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Abstract. El Niño Southern Oscillation (ENSO) is the
dominant mode of climate variability in the Pacific, having
socio-economic impacts on surrounding regions. ENSO ex-
hibits significant modulation on decadal to inter-decadal time
scales which is related to changes in its characteristics (on-
set, amplitude, frequency, propagation, and predictability).
Some of these characteristics tend to be overlooked in ENSO
studies, such as its asymmetry (the number and amplitude
of warm and cold events are not equal) and the deviation of
its statistics from those of the Gaussian distribution. These
properties could be related to the ability of the current gener-
ation of coupled models to predict ENSO and its modulation.

Here, ENSO’s non-Gaussian nature and asymmetry are di-
agnosed from in situ data and a variety of models (from inter-
mediate complexity models to full-physics coupled general
circulation models (CGCMs)) using robust statistical tools
initially designed for financial mathematics studies. In par-
ticular α-stable laws are used as theoretical background ma-
terial to measure (and quantify) the non-Gaussian character
of ENSO time series and to estimate the skill of “naı̈ve” sta-
tistical models in producing deviation from Gaussian laws
and asymmetry. The former are based on non-stationary pro-
cesses dominated by abrupt changes in mean state and em-
pirical variance. It is shown that theα-stable character of
ENSO may result from the presence of climate shifts in the
time series. Also, cool (warm) periods are associated with
ENSO statistics having a stronger (weaker) tendency towards
Gaussianity and lower (greater) asymmetry. This supports
the hypothesis of ENSO being rectified by changes in mean
state through nonlinear processes. The relationship between
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changes in mean state and nonlinearity (skewness) is further
investigated both in the Zebiak and Cane (1987)’s model
and the models of the Intergovernmental Panel for Climate
Change (IPCC). Whereas there is a clear relationship in all
models between ENSO asymmetry (as measured by skew-
ness or nonlinear advection) and changes in mean state, they
exhibit a variety of behaviour with regard toα-stability. This
suggests that the dynamics associated with climate shifts and
the occurrence of extreme events involve higher-order statis-
tical moments that cannot be accounted for solely by nonlin-
ear advection.

1 Introduction

El Niño Southern Oscillation (ENSO, see the glossary for
the acronyms list) is the dominant mode of climate variabil-
ity in the Pacific (MacPhaden et al., 1998). It impacts many
surrounding regions and has major socio-economic conse-
quences. Although our knowledge of the phenomenon has
increased considerably in the last two decades, ENSO re-
mains difficult to predict and its characteristics change in
ways that are not yet understood by the scientific commu-
nity. In particular, ENSO’s characteristics (frequency, am-
plitude, propagating features and predictability) vary with
changes in the mean state of the tropical Pacific (Fedorov
and Philander 2000; Moon et al., 2004; An, 2004). The dif-
ficulty in predicting ENSO and its evolution lies partly in
the limited ability of Gaussian statistics to account for Ex-
treme Events (EEs). In fact most studies of ENSO implic-
itly assume that the Probability Density Function (PDF) of
ENSO indices is undistinguishable from a Gaussian distribu-
tion, which basically leads to the representation of EEs being
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Fig. 1. K98 Dataset histogram constructed with a bin equal
tomax(XNino3)−min(XNino3)

19 = 0.3063◦C. A Gaussian curve that
corresponds to the best fit to the PDF is overlapped in dashed thick
line. The bins for SST anomalies larger (lower) than 2◦C (−2◦C)
are represented on a scale with a 1/10 ratio (right scale) to highlight
the asymmetry between the “negative” and “positive” tails of the
PDF (red shading).

underestimated. In addition, recent studies have pointed out
that Sea Surface Temperature Anomalies (SSTAs) over the
eastern Pacific are positively skewed due to the nonlineari-
ties of the tropical Pacific ocean-atmosphere system (Burg-
ers and Stephenson, 1999; Hannachi et al., 2004; An and Jin,
2004). Thus ENSO has been depicted as a non-stationary
and asymmetrical phenomenon (An and Jin, 2004; An et al.,
2005) that can be rectified by changes in mean state (Rodgers
et al., 2004; Dewitte et al., 2007a). The latter vary within
decadal to inter-decadal time scales, partly reflecting the oc-
currence of abrupt transitions, named “climate shifts” (Tren-
berth and Hurrel, 1994; Zhang et al., 1997; Guilderson and
Schrag, 1998; Urban et al., 2000). The source of these cli-
mate shifts remains unclear. Whereas some authors argue
that extra-tropical variability can produce changes in tropi-
cal mean state through atmospheric teleconnections (Pierce
et al., 2000) or oceanic “tunnels” (Gu and Philander, 1997),
others suggest the importance of nonlinear processes within
the tropics, in producing decadal variability and ENSO mod-
ulation (Timmermann and Jin, 2002; Timmermann, 2003;
Timmerman et al., 2003; An and Jin, 2004; Dewitte et al.,
2007a).

In this study, the focus was on ENSO statistics and their
relationship with changes in mean state. However, unlike the
aforementioned studies, the non-Gaussian nature of ENSO
was explicitly taken into account. This property was diag-
nosed using relevant mathematical tools. Figure 1 repre-
sents the histogram of the NINO3 sea surface temperature
(SST) index (SST averaged in the following region: 90◦ W–
150◦ W; 5◦ S–5◦ N) as derived from the Kaplan data set (Ka-
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Figure 2. Graphical statistical tests used to diagnose the deviation from Gaussianity of time 

series. a) Full Kaplan Nino3 SST time series. b) Smoothed histogram of the data with a 

Gaussian PDF overlapped (K98 data fitted). c) Empirical variance of K98 (solid line) and 

empirical variance of the Gaussian fitted distribution (dash line). d) Asymptotical test (g(T) as 

in section 2.2.1) for K98 data (solid line) and for the Gaussian fitted distribution (dash line) 

(see their description in Section 2.2.1.). 

Fig. 2. Graphical statistical tests used to diagnose the deviation
from Gaussianity of time series.(a) Full Kaplan Nino3 SST time
series. (b) Smoothed histogram of the data with a Gaussian PDF
overlapped (K98 data fitted).(c) Empirical variance of K98 (solid
line) and empirical variance of the Gaussian fitted distribution (dash
line). (d) Asymptotical test (g(T ) as in Sect. 2.2.1) for K98 data
(solid line) and for the Gaussian fitted distribution (dash line) (see
their description in Sect. 2.2.1.).

plan et al., 1998). Figure 1 shows that the PDF had a small
but significant deviation from Gaussianity. As an indica-
tion, the PDF of the Gaussian law fitted to the data is also
plotted in Fig. 1. Note that in terms of information theory,
the less Gaussian the PDF the more information it contains.
The underlying question is then: within a simple theoreti-
cal framework, what causes ENSO’s non-Gaussian and non-
stationary character? More specifically, to what extent can
climate shifts account for this particular ENSO property and
are they part of the process of rectification of ENSO variabil-
ity through the slowly varying mean state identified in earlier
studies?

In a recent study, Hannachi et al. (2004) addressed a simi-
lar issue. Their approach was based on a nonlinear stochastic
model to derive the nonlinearity associated with the NINO3
index. In their Fig. 15, the authors compared different “L-
moments” (equivalent to normalized statistical moments) of
the NINO3 index. The different scatter plots displayed in
the figure demonstrate that they found no significant relation-
ship between the mean state and the interannual spread of the
NINO3 SSTAs in the 24 models of ENSIP (the El Niño Sim-
ulation Intercomparison Project). Furthermore, it turned out
that the majority of the models tended to concentrate in a
cluster around the Normal distribution. Unlike recent phys-
ical studies (such as Rodgers et al., 2004 and Dewitte et al.,
2007a for instance), these diagnostics do not show any ev-
idence of ENSO variability rectification through changes in
mean state. It is however interesting to note that the observed
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values (from NCEP reanalyses) distance themselves from the
simulated ones and display strong nonlinearity. In addition,
most of the ENSIP coupled models (used in Hannachi et
al., 2004) tend to underestimate the nonlinearity seen in the
NINO3 index, which could be due to significant biases in
the simulated mean state and to the limited skills of this first
generation of coupled models (Latif et al., 2002).

