2.93 0.478 0.996 2.76 0.701 0.990
1960 05/9 05/17 14 2.67 0.299 0.970 2.77 0.607 0.875
1962 11/11 11/20 9.57 2.32 0.546 0.984 2.17 0.911 0.979
1968 08/23 09/01 10.5 2.46 0.523 0.978 2.40 0.982 0.984
1974 05/17 05/28 15.3 2.82 0.524 0.991 2.67 0.860 0.980
1983 05/10 05/18 3.62 1.72 0.243 0.959 1.68 0.378 0.922
1992 11/13 11/21 11.0 2.47 0.454 0.986 2.35 0.739 0.948
1996 05/21 06/01 10.3 2.45 0.395 0.970 2.43 0.696 0.986

following properties (Cheng and Agterberg, 1996; Cheng,the study area, which include all the peak flow events iden-

1999):

1. If Aa=0 if and only if 0*(<k)— constant which is in-
dependent of vicinity size d.

2. If Aa>0 if and only if 0*(<k)— o0 which is an in-
creasing function ot and the value tends to infinity.

3. If Aa<0if and only if 9*(<k)—0 which is a decreas-

ing function ofk and the value tends to zero.

The above properties show that the index can be used

tified in Table 2. Figure 4 plots the average flo@*) and

the flow (Q) versusk. The first two plots are for testing
the power-law relations Eqs4) and 6), and the third plot

is for exponential relation which has been commonly used
in the hydrology literature (Maillet, 1905; Mitchell, 1972;
Hall, 1968). The three sets of plots generally show linear
trends. However, the plots for lo@() and logk) show
generally larger correlation coefficients than those calculated
from plots for logQ) and logk) and log@Q) andk. This in-
dicates that the singularity relation in Edt) (may provide
better results for fitting the peak flow data than the ordinary

to quantify the order of singularity. From a numerical data power-law model or exponential model which are commonly
processing point of view, the singularity index can be used agised in the literature for modeling river flow recession since
a high-pass filter when applied to a time series (Cheng, 1999Boussinesq in 1877 (Hall, 1968; Tallaksen, 1995; Brutsaert
for identification of anomalies from normal background val- and Nieber, 1977; Cheng, 2008b). In addition to a generally
ues (Cheng, 2005, 2007a, b) and for downscaling mappindpetter fit to the data by least square method, the singularity
purposes (Cheng, 2008a).

If assume the power-law relation in E4) ve can reorga-

nize the form so that

1
kack“—c(k—l)“:ck“[l—(l—E)“]"\v“cak“_lzcak_m (5)

It shows that the flowQ itself may also be approximated by
power-law relation with timé& and the approximation is usu-
ally good for largek. Considering peak flow usually exists
for a short period of time, the approximation E§) (hay

model provides results less sensitive to the range of time se-
ries used for the calculation in comparison with the results
obtained by the power-law model Ed)(and exponential
model. Using the ordinary power-law model E§) (o fit

the flow data, the regression coefficients are sensitive to the
choice of length of the series. For example, removing one
day from the series often causes significant difference on re-
gression coefficients and this makes the model less useful in
practice. The two models Eqst)(and &) were compared
using all 17 peak flow events and the results in Table 3 show

not be generally acceptable. Data analysis in the followingthat the results obtained by singularity model Et}.gre con-
sections will confirm this.
Relations in Egs.4) and 6) were applied to the 17 main previously used in characterizing peak flow recession. The

peak flow data from the Cataract Station on Credit River in

www.nonlin-processes-geophys.net/16/503/2009/

sistently superior to those by the ordinary power-law method
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Fig. 4. Plots showing relations between peak flow data and time duration for testing power-law relationd) Egg.row) and §) (middle
row) and exponential relation (bottom row). Straight lines were fitted by least squares method.

values of singularity index«) calculated from the 17 peak the entire series we can estimate a singularity which then can
flow series range from 0.20 to 0.75. These positive valuede used to characterize the properties of the flow. This in-
indicate that the peak flow series indeed show strong singueex is useful for characterizing the flow as time series which
larity around the flow peak implying that the water volume can also be plotted cross different river systems and environ-
released during the short period time around the peak flonments. As an example, we plotted the values of singular-
is non-linearly proportional to the time duration. When the ity index calculated for the 17 events that occurred during
time becomes zero, the flow rate tends to become infinitelyl900-2000 at the Cataract Station in Fig. 5. Figure 5a plots
large. Around the singularity it is usually impossible to mea- the observed peak flow itself and the estimated peak flow
sure actual flow value accurately and the average values dge-value) from the power-law relation fitted to lagt{) and
rived from a few measurements often are not enough for aclog(k). This plot shows that the fluctuations of peak flows
curate estimation of the singular flow values. However, fromin this river do not show significant trend. The estimated

Nonlin. Processes Geophys., 16, 5883 2009 www.nonlin-processes-geophys.net/16/503/2009/
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Fig. 5. Sequences of 17 flood events recorded at the Cataract stgjofihe observed peak flow shown as dots and the estimated peak flow
as solid liney(B) The general trend of singularitye values fitted with a straight line by least square method.

peak flow and observed peak flow generally fit well. From N

the plot (5B) one can see that the singularity shows general A

decreasing trend for the time period studied with a squared

correlation coefficienR?=0.41 or student t-value=3.2, indi-

cating a statistically significant correlation. Similar trends

are found at other stations located in other rivers, although *

the statistical significances vary from river to river. In order '

to inspect the spatial distribution of singularity of peak flow - :

events we applied the method to all other major peak flow ' "\

events recorded at other stations in all rivers studied. All

cases confirm good fits of power-law relation E4). {o the

data of peak flonQ* andk and the fitness obtained using the

relation Eq. 4) is consistently better than that by power-law | Singuiary Incex

relation Eg. §). In addition we plot the distribution of singu- -;f -H o

larity values A\«) cross all drainage basins in the study area. . '

Figure 6 shows one example of singularity values calculatecig 6. pistribution of singularityAe obtained from flood events

from flood events in May 1974 in all stations. occurred in May 1974 in the ORM area. Outlines of colored pat-
terns are boundaries of drainage basins.

