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Abstract. Three methods, return period, power-law fre-
quency plot (concentration-area) and local singularity in-
dex, are introduced in the paper for characterizing peak flow
events from river flow data for the past 100 years from 1900
to 2000 recorded at 25 selected gauging stations on rivers in
the Oak Ridges Moraine (ORM) area, Canada. First a tra-
ditional method, return period, was applied to the maximum
annual river flow data. Whereas the Pearson III distribution
generally fits the values, a power-law frequency plot (C-A)
on the basis of self-similarity principle provides an effective
mean for distinguishing “extremely” large flow events from
the regular flow events. While the latter show a power-law
distribution, about 10 large flow events manifest departure
from the power-law distribution and these flow events can be
classified into a separate group most of which are related to
flood events. It is shown that the relation between the average
water releases over a time period after flow peak and the time
duration may follow a power-law distribution. The exponent
of the power-law or singularity index estimated from this
power-law relation may be used to characterize non-linearity
of peak flow recessions. Viewing large peak flow events or
floods as singular processes can anticipate the application of
power-law models not only for characterizing the frequency
distribution of peak flow events, for example, power-law re-
lation between the number and size of floods, but also for
describing local singularity of processes such as power-law
relation between the amount of water released versus releas-
ing time. With the introduction and validation of singular-
ity of peak flow events, alternative power-law models can be
used to depict the recession property as well as other types
of non-linear properties.
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1 Introduction

Humankind has always been faced with water resource prob-
lems – floods and droughts. Flood disasters have been more
devastating in terms of deaths, suffering, and economical
damages are concerned, versus other natural hazards e.g.,
earthquakes, volcanoes, and wild fires etc. (Kundzewicz et
al., 1993). Despite the progress in science and technology,
humans are still vulnerable to extreme hydrological events.
The losses increase due to the continuing development of
costly infrastructure, rise in population density, and decrease
of buffering capacities such as deforestation, urbanization,
and draining wetlands. Despite heavy expenditures on both,
structural and non-structural measures of flood and drought
control, extreme hydrological events continue to present a
hazard in developed and developing parts of the world. Un-
derstanding floods and droughts, their mechanisms, charac-
teristics, and regularities is of crucial importance for water
assessments, water allocation, design and management of
water resource systems.

Human use their perception to judge if an event is extreme.
For example, extreme events are defined by Sarewitz and
Pielke (2001) as an occurrence that, relative to some classes
of related occurrences, is notable, rare, unique, profound, or
otherwise significant in terms of its impacts, effects, or out-
comes (Sarewitz and Pielke, 2001). This contextual defini-
tion characterizes an extreme event both from its innate at-
tributes, and from the influence of the events. From natural
processes viewpoint, the extreme events can be characterized
by non-linear and stochastic models, among them the most
sophisticated methods should be the space-time multifrac-
tal proposed by Schertzer and Lovejoy (1994) also seen in
Tessier et al. (1996) which provides a natural framework for
analyzing and modeling scale invariant geodynamical pro-
cesses including rain, runoff and river flows. In this frame-
work, the extreme events are characterized by the probability
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distribution with algebraic tails with exponent−qD, which
is related to multifractal phase transition and self-organized
criticality (SOC) (Bak et al., 1987). The extreme events
might cause divergence property of statistical moments with
spatial scaling (Lovejoy and Schertzer, 1995). Similar behav-
ior was found by Turcotte and Greene (1993) in river flows.
These works have provided framework for identifying statis-
tical property of extreme events. From a practical point of
view, however, one needs sophisticated software and good
knowledge of multifractal modeling in order to use these
methods to characterize the properties of extreme events and
to appreciate the effectiveness of these methods. Further
research on separation of regular and extreme events is re-
quired to develop guidelines for an optimal choice of thresh-
old in consideration of both physical and statistical charac-
teristics of extreme hydrologic processes (Nguyen, 2001).
This paper explores some simple methods for characteriz-
ing extreme river flow events. Instead of “extreme nature” of
events, we will consider “singularity” of the events. Singular
geo-processes including physical, chemical and biological
processes may result in anomalous amounts of energy release
or mass accumulation or matter concentration that, generally,
are confined to narrow intervals in space or time (Cheng,
2007a). It has been found that the end products of these
non-linear processes including cloud formation (Schertzer
and Lovejoy, 1987), rainfall (Veneziano, 2002), hurricanes
(Sornette, 2004), flooding (Malamud, Turcotte and Barton,
1996), landslides (Malamud et al., 2004), earthquakes (Tur-
cotte, 1997), mineral deposits (Agterberg, 1995) and miner-
alization (Cheng, 2007a) have in common that they can be
modeled as fractals or multifractals. Total amount of ore
and metals in hydrothermal ore deposits often have Pareto
tails (Turcotte, 1997). Hydrothermal mineral deposits also
can exhibit non-linear features for ore-mineral and associated
toxic element concentration values in rock and related sur-
face media such as water, soil, stream sediment, till, humus
and vegetation (Cheng, 2007a; Cheng and Agterberg, 2009).
As a singular process, extreme river flow or floods have been
extensively studied from non-linear processes point of view.
Several interesting characteristics of river flow fluctuations
were reported: the river flow series have power-law tails
in the probability distribution (Murdock and Gulliver, 1993;
Turcotte and Greene, 1993; Movahed and Hermanis, 2008),
which will be confirmed with the data used in the current pa-
per; river flow series are long-range correlated (Hurst, 1951);
River flow series are multifractals (Lovejoy and Schertzer,
1995). Gupta (2004), Gupta and Waymire (1990) and Gupta
et al. (1996) have systematically investigated the statistical
self-similarity or scale invariance in the spatial variability of
rainfall, channel network structures and floods. This frame-
work provides foundations for solving the global problem of
prediction of floods from ungauged and poorly gauged basins
(Gupta, 2004).