In the light of Hannachi et al. (2004), this study aimed to
examine the role of climate shifts and EEs (with the hypoth-
esis that they emerge from nonlinear processes within the
tropics) in controlling ENSO variability. It took advantage
of newly designed statistical tools that diagnose the char-
acteristics of the specific distribution law introduced below.
As in Hannachi et al. (2004), we made use of CGCM sim-
ulations that provided long-term time series of ENSO vari-
ability, namely the simulations provided by the World Cli-
mate Research Programme Coupled Model Intercomparison
Project phase 3 (CMIP3) multi-model data set that was col-
lected for the needs of the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC-AR4).
To complement Hannachi et al. (2004)’s approach, indices
of the nonlinearity of the tropical Pacific system were used,
namely the nonlinear advection within the mixed-layer (also
called Nonlinear Dynamical Heating, cf. Timmerman and
Jin, 2002) and the skewness of the NINO3 SST index accord-
ing to An and Jin (2004). Lastly, the focus was on the role
of climate shifts (decadal to multi-decadal variability) and
EEs in producing departures from normality and the asym-
metry of the observed ENSO indices, which extended the
study by Hannachi et al. (2004). In summary, the main ob-
jective of this paper is to document the statistical properties
of ENSO indices from data and different model outputs, in
particular those from the new generation of IPCC models,
and to corroborate (from a statistical point of view) the re-
cent modelling studies (mentioned above) that emphasize the
role of nonlinearity in modulating ENSO properties through
variability time scale interactions.

Two main features of the PDF were then explicitly consid-
ered in this study: (1) the asymmetry and (2) the “weight”
of the tail associated with warm events. In this context, we
proposed the use of a specific parametric law as an alter-
native to Gaussian statistics (a more general framework in-
cluding Normal distribution) to investigate these features. In
particular, theα-stable law was proposed, as it better rep-
resents the processes exhibiting the ENSO properties of in-
terest in this paper. In brief, non-Gaussianα-stable laws,
also known as “heavy tailed laws” or “infinite variance laws”,
which were first introduced by Ĺevy (1924) and then gener-
alized by Mandelbrot (1960), are characterized by four main
parameters. The main ones areα and β. The parameter
0<α≤2 allows the “non-Gaussian degree” of the set to be
measured. The parameter−1≤β≤1 represents the asym-
metry of the law which matches the skewness of Gaussian
statistics. Such a law has been used in previous studies to ad-
dress issues related to financial time series analysis. Most of

the time, the reason given for switching from Gaussian toα-
stable statistics is the desire to take into account “outliers” or
EEs whose presence in the series leads to empirical variance
bursts and weighs the distribution tails. Moreover, a salient
feature of this particular law is that among infinite variance
distributions, only stable distributions can be the limiting dis-
tribution of sums of independent identically distributed (iid)
random variables. In other words, this characteristic of stable
distribution can be regarded as the equivalent of the central
limit theorem in the Gaussian framework. In addition, esti-
matingα will document and reliably quantify the presence
of EEs. This parameter can be viewed as a “proxy” for high
order statistical moments (higher than the 4th order moment–
kurtosis–studied in Hannachi et al., 2004).

In this paper, based on robust statistical tests, we be-
gin by demonstrating that ENSO can be accounted for by
non-Gaussian statistics and non-stationary processes domi-
nated by time-mean state and empirical variance shifts. We
then hypothesise that these ruptures manifesting as abrupt
switches from a cool to warm (warm to cool) ocean back-
ground tend to enhance (diminish) feedback processes allow-
ing the burst of EEs. From models of various complexities,
the nonlinearity is diagnosed and analysed along with theα-
stable character of relevant parameters of climate variability
in the tropical Pacific (SST and thermocline depth anoma-
lies). The results indicate that the models having the most
consistent relationship between changes in mean state and
nonlinearity are generally the ones exhibiting the largest de-
viation from Gaussianity in concordance with greater skill in
accounting for EEs.

The paper is organized as follows: Sect. 2 presents ob-
servations and model outputs that were used. Theα-stable
law and the statistical methods used to diagnose the devia-
tion from a Gaussian distribution of the series, as well as the
so-called “näıve” statistical ENSO models that are proposed
for interpreting the results are also presented in this section.
Section 3 presents the results of the statistical analyses on
the data and the models. In the light of the results from the
dynamic model simulations, Sect. 4 proposes a definition for
a model’s skill in simulating EEs based on the comparison
with the “näıve” statistical models. Section 5 is a discussion
followed by concluding remarks.

2 Data and methods

2.1 Data

2.1.1 Observations

In situ and reconstructed data were first used in order to val-
idate our statistical tests and analyse the SSTA patterns with
regard to the characteristics of the tropical Pacific mean state
and statistics. The monthly SSTAs (referenced to the mean
seasonal cycle) in the tropical Pacific region (29◦ N–29◦ S;
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120◦ E–60◦ W) from the Kaplan optimal analysis of the
MOHSST5 data set were calculated for the period January
1870–November 2007 (Kaplan et al., 1998). Note that be-
cause of the limited reliability of the reconstructed data (es-
sentially due to a lack of data, see the time series in Fig. 2a),
the first fifteen years (1855–1869) were not taken into ac-
count. Hereafter, we will refer to this data set as K98. K98
has been used extensively over the past years, for example to
assess El Niño modelling forecasts (Chen et al., 2004) or to
validate other long reconstructed fields (Rayner et al., 2003).

2.1.2 Model outputs

Analyses were also performed on model outputs. Models of
different complexity were used. First of all, we used two
intermediate ocean-atmosphere coupled models of the trop-
ical Pacific; the so-called Zebiak and Cane model (Zebiak
and Cane, 1987) and the model by Dewitte (2000), hereafter
respectively referred to as the “ZC” and “LODCA” models.
They are based on similar physics, namely shallow waters
for both components, the ocean component including either
one baroclinic mode (for ZC) or three baroclinic modes (for
LODCA). Whereas the first one was used as a reference for
the comparison of the full-physics models, the second one
was only used as tool to diagnose the nonlinearities in the
full-physics models, as will be explained later. ZC was inte-
grated for 1200 years, with only the 1000 years after the 200-
year spin-up being analysed. This model has been used ex-
tensively for ENSO studies (see Karspeck et al., 2004, among
others) because it comprehends the basic dynamics of ENSO.
It also simulates an irregular ENSO cycle with chaotic be-
haviour (Tziperman et al., 1994), which resembles the obser-
vations (Karspeck et al., 2004). On the other hand, in a cou-
pled mode, LODCA simulates a quasi-regular ENSO cycle
but is more realistic in simulating ocean surface variability
due to the consideration of the higher-order baroclinic modes
(see Dewitte, 2000 for details). For this reason, LODCA was
used in a forced configuration to assess to what extent the
variability of the CGCMs (see below) could be explained by
equatorial wave dynamics and to infer Nonlinear Dynami-
cal Heating (NDH, see An and Jin (2004) for a definition),
which is difficult to infer from direct model outputs. LODCA
was therefore forced by monthly wind stress anomalies as
derived from the CGCMs after being tuned with the clima-
tology and wave parameters as derived from the CGCM out-
puts. Such methodology was used in Dewitte et al. (2007a)
and the reader is invited to refer to this study for more de-
tails. For all the CGCMs used in this study, LODCA was
able to simulate a NINO3 index that correlated at the 75%
level at least with the NINO3 index inferred from the direct
CGCM outputs. This indicates that the ENSO variability in
the CGCMs can to a large extent be accounted for by equa-
torial processes. NDH was then diagnosed from the LODCA
outputs for all the CGCMs.