6 Discussion and conclusions

frequency. A small number of large flow data depart from
The results described in this paper suggest the propositiothis power-law relation with lower flow than expected due to
that extreme hydrological flow series present the singularityflood effect on the measurements of water flow at the gaug-
property as that the amount of water released during a shoiihg station. As a singular process, extreme flow events can
period of time, and is anomalously large in comparison with cause anomalous amounts of water to be released during a
normal flow series. For hydrological engineering purposesshort period of time and this is the reason for these types of
these types of extreme events are characterized by long reevents to cause flooding often. Floods happen if flow rates
turn periods. From a self-similarity of frequency and size exceed capacity of river discharge. The degree of singularity
distribution point of view, extreme events, especially thoseof the flow series can be quantified by using the local singu-
of large flooding related flow data may follow a distribu- larity index introduced in model Eq4) in the paper. From
tion type different from that of normal flow events. The use a singularity point of view, the frequency distribution of sin-
of C-A method as introduced in this paper may provide agularity can be characterized by a multifractal distribution.
way to separate these types of distributions. Applying thisThis distribution indicates that events with strong singularity
method for the historical flow data from the ORM area, we are rare and events with weak singularity occur more often.
have demonstrated that, in general, the normal flow data majlormal flow events without singularity constitute the major-
show power-law relationship between flow magnitude andity of events in hydrological cycles. As a general property of
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non-linear processes, energy release and mass accumulati@eng, Qiuming: Multifractal imaging filtering and decomposition
may follow power-law distribution with the relevant time or ~ methods in space, Fourier frequency, and eigen domains, Nonlin.
space involved. In addition, the singular events may describe Processes Geophys., 14, 293-303, 2007b,
power-law frequency distribution although usually more data__http-/www.nonlin-processes-geophys.net/14/293/2007/
or long flow data series are needed for validation. From theChefng'DQ“ Mult:\f/llracr:alemo;jeg;gggofgEllgéeg\;e;Iug(s) (;"S”d Eigenvectors
data used in this paper it has been demonstrated that locg| of 2-D maps, Math. Geol,, 37(8), 915-927, 2005. .

. . . heng, Q.: Weights of evidence modeling of flowing wells in the
singularity does exist around peak flow as recorded at gaug-

. . . . . Greater Toronto Area, Canada, Nat. Resour. Res., 13, 77-86,
ing stations in the study area. The flow itself as well as time 540,

after flow peak also may follow power-law distribution (or cheng, Q.: Multifractality and spatial statistics, Computers Geosci.,
fractal distribution). This type of fractal model already had  25(9), 949-961, 1999.

been utilized for describing peak flow recession patterns inCheng, Q. and Agterberg F. P.: Singularity analysis of ore-
literature. This paper also elaborates on comparison of the mineral and toxic trace elements in stream sediments, Computers
ordinary power-law model with the singularity model from  Geosci., 35, 234-244, 2009.

which it was concluded that the singularity model is gener-Cheng, Q. and Agterberg, F. P.: Multifractal modeling and spatial
ally superior to the power-law flow model. As flow models Statistics, Math. Geol., 28, 1-16, 1996. _
form the basis for river flow prediction in both gauged and C"eng. Q.. Agterberg, F. P., and Ballantyne, S. B.: The separation
ungauged basins the new model which is based on singularity of geochemical anomalies from background by fractal methods,

theory may provide an option for modeling flow prediction J. Exploration Geochem., 51, 109-130, 1994.
-Ofy may _p_ . P . . 9 P " Cheng, Q., Zhang, G., Lu, C., and Ko, C.: GIS spatial-temporal
This proposition will be further investigated.

) i modeling of water systems in the Greater Toronto Area, Canada,
From the data analysis using the three methods of return garth Sciences, a Journal of China University of Geosciences,

period, C-A plot and local singularity index, we may con- 15, 275-282, 2004.

clude that in the ORM area flow events with 10 year or aboveCheng, Q., Ko, C., Yuan, Y., Ge, Y., and Zhang, S.: GIS Modeling
return period show distinct self-similarity from the majority ~ for predicting river runoff volume in ungauged drainages in the
of flow events with small return period and strong local sin-  Greater Toronto Area, Canada, Computers Geosci., 32(8), 1108—

gularity for the major flooding events. 1119, 2006.
Cheng, Q., Yuan, Y., Ko, C., Li, L., and Zhang, Z.: Study of wa-

ter system in the Greater Toronto Area using GIS-based spatial-
temporal-frequency models, in: Environmental Geosciences,
edited by: Chunmiao Zheng and Xiahong Feng, Advances in
Earth Sciences, Chinese High Education Press, Beijing, 4(5), 87—
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