From singularity point of view, singular events are usu-
ally rare but not necessarily unique, profound, or significant

in terms of their impacts, effects, or outcomes. These types
of events are relatively rare due to their abnormality and in-
volving long processes of energy and material accumulation.
Whether these processes cause significant impact depend on
where and when they happen. As a matter of fact, singular
processes affect human society in two sides: providing re-
sources and causing hazards. On the one hand, with proper
technology the energy released or material accumulated dur-
ing the singular processes could be utilized as resources for
human society development, for example mineral resources,
on the other hand, the explosive energy release and anoma-
lous concentration of materials including toxic materials can
also cause hazardous impacts on ecological and human sys-
tems. This paper explores non-linear modeling techniques
to identify and characterize singular hydrological events –
floods from historical data collected from river flow gaug-
ing stations. It will introduce three methods: return period,
frequency plot (C-A method) and singularity index for iden-
tification and for characterization of singular events – floods.
The first method is the traditional and used by hydrologists
for quantifying an extreme hydrological event by estimating
how long such an event happens likely. The second method
is also commonly used for characterizing distribution of hy-
drologic events and for separating “regular” from “extreme”
events (Cheng et al., 1994). The third method was proposed
and applied for identifying and characterizing local singular-
ities observed in the complex maps used in mineral explo-
ration (Cheng, 2007a; Cheng and Agterberg, 2009). These
three methods were applied to the river flow data collected
from 1900–2000 at 25 river gauging stations in the Oak
Ridges Moraine (ORM), southern Ontario, Canada.

2 Study area and data

The study area of the Oak Ridges Moraine (ORM) is located
in southern Ontario, Canada. This is one of the most devel-
oped areas in Canada. The moraine is characterized by its
rolling hills and river valleys extending 160 km from the Ni-
agara Escarpment to Rice Lake, and was formed 12 000 years
ago by advancing and retreating glaciers. The moraine con-
tains the headwaters of 65 river systems and has a wide diver-
sity of streams, woodlands, wetlands, kettle lakes, kettle bogs
and significant flora and fauna. It is one of the last remaining
continuous green corridors in southern Ontario containing 30
per cent forested area. A comprehensive introduction about
hydrology of southern Ontario can be found in the Hydroge-
ology of Ontario Report (Singer et al., 2003). The moraine’s
sands and gravel deposits absorb rain and snow melt. The
underground water is then stored in layers of sand and gravel
(aquifers), filtered and slowly released as cool fresh water to
the 65 rivers and streams flowing north into Lakes Simcoe
and Scugog and south into Lake Ontario.

The Oak Ridges Moraine area experiences a wide range
of weather conditions through an average year. Precipitation
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includes deep winter snow, heavy spring and summer thun-
derstorms, and, sometimes, lengthy summer dry spells. The
temperature is moderate most of the time and, annually, there
is approximately 600 to 1000 mm of precipitation including
snow in winter season and rainfall in other seasons across
the ORM area (Brown et al., 1968). Snowfall mainly in De-
cember to March accounts for about 15 per cent of the to-
tal annual precipitation. In the summer, widespread daily-
long rainfalls are rare. Instead, showery precipitation is the
general rule. This frequently results in precipitation varying
widely from place to place. In addition, this kind of precipi-
tation may come as short but intense downpours that quickly
run into drains and streams. A thunderstorm that results in
20 or 30 mm of rain in just one hour does little to relieve the
moisture deficit that comes with a long period of dry weather
(Brown et al., 1968; Singer et al., 2003).