The CGCMs used in the study came from the so-called
IPCC data base (see Table 1). The pre-industrial control ex-
periment, in which the concentration of greenhouse gases is
fixed at estimates from 1850, was chosen in order to eval-
uate the performance of the models under past/present cli-
mate conditions for two main reasons: (1) this experiment
is the one that provides the longest time series and thus has
the greatest statistical confidence, (2) the fixed external forc-
ing for long time series makes the analyses at interannual to
decadal scales much easier to conduct (no need to remove
the trend as in the “20c3m” climate of the 20th century ex-
periment for instance). Monthly outputs were used since we
were focusing on low-frequency mechanisms.

As a reference and for comparison with the CMIP3 mod-
els, the SODA ocean Reanalysis (Carton and Giese, 2008)
was used (1.4.2. version) although it only spans the period
1958–2001.

For both observations and model outputs, the average
SSTAs in the NINO3 area, the NINO1.2 area (90◦ W–70◦ W;
0◦–10◦ S) and the average SSTAs over the tropical Pacific
(120◦ E–60◦ W; 29◦ S–29◦ N for K98 and 130◦ E–80◦ W;
10◦ N–10◦ S for ZC/LODCA) were retained as ENSO prox-
ies to perform our tests; monthly climatology was removed
from the SST at each grid point to derive anomalies.

2.2 Methods

A number of statistical tests were used in this study, in order
to: (1) characterize and quantify the deviation from a Gaus-
sian law and show some evidence of theα-stable character of
the ENSO indices; (2) detect climate shifts in the time series.
These tests are presented below.

When assessing model performance, it is common to think
in terms of relative skill, or skill compared to some reference
run. We have chosen four empirical strategies, which we
called our “näıve models”. They are also presented in this
section.

2.2.1 Statistical tests

We shall begin by giving a short mathematical description of
α-stable processes. As previously mentioned, stable distri-
butions were first characterized by Lévy (1924) in a study of
normalized sums of independent and identically distributed
terms. The distributionFX of a random variableX is said to
be stable if the distributionFSn of the random variable,

Sn =

n∑
k=1

Xk, (1)

where theXj are independent copies ofX, is such that
there is an>0 and bn such that for every real number
x, FSn(x)=FX(anx +bn). Standard references for the theory
of stable distributions are Gnedenko and Kolmogorov (1954;
Chapter VII), Feller (1966; Chapters VI, IX and XVII),
Samorodnitsky and Taqqu (1994) and Zolotarev (1986).
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Table 1. Description of the CGCM simulations considered in this study.

Model Model Modelling Length of
Number Name Group Simulation (years)

1 BCCR-BCM2.0 BCCR/NERSC/GFI (Norway) 155

2 CCCMA-CGCM3.1 CCCMA (Canada) 155

3 CCCMA-CGCM3.1-t63 CCCMA (Canada) 155

4 CNRM-CM3 Mét́eo France/CNRM (France) 151

5 CSIRO-MK3.0 (run1) CSIRO (Australia) 134

6 CSIRO-MK3.5 CSIRO (Australia) 134

7 GFDL-CM2.0 NOAA GFDL (USA) 150

8 GFDL-CM2.1 NOAA GFDL (USA) 150

9 GISS-AOM (run1) NASA/GISS (USA) 155

10 GISS-AOM (run2) NASA/GISS (USA) 155

11 GISS-MODEL-E-H NASA/GISS (USA) 125

12 GISS-MODEL-E-R NASA/GISS (USA) 104

13 IAP-FGOALS1.0-g (run1) LASG/IAP (China) 155

14 INGV-ECHAM4 INGV (Italy) 100

15 INM-CM3.0 INM (Russia) 134

16 IPSL-CM4 IPSL (France) 147

17 MIROC3.2-HIRES CCSR/NIES/FRCGC (Japan) 100

18 MIROC3.2-MEDRES CCSR/NIES/FRCGC (Japan) 150

19 MIUB-ECHO-G MIUB (Germany) 147

20 MPI-ECHAM5 MPI (Germany) 123

21 MRI-CGCM2.3.2A MRI (Japan) 154

22 NCAR-CCSM3.0 (run2) NCAR (USA) 150

23 UKMO-HadCM3 (run1) Met Office (UK) 148

24 UKMO-HadGEM1 Met Office (UK) 147

The coefficientsan above are necessarily of the form
an=n1/α, 0<α≤2, with α being called the characteristic ex-
ponent or index of stability. A parameterization of all stable
distributions in term of their characteristic functionsϕ is well
known, see Gnedenko and Kolmogorov (1954, Sect. 34). It
may be written:

For a realt : ϕ(t)
def
= E[expitX] (2)

= exp
{

−γ α
|t |α [1+iβ sign(t)w(t, α)] + iδ t

}
,

where,

w(t, α)=

{
− tanπα

2 if α 6=1
2
π

ln |t | if α=1

and

sign(t) =


1 if t>0

0 if t=0

−1 if t<0

In Eq. (2) the parameterα is the index of stability in-
troduced above,−1≤β≤1 is a measure of skewness,γ>0
is a scale parameter, and the realδ is a location parame-
ter. Whenβ=δ=0, X is said to be symmetricα-stable (SαS
which means thatX and−X have the same distribution) and
its characteristic function takes the particular simple form:

ϕ(t) = exp
{

−γ α
|t |α

}
(3)
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Remark: Whenα=2, the characteristic function (2) becomes
ϕ(t)= exp

{
−γ 2t2

+ iδ t
}
. This is the characteristic func-

tion of a Gaussian random variable with meanδ and variance
2γ 2. Note that in this case, the value ofβ is not specified
sinceβ tanπ=0. However one typically associates the Gaus-
sian distribution with the choiceβ=0. Then the parameters
α, β, γ andδ are unique.

All stable distributions are absolutely continuous, uni-
modal with an eventually bell-shaped density function. How-
ever the density is known in closed form in three cases
only: the normal distribution corresponding toα=2 with

the PDFf (x)= 1
√

2π
σe

−(x−m)2

σ2 , m=δ, σ=
√

2γ ; the Cauchy

distribution corresponding toα=1 andβ=0 (with the PDF:
f (x)= 1

π(1+x2)
) and the reciprocal of aχ2

1 variable corre-
spondingα=1/2,β=1,γ =1, andδ=0 (with the PDF: forx>0,

f (x)=

√
1

2π
e

−1
2x

x3/2 ). For α<2, these distributions are heavy-
tailed. The heavy tails are asymptotically Pareto-like, which
means that forα< 2:

lim
T →∞

T α
[P |X| > T ] = C. (4)

The non-normal stable distributions have been given less at-
tention than the normal distribution probably because the
normal distribution is the only stable distribution which has
a finite variance. Among infinite-variance distributions, the
non-normal stable distributions play an important role, not
only because of their closure properties under convolution,
but also because only a stable distribution can be the limiting
distribution of sums of independent, identically distributed
random variables. In this paper we implicitly consider that
the SST is the sum of many small terms for which the only
possible limit is a stable distribution. Then the problem is
to answer the first question: is the variance finite, leading to
a normal distribution, or asymptotically infinite, leading to a
stable non Gaussian distribution?

Mandelbrot (1963), Granger and Orr (1972) and others
such as Nikias and Shao (1995) or Nolan (1999) have pro-
posed a number of graphical procedures in order to choose
between a Gaussian distribution and another non-Gaussian
stable distribution. Of course, a more general and difficult
problem would be to test whether a set of data comes from
a stable distribution or a non-stable distribution. For the rea-
sons given above, we assume that the distribution is stable
and look at procedures for distinguishing non-Gaussian sta-
ble distribution.

First from the inspection of the PDF, one can visually infer
the deviation from Gaussianity (hereafter referred to as GT1
for Graphical Test 1, see Fig. 2b).

Another method of analysing the infinite variance feature
is to plot the sample variance estimateS2

n based on the firstn
observations, againstn, i.e.

S2
n =

1

n

n∑
j=1

(Xj − Xn)
2

where, Xn=
1

n

n∑
j=1

Xi

andn∈ [1; N ], whereN is the number of points in the time
series. If all theXj come from the same distribution, thenS2

n

should converge to a finite value, if the population distribu-
tion F(x) has a finite variance. Otherwise,S2

n will diverge.
We call it: convergence variance test GT2. Note that the
non-convergence ofS2

n does not imply infinite variance, if
the hypothetical range of possibilities is expanded to include
non-stationary series, with the population variance increas-
ing over the time for instance.

Another test, initiated by Mandelbrot (1963) and called
the log-tail test or GT3hereafter in this paper, is to plot the
estimate of logP[X>T] against logT whereX is the random
variable being estimated. This test examines the shape of
the tails of the empirical cumulative distribution function and
provides information on the behaviour of the distribution for
high temperatureT . If the true distribution is stable, with
the characteristic exponentα, Eq. (4) suggests that the plot
should be a straight line with a slope−α. Basically, we plot:

g(T ) = log

[
1

N

N∑
j=1

1|xj |>T

]
where 1|xj |>T =1 if |xj |>T and 0 otherwise, against logT
for T >0. If the plot is linear, it is a strong indication that a
stable distribution will provide an excellent fit to the available
data. All these tests are only judgmental visual inspections
of a graph. They are not precise enough to infer real values
of stable parameters.

The above tests make it possible to highlight a small
but significant deviation from a Gaussian distribution of ob-
served ENSO indices as already noticed from the inspection
of Fig. 1, namely the heavy tails of the NINO3 SSTA dis-
tribution. The empirical variance test (GT2) does not stabi-
lize (see Fig. 2c, GT2 panel). GT3 (see Fig. 2d, GT3 panel)
provides an estimate forα of around 1.80 for the NINO3
SST index of K98. Nevertheless this method is quite impre-
cise for estimating the index of stability. Several methods
have been proposed in order to estimate the parameters of a
stable law: graphical methods, quantile methods, maximum
likelihood ratio methods for example. We used a regression-
type method (TL1A for Telecom Lille I Algorithm) initiated
by Koutrouvelis (1980) and classically used by practitioners
mainly to infer the value ofα and mainly because the amount
of computation involved is minimal. We briefly describe the
method below. First it is easy to see that Eq. (2) implies:

log
(
− log |ϕ(T )|2

)
= log(2γ α) + α log |T | (5)

We denote byφN the sample characteristic function which is
obtained from the random samplex1, x2, . . . , xN by

φN (T ) =
1

N

N∑
j=1

exp(iT xj ) (6)
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Equation (5) depends only onα andγ and suggests estimat-
ing α andγ by regressingy=log(-log|φn(T)|2) on w=log |T|

in the model:

yk = µ + αwk+εk, k=1, 2, . . ., K, (7)

where(tk; k=1, 2, . . . , K) is an appropriate set of real num-
bers,µ=log(2γ α), andεk denotes an error term.

Once estimates ofα andγ have been obtained andα and
γ have been fixed to these values so that they are no longer
unknown, estimates ofβ and δ may be obtained, forα 6=1
using the following equation:

Arctan(Imφn(T )/Reφn(T )) = δT − βγ αtan(πα/2)sgn(T )|T |
α (8)

Then, we can estimate the parameters by regressingu on
sgn(u)|u|

α in the model:

zl= δl−βγ αtan(πα/2)sgn(ul)|ul |
α
+ηl, l=1, 2, . . ., L (9)

whereηl denotes an error term and (ul; l=1, 2, . . . ,L) is an
appropriate set of real numbers. Then, the set of four param-
eters governing the stable distribution obtained by the pre-
viously described two-step procedure is refined in the next
step by introducing certain “standardization” to the data and
by appropriately choosing the pointstk andul . This regres-
sion method also allows the confidence interval around the
estimated values of the stable distribution parameters to be
derived, as we do have asymptotic variances of the estima-
tors and can thus put confidence limits on the parameters.
They are given in Tables 3 and 5.

2.2.2 Shift Detection Test (SDT)

In order to detect shifts in the time series, the method de-
scribed in Potter (1981) was used. It is based on a bivariate
test developed by Maronna and Yohai (1978). The main im-
provement over other well known tests is the introduction of
another correlated series, assumed to be unchanged. Unlike
earlier procedures for detecting a shift in mean out of an in-
dependent time series, this method is statistically rigorous
and provides estimates of the time and amount of change in
the mean. For more details, readers are invited to refer to
Potter (1981) and to Appendix A.

Performing this test on the empirical variance series in or-
der to detect ruptures in SST variability also provides signif-
icant information on statistical characteristics. On the one
hand, we can distinguish different regimes, in terms of vari-
ability features, within a time set. On the other hand, we
can clearly identify EEs (responsible for isolated bursts in
the empirical variance time series).

2.2.3 “Näıve” statistical models

In order to assess model performance and the sensitivity of
ENSO statistics to changes in mean state and EE occur-
rence, simple statistical models were proposed, based on

näıve strategies. Theoretical ENSO series (hereafter referred
to as TGS for Theoretical Generated Series) were therefore
generated that built upon the aforementioned properties of
ENSO time series distribution.

– First of all, α–stable sets were considered. Chambers
et al. (1976) developed an algorithm allowing the simu-
lation of a symmetricalα-stable set. It was widened to
generalα-stable sets by d’Estampes (2003). The gen-
eration method is described in Appendix B. The objec-
tive was to simulate a set which follows coherent sta-
ble statistics with parameters related to in situ data. We
choseα=1.80 andβ=1 to match the estimates from the
K98 data (see above).

– Secondly, a classical Gaussian process was considered
and an associated time series was generated. The aim
was to simulate a typical Gaussian process which could
also be seen as a “pseudo stable” process withα=2. The
Gaussian TGS parameters were chosen to fit with those
of the K98 NINO3 index, i.e. 0.0040◦C for the mean
and 0.8082◦C for the standard deviation.

– Thirdly, a statistical model that highlights the influence
of climate shifts on ENSO statistics was proposed. It
considered a non-stationary Gaussian process charac-
terized by a threshold in its mean and standard devi-
ation. These ruptures in the process parameters were
concomitant with climate shifts evidenced in K98 (1903
and 1976, see Appendix A and Fig. A1) with the charac-
teristics of the observed shifts (mean difference between
one period and the next and standard deviation of each
period being imposed) being prescribed in this TGS.

– Finally, we combined the above to generate a non-
stationary stable set. The aim of such a generation was
to simulate a process able to rectify its high-frequency
variability (i.e. EE probability occurrence) according to
its low-frequency modulation (changes in mean state).
The generation was performed in the same way as that
of the previous TGS. However, warm periods were char-
acterized byα-stable statistics consistent with the ob-
served inter-shift periods whereas cold period statistics
remained Gaussian (α=2). This TGS can also be viewed
as a purely stable process whose intrinsic main parame-
ters (i.e.α andβ) experienced a low frequency modula-
tion.

To compare statistical distributions of TGS against obser-
vations and model outputs, the quantile-quantile (percentile
in that case) plots were used according to Hannachi et
al. (2004). The q–q plot approach and their relevance in
evaluating model performance are discussed in Hannachi et
al. (2004) and Hannachi (2006). In brief, we plot the per-
centiles of the data or models outputs versus the percentiles
of the TGS, to assess if the 2 series come from the same sta-
tistical distribution (the q–q plot is the bisector of the plot in
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Table 2. Description of the mathematical tests used in this study.

Test name Parameter to be derived Reference Use in this paper

Graphical tests Non-Gaussianity D’Estampes (2003) detect the deviation from Gaussianity of a set f a set

TL1A α andβ Koutrouvelis (1980) estimateα-stable law parameters

SDT Shifts (date and amplitude) Potter (1981) detect and quantify abrupt ruptures of a set

qq-plot EE representation statistical representativity Hannachi et al. (2004) compare statistical representations of 2 series

Table 3. Main detected mean shifts from K98 (tests performed with K98 NINO3 SSTA index and Gaussian reference set) and estimation of
stable parameters on each inter-shift periods with two different methods (Nolan on line estimationand TL1A in bold).