On occasion, this area receives the effects of the remnants
of a tropical storm or hurricane moving through the eastern
part of the United States. Occurring from mid-summer to
autumn, these systems may result in an all-day rainfall that
can be quite heavy. Precipitation amounts from these sys-
tems can also be somewhat variable over relatively short dis-
tances. When Hurricane Hazel hit the area in October 1954,
181.6 mm of rain was recorded at Snelgrove station: how-
ever, only 38.1 mm at Alton station just 22 km northwest of
Snelgrove at the same time (Singer et al., 2003).

Land-use in the ORM area is largely rural, with forest and
agricultural practices dominating the landscape although it
includes the Greater Toronto Area that is a highly industrial-
ized area. Increasing population and residential development
in this area has led to residential development expanding
into the rural areas. Land-use changes, primarily the build-
ing of residential subdivisions, the construction of roads and
the paving of parking lots, increase the imperviousness of
the ground surface. Consequently, this surface runoff results
in dramatic increases in wet weather flows of the headwater
streams on the Moraine causing erosion and degradation of
these fragile systems (STORM-Coalition, 1997).

Various modeling exercises conducted on the study area
have demonstrated that runoff volumes observed at the river
gauging stations in the drainage basin networks are highly
correlated with the baseflow caused by ground water dis-
charge, snow melting, direct flow caused by rainfall as well
as the physical properties of drainage basins (Cheng et al.,
2006). It has been found that the delay response of sur-
face runoff (river peak flow) to heavy precipitation events
varies across the study area depending on the physical prop-
erties of drainage networks and stream systems such as the
complexity of drainage basin boundaries, glacier sediment
types, land-use types, and surface inclination (Ko and Cheng,
2004). It has been demonstrated that long-term persistency of
river flow is related to the characteristics of drainage basins
(Ko and Cheng, 2004; Cheng et al., 2006, 2008). The in-
teraction between groundwater and surface runoff also has
been investigated so that the influence of groundwater dis-
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Fig. 1. Shaded relief of the digital elevation model of the ORM
(DEM data from Kenny, 1997). Lines represent the major basins of
the area. White dots represent the locations of river gauging stations
chosen for the study. Labels in the boxes are the IDs of gauging
stations.

charge on river flow could be modeled (Cheng et al., 2001,
2006; Cheng, 2004). The conventional SCS method (Soil
Conservation Service) of the US Department of Agriculture,
Soil Conservation Service (1972) and IHACRES (Identifica-
tion of Unit Hydrographs and Component Flows from Rain-
fall, Evaporation, Stream flow data) developed by Jakeman et
al. (1990), Jakeman and Hornberger (1993) and Jakeman et
al. (1994) have been applied to predict annual runoff volume
in the river system including ungauged basins from observed
precipitation records (Cheng et al., 2004).

In order to identify and characterize flood events from the
singularity point of view, we have selected 25 gauging sta-
tions in the Oak Ridges Moraine (ORM) area (data from
HYDAT CD-ROM User’s Manual, 1996). These stations
have records of mean daily flow (m3/s) and daily rainfall
data since 1900. The locations of the gauging stations are
shown in Fig. 1 superimposed on a selected digital eleva-
tion model (DEM) showing the landscape of the ORM area
(Kenny, 1997). Daily flow data from these stations are used
to calculate return period using Pearson III distribution. The
same dataset were analyzed by C-A method for separating
flood events from regular river flow events. The peak flow
events identified by return period and C-A method were fur-
ther analyzed by local singularity analysis.

3 Return period

Traditionally extreme climate events are considered rare both
in their intensity or volume and in the frequency of their
occurrence. Ecosystems and human societies are adaptive
to normal climate conditions. They are generally poorly
equipped to cope with such extreme events. As a re-
sult, the occurrence of extreme events often has far greater
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detrimental impacts on ecosystems and human society than
average climate conditions (Hengeveld, 2000). The identifi-
cation and characterization of extreme hydrological events is
one of the most important concerns of hydrologists.