Shift date [year] 1903 1975.6 1997.8

Shift amplitude [◦C degree] −0.14 0.45 −0.28

Shift significance level 96 406 42

Pacific Mean state Warm to Cool Cool to warm Warm to Cool

SSTA nĩno3 1875–2007 (whole) SSTA niño3 1875–1903 (warm) SSTA niño3 1903–1976 (cool) SSTA niño3 1976–2007 (warm)

α=1.83;1.91±0.0281 α=1.80;1.79±0.1204 α=2; 2.01±0.0088 α=1.70;1.73±0.0833

β=1; 0.99±0.0020 β=1; 0.91±0.0050 β=0.16;0.20±0.0666 β=1; 1

that case) or at least to evaluate if the statistical properties of
the sets are close.

Table 2 summarizes and briefly describes the statistical
tests used in this study.

3 α-stable character of ENSO in data and models

This section presents the results of the estimation of theα

andβ parameters and documents the relationships between
changes in mean state (as revealed by the shift detection
method) and ENSO statistics.

3.1 Observations: K98 data

Figure 3 presents the map ofα andβ parameters in the trop-
ical Pacific for the K98 data set using the TL1A method.
It clearly highlights the non-Gaussianα-stable nature of the
SSTAs in most regions of the tropical Pacific sinceα is lower
than 2 over most of the basin (except in the south eastern
tropical Pacific, around∼15◦ N in the central-eastern Pacific
and the far western equatorial Pacific, see Fig. 3 upper panel).
Regions of strong stability are found around the eastern edge
of the warm pool (180◦ W) and along the equator in the far
eastern Pacific. The statistical tests described in Sect. 2 and
applied to the SSTA time series in these regions corroborate
the significant deviation from Gaussianity (not shown). An-
other interesting feature is evidenced in the map ofβ (Fig. 3
lower panel) which exhibits a zonal see-saw pattern with pos-
itive values in the NINO3 region and negative values in the
western Pacific and off the equatorial wave guide. The map

of β agrees strongly with the pattern for SSTA skewness (see
the contours of SST skewness1 overplotted in Fig. 3b).

These statistics are sensitive to the period under investi-
gation. In order to illustrate such sensitivity, the most ro-
bust shifts in the time series at each grid point are estimated
according to the SDT method (see Sect. 2.2.2. and Ap-
pendix A). A minimum inter-shift period of ten years was
arbitrarily chosen. Note that the dates of shifts that were de-
tected are quite consistent while performing the SDT method
on SSTA or on empirical variance SSTA series. Actually,
mean shifts are often followed by shifts in variance which
agrees strongly with Sardeshmukh et al. (2000). The statis-
tical properties of the detected inter-shift periods, assumed
to be stationary, were then investigated. We only retained
the most relevant shifts, i.e. those with a statistical test sig-
nificance level greater than 7.90, which corresponds to a
90% significance level for a 100-occurrences set (see Potter
(1981) and Appendix A). The results are presented in Fig. 4
and summarized in Table 3. The values of (α, β) in Table 3
were inferred from the TL1A algorithm. Consistently with
former studies, the detected shifts took place around 1903
(Karspeck et al., 2004), 1976 (Guilderson and Schrag, 1998)
and 1998 (Overland et al., 2008) (cf. Table 3). Nonetheless,
we did not take into account the last detected shift (1998)

1 The skewness is a normalized third statistical moment (White,
1980). Thus, a small standard deviation may cause large skewness.
To avoid this, rather than the normalized skewness, the weighted

skewness is used. It is defined as m3/m2 wheremk=

N∑
i=1

(xi−x)k ;

xi is theith observations,x the mean andN the number of obser-
vations.
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Figure 3. α (upper panel) and β (lower panel) maps of SSTA in the tropical Pacific from K98. 

The TL1A method was used over the 1870-2007 period. The isotherm 28°C, for the mean 

SST,  is overplotted on the α map to locate the Warm Pool region. On the β map, the contours 

for skewness (-0.2 and 0.2 iso-contours) are overlapped to highlight the consistency between 

β and asymmetry.   

 

 

 

 

 

Fig. 3. α (upper panel) andβ (lower panel) maps of SSTA in the tropical Pacific from K98. The TL1A method was used over the 1870–2007
period. The isotherm 28◦C, for the mean SST, is overplotted on theα map to locate the Warm Pool region. On theβ map, the contours
for skewness (−0.2 and 0.2 iso-contours) are overlapped to highlight the consistency betweenβ and asymmetry as measured by the 3rd
statistical moment.

as the following period was too short relative to our crite-
rion. The SDT also provided a value for the change in mean
state (Fig. 4, lower panel) which was also consistent, though
slightly overestimated, with earlier works previously men-
tioned. Over the inter-shift periods, the results of Fig. 4 indi-
cate that the ENSO statistics experienced significant changes,
consistent with the study by Karspeck et al. (2004). In par-
ticular, warm periods were characterised by stronger asym-
metry and a greater deviation from Gaussianity (smallerα

andβ around 1 Fig. 4a, b, e, f) whereas the cool period ex-
hibited a Gaussian symmetrical pattern on average over the
tropical Pacific (α≈2 andβ around 0, Fig. 4c and d, see also
Table 3). Note that over the period 1998–2007, there was a
significant reduction in the stable nature of the NINO3 SST
index and its asymmetry (α=2 andβ=0.04, estimated using
TL1A), which is consistent with the above.

Figure 4 also highlights spatial pattern differences for the
mean SST change for the 1903 and 1976 shifts with the
1976-shift mean SST change having a El Niño like struc-
ture (Fig. 4h) whereas the 1903-shift mean SST change cor-
responded to a reduction in the mean zonal SST gradient near
the eastern edge of the warm pool (Fig. 4g). Such changes
are likely to be associated with distinct impacts on ENSO dy-
namics and are consistent with the changes in ENSO statis-
tics. In particular, a decrease in mean zonal SST gradients

as observed for the 1976-shifts is concurrent with a flatten-
ing mean thermocline (Moon et al., 2004), which impacts
ENSO towards larger amplitude modulation (Dewitte et al.,
2007a). This also favours the amplification of ENSO non-
linearity (Timmerman and Jin, 2002) and thereby is likely to
modify the statistical characteristics considered in this study.
We will come back to this issue in the last section of the pa-
per.

Additional tests were performed on the K98 data set in
order to investigate further the sensitivity of the statistics to
the ruptures in tropical Pacific mean background.

For instance, TL1A is applied to the SSTA series over the
1950–2007 period from which the 1976 shift had been re-
moved. This was achieved by keeping the same SST sets
prior to the detected date and removing from the data after
the shift, the mean SST amplitude change measured by the
SDT at each grid point (for example 0.3◦C for the averaged
NINO3 index). The results are presented in Fig. 5. They in-
dicate that removing the 1976 shift from the series led to a
reduction in stability in the eastern tropical Pacific. In par-
ticular, theα parameter increased up to 1.9 instead of 1.7 for
the “unchanged” series in the region of the Humboldt Cur-
rent System. Actually, anα parameter close to the Gaussian
value of 2 was observed over most of the rest of the domain
except for the eastern side of the warm pool (not shown).
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Figure 4. α (left) and β (right) maps in the tropical Pacific computed from K98 with TL1A 

over the periods 1870-1903 (a and b) 1903-1976 (c and d) and 1976-2007 (e and f). Inter-shift 

periods and the amplitude in °C of the shifts for the 1903 shift (g) and the 1976 shift (h). 

Bottom panel: NINO3 index (thin line) with its means over the inter-shift periods overlapped 

(thick horizontal lines).  