Climatologists use a variety of statistical criteria to iden-
tify extreme events (IPCC, 2001). Return period denotes a
recurrence interval of defined hydrological events. It is a sta-
tistical measure of how often an event of a certain size is
likely to happen. Flood size can be treated as a random vari-
able and the return period defined as the mean period of event
reoccurrence. For example, a large flood event with 100-year
return period likely reoccurs in 100 years but it does not nec-
essarily happen again after exactly 100 years. For a proba-
bility distribution of event sizeX, P (X≥x), estimated from
a long series of events in unit of year, the return period of
event with sizex can be calculated from the inverse of the
probability of the event, or,

T =
1

P(X ≥ x)
(1)

whereT is the return period in years,P (X≥x) is the prob-
ability of the event with value ofX≥x. This equation in-
dicates that each year the probability of an event with size
abovex is P(X≥x). Therefore, in order to have an event re-
occur it needs to have a period ofT years so thatT P=1, that
is T =1/P .

The Pearson Type III, or Gamma distribution describes the
probability of occurrence of an event as a Poisson process.
When the population of events is very positively skewed, the
data are fitted by Log Pearson Type III Distribution. This
type of distribution is determined by three parameters that
are related to the mean, variance and skewness of the dis-
tribution. The Pearson Type III Distribution was originally
applied in hydrology to describe the distribution of annual
maximum discharge (Foster and Alden, 1924). The Log
Pearson Type III Distribution is commonly used to calculate
flood recurrences (Viessman and Lewis, 2003).

The values of maximum annual discharges recorded at all
stations in the area over the past 100 years from 1900 to 2000
were fitted by Log Pearson Type III Distribution. Results
show that Log Pearsontype III distribution generally fits the
data although the values in the two tails show deviations from
the model. From the Pearson type III curve one can derive
the probability of any given discharge that, in turn, can be
converted into an estimate of return period. For example, the
flood events that occur on October 1954, May 1956, and June
1947 reached peak flows 23.3, 17.6, and 17.3 m3/s, respec-
tively, then, from the curve we can estimate that the return
periods should be 77, 30, and 29 years, respectively.

4 Power-law frequency distribution

Probability plot is a common way to plot river flow data and
power-law tails have been reported by several authors (Mur-
dock and Gulliver, 1993; Turcotte and Greene, 1993). It has

been reported that the background or regular and anomaly
or extreme events may follow different distribution based on
which one can separate these two populations (Cheng et al.,
1994). As a matter of fact, many singular processes result
in end products with fractal or multifractal distributions. Ex-
amples include number and size distribution of earthquakes,
landslides, forest fires, and floods (Turcotte, 2001). Power-
law distribution has the unique property of scale invari-
ance and self-similarity (generalized self-similarity in case
of anisotropy scaling). Since power-law function can be eas-
ily plotted as linear function on double log-scale, it is often
intuitive to inspect whether values follow power-law distri-
bution or self-similar distribution. Therefore, these types of
plots can be applied to inspect and to separate populations
based on distinct generalized self-similarities of populations.
For example, a 2-D concentration-area fractal method (C-A)
proposed for separating geo-anomalies from background on
the basis of distinct power-law relations has been commonly
used in exploration geochemistry for anomaly identification
and environmental geochemistry for regional pollution pat-
tern recognition (Cheng et al., 1994). This method is based
on a relation associating concentration (or density) value (v)
and the area (or accumulative number) within which concen-
tration values are above a thresholdρ, (A(v≥ρ)) as

A(v ≥ ρ) = Cρ−β (2)

whereC andβ are two parameters determining the power-
law relation Eq. (2). This implies thatA(v≥ρ) is a decreas-
ing function ofρ. Depending upon the underlying processes
that generated the concentration values, the relation Eq. (2)
may exist only for large or small values in the two tails or
for multiple ranges of values each of them represented by
a single power-law relation with constant C and exponentβ.
Multiple values of C andβ an lead to determination of breaks
of concentration values separating concentration values into
ranges with the concentration values and areas following a
single power-law relation. This method will be adopted in
this paper for characterizing river flow discharges. The total
number of days with discharge above a threshold can be an-
alyzed in the same way as cumulative area in concentration
– area analysis. Given a series of daily flow recorded at a
gauging station, one can use a variable threshold so that the
number of days with flow rate above the threshold can be cal-
culated and the data plotted against the threshold on a log-log
plot. If the flow rates reflect the end product of self-similar
processes one would expect to see a power-law relation be-
tween the days and flow rate. Otherwise, one could use the
plot to test whether the flow rates originated from the same
population. Applied to river flow data observed at Cataract
Station on Credit River from 1900 to 2000 and to avoid the
mixing of river flow due to rainfall and snow melt, we only
analyze daily flow data from May 1 to November 30 each
year. The river flow threshold values are subdivided into 51
groups with an interval of 0.46 and minimum and maximum
values of 0.28 m3/s and 23.3 m3/s, respectively. The number
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Figure 2 Log-log plot of number of days ND(≥f) against the flow rate (f) at Cataract 

Station. Both axes are in natural logarithmic transformed scale.   
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Fig. 2. Log-log plot of number of days ND(≥f ) against the flow
rate (f in m3/s) at Cataract Station. Both axes are in natural loga-
rithmic transformed scale.

of days with flow data fail in each of these intervals were
calculated and are shown in Table 1 and plotted on Fig. 2.