 

Fig. 4. α (left) andβ (right) maps in the tropical Pacific computed from K98 with TL1A over the periods 1870–1903 (a andb) 1903–1976 (c
andd) and 1976–2007 (eandf). Inter-shift periods and the amplitude in◦C of the shifts for the 1903 shift(g) and the 1976 shift(h). Bottom
panel: NINO3 index (thin line) with its means over the inter-shift periods overlapped (thick horizontal lines).

In summary, the above results obtained from observed
data suggest that deviation from Gaussianity and asymme-
try of SSTA distribution are associated with time-mean state
changes. This is consistent with recent studies based on
physical model and observations which put forward that
changes in ENSO properties are linked to changes in mean
state through the nonlinearities of the tropical Pacific (An,
2004; Dewitte et al., 2007a). In the light of the above results
with the K98 data set, the following section investigates such
an issue from various model outputs.

3.2 Models

Two model types are considered below: 1) An intermedi-
ate complexity model, the ZC model, that has been widely
used for ENSO studies and 2) full-physics coupled general
circulation models (CGCM) whose outputs are available to
the scientific community within the Program for Climate
Model Diagnosis and Intercomparison (see Sect. 2.1.2. and
Table 1).

3.2.1 The ZC model

The ZC model was run over 1200 years and the last 1000
years were analysed. Although based on linear dynamics for
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Figure 5. Differences in statistics for the α (upper panel) and β (lower panel) parameters 

between the ‘non-filtered’ K98 SST and the ‘filtered’ (i.e. with the 1976 shift removed, see 

text) K98 SST.  

 

 

 

 

 

 

 

 

 

 

Fig. 5. Differences in statistics for theα (upper panel) andβ (lower panel) parameters between the “non-filtered” K98 SST and the “filtered”
(i.e. with the 1976 shift removed, see text) K98 SST.
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Figure 6. Running mean (30 years window) of the NINO1.2. index. The inter-shift periods 

are indicated (the shifts were detected from the non-filter series) with a shading (blue 

shading indicates cool periods, red shading indicates warm periods). 

 

 

 

 

 

 

 

 

 

Fig. 6. Running mean (30 years window) of the NINO1.2. index as simulated by the ZC model. The inter-shift periods are indicated (the
shifts were detected from the non-filter series) with a shading (blue shading indicates cool periods, red shading indicates warm periods).
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the ocean and atmospheric parts, the nonlinearity of the sys-
tem is considered through the ocean thermodynamics and a
moisture feedback process for the atmosphere. Due to its
formulation, NDH,

NDH = −

(
u′

∂T ′

∂x
+ v′

∂T ′

∂y
+ w′

∂T ′

∂z

)
(10)

can easily be diagnosed from the model outputs. Three
model fields are analysed below: SST, Thermocline Depth
Anomaly (TDA), and NDH. Monthly anomalies were calcu-
lated relative to the mean seasonal cycle calculated over the
1000-year period.

Similar statistical tests to those applied to the K98 data set
were performed on the model outputs. The SDT detected
20 main shifts over the 1000-year period (see Fig. 6 and Ta-
ble 4 which summarize the results for the NINO1.2 index for
the first 200 years of simulation, for clarity only). The re-
sults are robust since the detected shift dates are comparable
for both the mean and the empirical variance and for each
proxy: SSTA, TDA and NDH. Nonetheless, the differences
in the results of the SDT are smaller between NDH and TDA
than between NDH and SSTA (especially in the eastern part
of the basin) supposedly because SSTA is influenced by both
the direct ENSO asymmetric forcing and the NDH, whereas
TDA results directly from the linear response of the wind
forcing.

In order to infer the statistical properties of the inter-shift
periods, (α, β) were estimated for the “cool” and “warm” pe-
riods. The latter periods were detected by applying the SDT
to the NINO1.2 index. Fig. 6 presents the 30-years running
mean of NINO1.2 averaged SSTAs; vertical lines indicate
the shift dates, as estimated by the test. Note that the SDT
was performed on both the raw and the filtered series and led
to similar results. Negative shifts were followed by a cooler
period (characterized by blue shading in Fig. 6) whereas pos-
itive shifts led to a warmer tropical Pacific (see overlapping
red shading in Fig. 6). In a second step, TL1A was performed
on each inter-shift period. Statistics for each warm (cool) pe-
riod were then averaged to derive a mean value forα, β and
NDH characterizing a warm (cool) background. The results
are displayed in Fig. 7. In order to highlight the deviation of
α from 2, the value ofexp(4-α) instead ofα was considered
(Fig. 7a, b, e, f). Blue shading is synonymous of Gaussianity
whereas red accounts for non-Gaussian stable statistics. The
average value ofα over the domain (130◦ E–80◦ W; 10◦ N–
10◦ S) is indicated at the top of each map. The results in-
dicate that the simulated SSTAs and TDAs tend to be more
non-Gaussian during warm periods than during cold periods.
The contrast is even more striking when looking at the dif-
ferences between the spatial patterns for the different peri-
ods, particularly visible on theβ maps (Fig. 7c, d, g and h).
Indeed a warm ocean background emphasizes the contrast in
asymmetry between the western/eastern Pacific, particularly
clear on the SST field (Fig. 7g and h), whereas asymmetry

was less pronounced during cool periods (extended symmet-
rical patterns, whereβ≈0). In contrast with K98, the spatial
variability of α for the ZC model remains difficult to inter-
pret. Nevertheless, periods for which tropical Pacific mean
state is warm were characterized by higher values of NDH
mean than cold periods which were associated with a lower
NDH mean (Fig. 7i and j).

These results can be interpreted in the light of recent model
studies which attribute to nonlinear advection a role in rec-
tifying ENSO variability (An and Jin, 2004; Timmermann
et al., 2003; Jin et al., 2003). For instance, Timmermann
et al. (2002) suggested that El Niño bursting was associated
with an increased NDH whereas La Niña events had a lower
value of NDH. Consistent with our results, warm periods re-
garded as “nonlinear active” manifested more stable statis-
tics in terms of deviation from Gaussianity and asymmetry,
whereas cool periods experienced more Gaussian statistics.
It is hypothesized that during the periods when NDH con-
tributes to enhanced ENSO amplitude, the growth of warm
EEs is favoured. Conversely, during cool periods, NDH
(asymmetry) is reduced along with the occurrence of EEs.
Still, isolated extreme warm events can take place during
cool “pseudo linear” periods but with fewer occurrences than
over warm periods. We will examine this hypothesis further
in the discussion section.

3.2.2 IPCC models

The IPCC data base offers the opportunity to investigate how
more complex models behave regarding the relationship be-
tween ENSO statistics and changes in mean state. Note
that, despite being full-physics, the IPCC models exhibit nu-
merous biases, especially in the mean states which drasti-
cally impacts ENSO variability. Knowing the characteris-
tics of these biases may help interpret the ENSO statistics.
For instance, in some models, the ENSO dynamic is dom-
inated by thermocline feedback processes, which overesti-
mates the control of SST by the thermocline depth anomaly
and thus ENSO asymmetry in the eastern tropical Pacific.
Some others favour the dominance of the zonal advective
feedback generally leading to faster and more regular ENSO
variability (Van Oldenborgh et al., 2005; Guilyardi, 2006;
Dewitte et al., 2007b). Despite these biases, interestingly,
there was a clear relationship in all these models between
changes in mean state and nonlinearities (as measured by
NDH). As a demonstration of this latter statement, a singu-
lar value decomposition (SVD) analysis was carried out be-
tween the 11-year running skewness and mean of SST over
the tropical Pacific domain (10◦ S–10◦ N) for all models, fol-
lowing similar methodology to An (2004) (his Fig. 1). The
results of the SVD analysis are reported in Table 5 for the
first dominant mode, which indicates a significant percent-
age of covariance between skewness and mean SST for all
the models, along with a high correlation between associ-
ated time series. Differences between models were mostly
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Figure 7. Mean value for warm (left) and cool (right) periods for TDA and SSTA and NDH 

mean. 

a and b : α−4e  for TDA 

c and d : β for TDA 

e and f : α−4e  for SSTA 

g and h : β for SSTA 

i and j : mean value for NDH 

 

Fig. 7. Mean value for warm (left) and cool (right) periods for TDA and SSTA and NDH mean. a and b:e4−α for TDA; c and d:β for TDA,
e and f:e4−α for SSTA g and h:β for SSTA, i and j: mean value for NDH.