The frequency values of number of days versus flow data
generally shows a linear trend on the log-log plot, although
the values in the two tails clearly departure from the lin-
ear trend. The main segment of the plot shows a linear
relation between log-transformed number of days and log-
transformed flow data log [ND(≥f )]=2.76 log (f )+9.45 with
squared linear correlation coefficientR2=0.999. This ensures
that the number of days and flow data follows the power-law
relation ND(≥f )=12708f −2.76. From the plot one can see
that 10 large flow points with flow discharge above 12 m3/s
depart from the straight line and the actual events in this
group are shown in Table 2. The plot in Fig. 2 may indicate
that the main flow data except the 10 large flow data show
a type of self-similarity. The differences between the distri-
bution types of the main values and the large values might
reflect different underlying processes or be due to errors in
data recording. However, the data from most stations in the
study area show similar characteristics and this may indi-
cate that the difference is indeed due to different causes of
large flow. Therefore, these large flow events can be iden-
tified as a separate group of extreme flow events that differ
from the main flow events which can be considered as reg-
ular flow events. The extreme flow events might be due to
extreme weather conditions as occurred, for example, when
hurricane Hazel struck the Toronto area on 15 and 16 Octo-
ber 1954 with great amounts of precipitation. For example,
if the river discharge is beyond the river flow capacity, then
flooding would occur and river flow recorded at the gaug-
ing station could become less than what it would be without
flooding. Although the causes of the scale break need further
investigation, their identification already provides useful in-
formation about these events. Later in this paper it will be
shown that extreme flow events show strong local singular-
ity that can be further characterized using local singularity
analysis.
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Figure 3 Frequency analyses of maximum annual peak flow from Cataract Station on 

Credit River. Straight line segments are fitted by least square method. Log is natural log.  
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Fig. 3. Frequency analyses of maximum annual peak flow (m3/s)
from Cataract Station on Credit River. Straight line segments are
fitted by least square method. Log is natural log.

Following the same principle, we can reconsider the an-
nual maximum flow data previously fitted by log Pearson III
function. The results are shown in Fig. 3 which shows three
straight-line segments providing a good fit to the data with
cutoff values that separate the maximum annual flow values
into three distinct groups. The group on the far right side
gives a cutoff value 14 according to which one can identify a
group of large maximum annual flow values. The results are
similar to those in Table 2 except for the event in 1915.

5 Singularity of peak flow

As discussed previously, flood events can be considered as
singular processes which release anomalous amounts of wa-
ter within a relative short period of time. This type of singu-
larity can be characterized by the local singularity index pro-
posed by Cheng (1999) for characterizing anomalous phe-
nomena in exploration geochemistry. Under the assumption
of local singularity, the behavior of the values around a sin-
gular location is of chaotic property and can be only char-
acterized by average values often displaying scale invariant
property that can be described as power-law relation between
average value and size of the vicinity. The exponent of this
power-law model characterizes degree of singularity. In the
situation of flood event, it is usually difficult or even impos-
sible to measure the flood flow exactly due to its variability
and complexity. One can only estimate the daily or hourly
average flow. However, degree of approximation of average
flow to the exact flow depends on both complexity of flow
within the averaging period and how long the period is. If
the period is short enough the model should give a good ap-
proximation for a simple regular flow series, whereas for a
complex flow series, no matter how short the period of aver-
aging, it may not provide a good approximation. This type
of complexity can be quantified using the singularity index
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Table 1. Relationship between accumulative number of days with discharge (m3/s) above an threshold and the threshold calculated from
flow data at the Catarack Station on Credit River.