Table 4. Detected mean and variance shifts for SSTA, TDA and NDH over 200 years of NINO1.2 index from a 1000-year ZC model
simulation (mean are indicated in black whereas variance is written in italic).

TDA [m] SSTA [ ◦C] NDHA [ ◦C/month]

Shift date [year] Shift amplitude Shift [year] Shift amplitude Shift [year] Shift amplitude
Mean,Variance Mean,Variance Mean,Variance Mean,Variance Mean,Variance Mean,Variance

33.3 38.5 3.3 30 31 38.5 0.1 0.3 32.2 34.8 −0.03 3

48 58 9 −26 47 45 0.7 0.3 46.9 55.5 0.01 −1.5

68 108 −9 10 60 59 −0.5 −0.15 70 66.8 0.04 1

107 131 1.3 −6 100 108 0.4 0.2 107.5 102.7 −0.005 3.7

142 134 0.3 −0.1 137.5 131.4 −0.01 −1.8

found in the percentage of variance explained by skewness
and/or mean, with some models having a low explained vari-
ance for the skewness (such as MIROC3.2-MEDRES) and
others having a high explained variance for the mean (such
as IPSL-CM4). These results convey the fact that the slowly

varying mean state is related to the nonlinearity of the equa-
torial Pacific system in all the models. Below, we investi-
gate how this translates to the ENSO statistics in terms of
stability and asymmetry. Applying the tests described in
Sect. 2.2.1. (TL1A), theα andβ parameters were calculated
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Figure 8. Scatter plots of the statistical moments and nonlinear terms for the IPCC models. 

Upper left panel (a.): Numbers of shifts (per 100 years of simulations) vs. nonlinearities; 

upper right panel (b.): numbers of shift vs. deviation from Gaussian models. Middle left panel 

(c.):  numbers of shift vs. asymmetry; middle right panel (d.): asymmetry vs. deviation from 

Gaussianity. Bottom left panel (e.): nonlinear terms vs. deviation from Gaussianity; bottom 

right panel (f.): nonlinear terms vs. deviation from asymmetry. Each number represents a 

model, as referenced in Table 1. Nº25 is for SODA. Red overlapped curve is the best fitted 

power law to all IPCC models (Group 1), blue one is the best fitted power law to only “good” 

(see text) models (Group 2). “Bad” models are represented by black filled triangles.  

 

 

 

Fig. 8. Scatter plots of the statistical moments and nonlinear terms for the IPCC models. Upper left panel(a): Numbers of shifts (per 100
years of simulations) vs. nonlinearities; upper right panel(b): numbers of shift vs. deviation from Gaussian models. Middle left panel(c):
numbers of shift vs. asymmetry; middle right panel(d): asymmetry vs. deviation from Gaussianity. Bottom left panel(e): nonlinear terms
vs. deviation from Gaussianity; bottom right panel(f): nonlinear terms vs. deviation from asymmetry. Each number represents a model, as
referenced in Table 1. No. 25 is for SODA. Red overlapped curve is the best fitted power law to all IPCC models (Group 1), blue one is the
best fitted power law to only “good” (see text) models (Group 2). “Bad” models are represented by black filled triangles.

for all models (NINO3 SST index) and reported in Table 5
along with the number of detected shifts. The results indi-
cated that there was a great diversity of behaviour regarding
α-stability and asymmetry. This is in contrast with the re-
sults of the above SVD analysis. In order to visualize the
differences between models, Fig. 8 is presented, which dis-
plays various scatter plots representing the relationships be-
tween the different orders of ENSO statistical moments and a
proxy of nonlinearity, namely the root mean square (rms) of
NDH (nonlinear advection) as diagnosed from LODCA (see
Sect. 2.1.2.) (NDH was normalized by the rms of the NINO3
index). Here, the shift number (brought back to a 100-year
period) quantifies the variability of the abrupt changes in
ocean mean state, and is thus equivalent to the 1st order sta-
tistical moment.β represents the asymmetry of ENSO and
consequently can be assimilated to a 3rd order statistical mo-
ment; whereasα gives information on EEs or in other words
on the abundance of rare values, i.e. higher order statistical
moments. For anα-stable distribution, remind that forr≥α,
E(|X|

r)=+∞

A detailed examination of Fig. 8 indicates that there is a
highly nonlinear relationship between statistical moments.
Note for instance, the significant number of models being
Gaussian (1α=0), while also exhibiting a marked asymme-

try (NDH variability) (Fig. 8d and e). In order to quantify the
nonlinear dependency between statistical moments, power
laws (i.e.f(x)=a+b.xµ Stanley, 1995) were used and fitted to
the model ensemble for the various scattered plots in Fig. 8.
The power laws were fitted by minimizing the rms residu-
als for two different groups of models: (1) for all the IPCC
models listed in Table 5, hereafter referred to as Group 1 (red
curves in Fig. 8) and for a selected smaller group, hereafter
referred to as Group 2 (blue curves in Fig. 8). The latter is
composed of the most ‘realistic’ models according to recent
works (Van Oldenborgh et al., 2005; Guilyardi, 2006; Capo-
tondi et al., 2006; Belmadani et al., 2009). The models that
were excluded from this group (BCCR-BCM2-0, CCCMA-
CGCM3.1, GISS-AOM, GISS-E-H) were shown to simulate
a biased ENSO variability (see aforementioned studies for
more details). Note that these models are not considered ei-
ther in most analyses of the multi-model studies by van Old-
enborg et al. (2005) and Guilyardi (2006). Three other mod-
els (IPSL-CM4, NCAR-CCSM3.0 and CSIRO-MK3.0) were
arbitrarily removed from this group as they exhibited “ex-
otic” statistical behaviour (namely no EE occurrence despite
a realistic/marked positive asymmetry). The “eliminated”
models are represented by black triangles in Fig. 8.
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Table 5. Statistical properties of the ENSO variability as simulated by the IPCC models. The last column presents the values of the criterion
C and the corresponding standard errors computed following Hannachi (2006)’s methodology. The four other rightmost columns provide the
results of the SVD between change in mean state and skewness based on SSTA (a 11-year running window is used), namely the percentage
of covariance of the first SVD mode, the percentage of the variance for the mean and skewness for the first SVD mode and the correlation
between the associated time series. Results of SODA are given as a reference for some parameters (bottom line). Non-Gaussian stable
models (α<2) are written in bold.α andβ are estimated using TL1A.