Threshold Number Log Log Threshold Number Log Log
Discharge of Days Threshold Days Discharge of Days Threshold Days

0.28 17970 −1.26 9.80 12.25 14 2.51 2.64
0.74 14446 −0.30 9.58 12.71 11 2.54 2.40
1.20 7328 0.19 8.90 13.17 11 2.58 2.40
1.66 3391 0.51 8.13 13.63 11 2.61 2.40
2.12 1677 0.75 7.42 14.09 10 2.65 2.30
2.58 999 0.95 6.91 14.55 9 2.68 2.20
3.05 618 1.11 6.43 15.01 9 2.71 2.20
3.51 399 1.25 5.99 15.47 7 2.74 1.95
3.97 276 1.38 5.62 15.93 6 2.77 1.79
4.43 196 1.49 5.28 16.39 6 2.80 1.79
4.89 152 1.59 5.02 16.86 4 2.82 1.39
5.35 113 1.68 4.73 17.32 3 2.85 1.10
5.81 89 1.76 4.49 17.78 2 2.88 0.69
6.27 74 1.84 4.30 18.24 2 2.90 0.69
6.73 61 1.91 4.11 18.70 2 2.93 0.69
7.19 55 1.97 4.01 19.16 2 2.95 0.69
7.65 43 2.03 3.76 19.62 2 2.98 0.69
8.11 39 2.09 3.66 20.08 2 3.00 0.69
8.57 35 2.15 3.56 20.54 2 3.02 0.69
9.03 30 2.20 3.40 21.00 2 3.04 0.69
9.49 27 2.25 3.30 21.46 2 3.07 0.69
9.95 24 2.30 3.18 21.92 2 3.09 0.69
10.41 19 2.34 2.94 22.38 1 3.11 0.00
10.87 17 2.39 2.83 22.84 1 3.13 0.00
11.33 16 2.43 2.77 23.30 1 3.15 0.00
11.79 15 2.47 2.71

Table 2. Extreme flood events of cataract station.

Year Month Date Peak flow
(m3/s)

1915 11 20 12.7
1923 5 21 15.6
1924 5 10 15.3
1942 5 31 16.6
1943 5 12 14.3
1947 6 3 16.8
1954 10 17 23.3
1956 5 11 17.6
1960 5 9 14
1974 5 17 15.3

as will be shown below. Considering the short time period
between heavy rainfall and peak flow caused by this rainfall
and the fact that there are not enough multiple daily flow data
before the flow peak to conduct statistical analysis, here we
will only use the flow series following the flow peak, i.e., for

recession flow only. Initial timet0 can be set the peak. To
avoid overlap of multiple peak flow, we further select flow
series showing single peak and there was no significant rain-
fall after the peak flow. AssumeQ1, Q2, . . . , andQn are the
daily flow data available; these data usually are in descend-
ing order. The average flow within k days from the flow peak
can be calculated as follows:

Q∗(≤ k) =
1

k

k∑
i=1

Qi (3)

At the singular location of a flow series, the average flow
valueQ∗(≤k) may follow a power-law relation with the mea-
suring unitk.

Q∗(≤ k) = cka−1
= ck−1α (4)

where the exponent1α=1-α and the constant c are two in-
dices. The former is independent of the averaging unitk

whereas the later has the same unit asQ∗. The constant value
c determines the height of the curveQ∗(≤k) whereas the ex-
ponent1α characterizes the shape of the curve. When the
averaging unitk tends to zero,k→0, the index1α has the
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Table 3. Results obtained by means of singularity model and power-law model.

Date Set Year Start Day End Day Peak flowm3/s
Singularity Model Power-Law Model

Intercept 1α R2 Intercept α R2

1915 11/20 11/25 12.7 2.53 0.739 0.999 2.13 1.264 0.856
1917 07/11 11/16 12.3 2.47 0.570 0.986 2.28 0.826 0.705
1923 05/21 06/01 15.6 2.78 0.663 0.999 2.44 1.035 0.957
1924 05/10 05/14 15.3 2.73 0.585 1.000 2.61 1.104 0.967
1928 07/28 08/02 11.6 2.56 0.502 0.935 2.59 1.184 0.894
1942 05/31 06/10 16.6 2.80 0.598 0.999 2.56 0.967 0.942
1943 05/12 05/20 14.3 2.72 0.384 0.985 2.63 0.613 0.956
1947 06/02 06/13 17.3 3.05 0.499 0.948 3.00 0.927 0.928
1954 10/17 10/30 23.3 3.16 0.603 0.100 2.84 0.886 0.965
1956 05/11 05/30 17.6 2.93 0.478 0.996 2.76 0.701 0.990
1960 05/9 05/17 14 2.67 0.299 0.970 2.77 0.607 0.875
1962 11/11 11/20 9.57 2.32 0.546 0.984 2.17 0.911 0.979
1968 08/23 09/01 10.5 2.46 0.523 0.978 2.40 0.982 0.984
1974 05/17 05/28 15.3 2.82 0.524 0.991 2.67 0.860 0.980
1983 05/10 05/18 3.62 1.72 0.243 0.959 1.68 0.378 0.922
1992 11/13 11/21 11.0 2.47 0.454 0.986 2.35 0.739 0.948
1996 05/21 06/01 10.3 2.45 0.395 0.970 2.43 0.696 0.986

following properties (Cheng and Agterberg, 1996; Cheng,
1999):

1. If 1α=0 if and only if Q∗(≤k)→constant which is in-
dependent of vicinity size ofk.

2. If 1α>0 if and only if Q∗(≤k)→∞ which is an in-
creasing function ofk and the value tends to infinity.

3. If 1α<0 if and only ifQ∗(≤k)→0 which is a decreas-
ing function ofk and the value tends to zero.

The above properties show that the index1α can be used
to quantify the order of singularity. From a numerical data
processing point of view, the singularity index can be used as
a high-pass filter when applied to a time series (Cheng, 1999)
for identification of anomalies from normal background val-
ues (Cheng, 2005, 2007a, b) and for downscaling mapping
purposes (Cheng, 2008a).

If assume the power-law relation in Eq. (4) we can reorga-
nize the form so that

Qk=cka
−c(k−1)a=cka

[1−(1−
1

k
)a]≈caka−1

=cak−1a (5)

It shows that the flowQ itself may also be approximated by
power-law relation with timek and the approximation is usu-
ally good for largek. Considering peak flow usually exists
for a short period of time, the approximation Eq. (5) may
not be generally acceptable. Data analysis in the following
sections will confirm this.

Relations in Eqs. (4) and (5) were applied to the 17 main
peak flow data from the Cataract Station on Credit River in

the study area, which include all the peak flow events iden-
tified in Table 2. Figure 4 plots the average flow (Q∗) and
the flow (Q) versusk. The first two plots are for testing
the power-law relations Eqs. (4) and (5), and the third plot
is for exponential relation which has been commonly used
in the hydrology literature (Maillet, 1905; Mitchell, 1972;
Hall, 1968). The three sets of plots generally show linear
trends. However, the plots for log(Q∗) and log(k) show
generally larger correlation coefficients than those calculated
from plots for log(Q) and log(k) and log(Q) andk. This in-
dicates that the singularity relation in Eq. (4) may provide
better results for fitting the peak flow data than the ordinary
power-law model or exponential model which are commonly
used in the literature for modeling river flow recession since
Boussinesq in 1877 (Hall, 1968; Tallaksen, 1995; Brutsaert
and Nieber, 1977; Cheng, 2008b). In addition to a generally
better fit to the data by least square method, the singularity
model provides results less sensitive to the range of time se-
ries used for the calculation in comparison with the results
obtained by the power-law model Eq. (5) and exponential
model. Using the ordinary power-law model Eq. (5) to fit
the flow data, the regression coefficients are sensitive to the
choice of length of the series. For example, removing one
day from the series often causes significant difference on re-
gression coefficients and this makes the model less useful in
practice. The two models Eqs. (4) and (5) were compared
using all 17 peak flow events and the results in Table 3 show
that the results obtained by singularity model Eq. (4) are con-
sistently superior to those by the ordinary power-law method
previously used in characterizing peak flow recession. The
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Figure 4. Plots showing relations between peak flow data and time duration for testing power-law 

relations (4) (top row) and (5) (middle row) and exponential relation (bottom row). Straight lines were 

fitted by least squares method; log-transformation is e-based. 

Fig. 4. Plots showing relations between peak flow data and time duration for testing power-law relations Eqs. (4) (top row) and (5) (middle
row) and exponential relation (bottom row). Straight lines were fitted by least squares method.

values of singularity index (1α) calculated from the 17 peak
flow series range from 0.20 to 0.75. These positive values
indicate that the peak flow series indeed show strong singu-
larity around the flow peak implying that the water volume
released during the short period time around the peak flow
is non-linearly proportional to the time duration. When the
time becomes zero, the flow rate tends to become infinitely
large. Around the singularity it is usually impossible to mea-
sure actual flow value accurately and the average values de-
rived from a few measurements often are not enough for ac-
curate estimation of the singular flow values. However, from

the entire series we can estimate a singularity which then can
be used to characterize the properties of the flow. This in-
dex is useful for characterizing the flow as time series which
can also be plotted cross different river systems and environ-
ments. As an example, we plotted the values of singular-
ity index calculated for the 17 events that occurred during
1900–2000 at the Cataract Station in Fig. 5. Figure 5a plots
the observed peak flow itself and the estimated peak flow
(c-value) from the power-law relation fitted to log(Q∗) and
log(k). This plot shows that the fluctuations of peak flows
in this river do not show significant trend. The estimated
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Figure 5. Sequences of 17 flood events recorded at the Cataract station. 

(A) The observed peak flow shown as dots and the estimated peak flow 

as solid line; (B) The general trend of singularity ∆α values fitted with 

a straight line by least square method. 
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Fig. 5. Sequences of 17 flood events recorded at the Cataract station.(A) The observed peak flow shown as dots and the estimated peak flow
as solid line;(B) The general trend of singularity1α values fitted with a straight line by least square method.

peak flow and observed peak flow generally fit well. From
the plot (5B) one can see that the singularity shows general
decreasing trend for the time period studied with a squared
correlation coefficientR2=0.41 or student t-value=3.2, indi-
cating a statistically significant correlation. Similar trends
are found at other stations located in other rivers, although
the statistical significances vary from river to river. In order
to inspect the spatial distribution of singularity of peak flow
events we applied the method to all other major peak flow
events recorded at other stations in all rivers studied. All
cases confirm good fits of power-law relation Eq. (4) to the
data of peak flowQ∗ andk and the fitness obtained using the
relation Eq. (4) is consistently better than that by power-law
relation Eq. (5). In addition we plot the distribution of singu-
larity values (1α) cross all drainage basins in the study area.
Figure 6 shows one example of singularity values calculated
from flood events in May 1974 in all stations.

6 Discussion and conclusions

The results described in this paper suggest the proposition
that extreme hydrological flow series present the singularity
property as that the amount of water released during a short
period of time, and is anomalously large in comparison with
normal flow series. For hydrological engineering purposes
these types of extreme events are characterized by long re-
turn periods. From a self-similarity of frequency and size
distribution point of view, extreme events, especially those
of large flooding related flow data may follow a distribu-
tion type different from that of normal flow events. The use
of C-A method as introduced in this paper may provide a
way to separate these types of distributions. Applying this
method for the historical flow data from the ORM area, we
have demonstrated that, in general, the normal flow data may
show power-law relationship between flow magnitude and

 

 

Figure 6. Distribution of singularity ∆α obtained from flood events occurred in May 

1974 in the ORM area. Outlines of colored patterns are boundaries of drainage 

basins. 
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Fig. 6. Distribution of singularity1α obtained from flood events
occurred in May 1974 in the ORM area. Outlines of colored pat-
terns are boundaries of drainage basins.

frequency. A small number of large flow data depart from
this power-law relation with lower flow than expected due to
flood effect on the measurements of water flow at the gaug-
ing station. As a singular process, extreme flow events can
cause anomalous amounts of water to be released during a
short period of time and this is the reason for these types of
events to cause flooding often. Floods happen if flow rates
exceed capacity of river discharge. The degree of singularity
of the flow series can be quantified by using the local singu-
larity index introduced in model Eq. (4) in the paper. From
a singularity point of view, the frequency distribution of sin-
gularity can be characterized by a multifractal distribution.
This distribution indicates that events with strong singularity
are rare and events with weak singularity occur more often.
Normal flow events without singularity constitute the major-
ity of events in hydrological cycles. As a general property of
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non-linear processes, energy release and mass accumulation
may follow power-law distribution with the relevant time or
space involved. In addition, the singular events may describe
power-law frequency distribution although usually more data
or long flow data series are needed for validation. From the
data used in this paper it has been demonstrated that local
singularity does exist around peak flow as recorded at gaug-
ing stations in the study area. The flow itself as well as time
after flow peak also may follow power-law distribution (or
fractal distribution). This type of fractal model already had
been utilized for describing peak flow recession patterns in
literature. This paper also elaborates on comparison of the
ordinary power-law model with the singularity model from
which it was concluded that the singularity model is gener-
ally superior to the power-law flow model. As flow models
form the basis for river flow prediction in both gauged and
ungauged basins the new model which is based on singularity
theory may provide an option for modeling flow prediction.
This proposition will be further investigated.

From the data analysis using the three methods of return
period, C-A plot and local singularity index, we may con-
clude that in the ORM area flow events with 10 year or above
return period show distinct self-similarity from the majority
of flow events with small return period and strong local sin-
gularity for the major flooding events.
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