Model Name Number of warm shifts Number of cool shiftsα β rms(NDH/) % of covariance ) % of variance Correlation Criterion
and amplitude mean and amplitude mean rms(NINO3) (SVD(mean-skewness) (mean/skewness) between PC1s C (◦C)

BCCR-BCM2.0 2 (0.65) 3 (−0.50) 1.86±0.0647 −1 0.63 96 80/39 0.80 0.13±0.09

CCCMA-CGCM3.1 3 (0.17) 2 (−0.20) 1.97±0.0118 0.30±8.5215e-05 0.36 72 73/14 0.78 1.36±0.00

CCCMA-CGCM3.1-t63 1 (0.1) 2 (−0.23) 1.98±0.0112 −1 0.38 83 69/22 0.71 1.40±0.01

CNRM-CM3 1 (0.80) 0 2.00 −0.08±0.0072 1.18 97 81/21 0.68 −1.20±0.13

CSIRO-MK3.0 (run1) 2 (0.10) 1 (−0.20) 2.00 −0.18±0.0150 0.63 60 61/13 0.87 0.31±0.00

CSIRO-MK3.5 2 (0.17) 1 (−0.10) 1.99±0.0032 −0.22±0.0010 0.56 75 24/36 0.91 0.51±0.03

GFDL-CM2.0 1 (0.15) 2 (0.09) 1.95±0.0334 0.875±9.4424e-04 0.49 83 72/25 0.62 0.24±0.04

GFDL-CM2.1 2 (0.17) 2 (−0.13) 1.76±0.1125 1.00 0.85 58 20/41 0.70 −1.96±0.05

GISS-AOM (run1) 1 (0.15) 2 (−0.11) 2.00 −0.09±0.0046 0.21 64 57/11 0.74 1.88±0.00

GISS-AOM (run2) 1 (0.10) 3 (−0.12) 1.99±0.0015 −1.00 0.34 92 80/30 0.89 1.89± 0.00

GISS-MODEL-E-H 2 (0.14) 2 (−0.20) 1.97±0.0137 −1.00 0.33 84 76/16 0.74 0.99±0.02

GISS-MODEL-E-R 1 (0.05) 1 (−0.1) 1.92±0.0287 −1.00 0.26 81 67/28 0.92 1.86±0.00

IAP-FGOALS1.0-g (run1) 0 0 2.00 −0.08±0.0033 0.93 81 62/19 0.77 −1.04±0.09

INGV-ECHAM4 1 (0.15) 1 (−0.47) 2.00 −0.06±0.0059 0.57 99 98/40 0.81 0.37± 0.01

INM-CM3.0 3 (0.24) 2 (−0.10) 1.94±0.0410 1.00 0.73 86 78/18 0.76 0.05±0.07

IPSL-CM4 2 (0.15) 2 (−0.13) 2.00 0.05±0.0014 0.62 94 80/43 0.70 −0.08± 0.05

MIROC3.2-HIRES 1 (0.08) 1 (−0.04) 1.92±0.0289 0.29±5.0092e-04 0.28 95 80/41 0.85 1.41±0

MIROC3.2-MEDRES 2 (0.11) 2 (−0.17) 1.98±7.6580e-04 0.99±7.6580e-04 0.32 82 80/10 0.71 1.15±0.00

MIUB-ECHO-G 1 (0.15) 2 (−0.25) 2.00 −0.17±0.0138 0.78 50 49/12 0.81 −0.40±0.08

MPI-ECHAM5 1 (0.1) 2 (−0.16) 2.00 −0.08±0.0066 0.55 60 20/34 0.89 −0.30±0.03

MRI-CGCM2.3.2A 2 (0.1) 1 (−0.04) 1.96±0.0118 1.00 0.48 54 52/17 0.61 0.36±0.01

NCAR-CCSM3.0 (run2) 2 (0.14) 2 (−0.09) 2.00 −0.06±0.0043 0.52 68 47/12 0.85 0.41±0.08

UKMO-HadCM3 (run1) 1 (0.15) 1 (−0.3) 1.94±0.0137 1.00 0.83 64 34/27 0.65 −0.13±0.14

UKMO-HadGEM1 1 (0.15) 1 (−0.2) 2.00 0.08±0.0065 0.56 61 58/14 0.77 0.64±0.03

SODA 1.4.2 1 (0.3) 0 1.80±0.0724 1.00 0.82 −0.92±0.00

The bottom panels in Fig. 8 corroborate the previous re-
sults from the ZC model, namely the existence in the IPCC
models of a power law-type relationship between nonlinear
activity and EE occurrence (Fig. 8e) as well as a quasi-linear
relationship between NDH and asymmetry (Fig. 8f), consis-
tent with earlier studies (An and Jin, 2004; An et al., 2005).
Indeed, these two curves fitted the power laws relatively well,
having a coefficientµ equal to 0.38 and 0.05, respectively.
These curve fits were consistent as the residual of the rms
was quite low, respectively 0.09 and 0.01. The residuals
fell respectively to 0.07 and 0.005 when fitted to the mod-
els of Group 2. In that case,µ has values equal to 0.25 and
0.03) for the above-mentioned scattered plots (Fig. 8e and f).
Nonetheless, despite the low value of residuals in the power
law regression method, one can note that for the relationship
between EEs and NDH (Fig. 8e), no satisfactory visual fitting
was obtained (due to the significant spread of the models),
suggesting that NDH cannot fully account for the dynamics
of the EE occurrences. Similarly, an absence of any rela-
tionship (according to the power law) is evidenced between
the number of shift and NDH, suggesting again that non-
linearities associated with nonlinear advection cannot alone
explain how climate shifts are triggered (Fig. 8a,µ=0.21,

Residual=8.70 for Group 2). In the same way, although dis-
playing similar exponents in the power law fit, no clear re-
lationship was observed between ENSO asymmetry and the
number of shifts (Fig. 8c,µ=0.19, Residual=3.32 for Group
2) , and neither between the number of shifts and EE occur-
rence (Fig. 8b,µ=0.20, Residual=8.75 for Group 2). On the
other hand, EE occurrence and ENSO asymmetry are clearly
related as there was a strong agreement with the fit (Fig. 8d,
µ=0.30, Residual=1.29×10−04 for Group 2).

The fact that the power law can be used to fit the rela-
tionship between statistical moments emphasizes the com-
plex scaling relationships associated with the ENSO modu-
lation from low-frequency mean state change to EE occur-
rence. Interestingly, NDH relates to intermediate statistical
moments (i.e. variability and asymmetry) with low values of
residuals (which is consistent with the aforementioned stud-
ies). However it does not seem to be the main nonlinear term
governing interaction between “extreme” statistical moments
(1st and high orders, i.e. slowly varying mean state and trig-
gering of EEs). This clearly highlights the variability time
scale interactions associated with ENSO that are evidenced
here through the various statistical moments. It also suggests
that other sources of nonlinearity than NDH are involved in
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the processes leading to climate shifts and EE occurrence.
Due to the complexity of the tropical Pacific system, these
sources are numerous (see An, 2009 for a review) and are
more or less well represented in the current generation of
global coupled models.

To summarize, we find that the IPCC models, although
all exhibiting a relationship between asymmetry and slowly
varying mean state, behave differently with regard to nonlin-
earity as measured byα and slowly varying mean state. Only
a few models have a value forα that is comparable to ob-
servations. Interestingly, these models simulate a relatively
large number of climate shifts, consistent with the observa-
tions (K98, see Sect. 2.1.1.). This suggests that the nonlin-
ear processes involved in the generation of climate shifts are
somewhat different to the ones leading to the rectification
of ENSO variability by the slowly varying changes in mean
state. The physical processes responsible for the occurrence
of climate shifts remain unclear. The results reported here
suggest that they may not have a signature in the third sta-
tistical moment (asymmetry) of the dynamic fields but may
involve higher-order statistical moments and related nonlin-
earities.

The following section is dedicated to the statistical in-
terpretation of the above results proposing “naı̈ve” models
of ENSO, and the definition of a measure of “model skill”
for simulating extreme ENSO events based on q–q plot esti-
mates.

4 Statistical parameterisation of ENSO

In this section, four simple or “naı̈ve” statistical models are
proposed (see Sect. 2.2.3.) in order to interpret ENSO statis-
tics with regard to their relationships with changes in mean
state and EE occurrence.

4.1 Alpha-stable TGS

The first type of model is based on stable TGS (see Ap-
pendix B and Sect. 2.2.3.). This model’s results indicate that
such parameterization leads to an under-estimation of cold
events (Fig. 9a lower quadrant) and an over-representation of
high frequency events. However, the results from GT2 and
GT3 applied to the generated series match with those for in
situ data (not shown). The q–q plot presented in the left-hand
panels of Fig. 9 highlights the lack of statistical representa-
tiveness of a purely stable process (over-representation of ex-
treme warm events certainly due to the too high asymmetry
that is prescribed,β=1, see Fig. 9e upper quadrant), notably
on the NINO3 index. The too high probability of EE occur-
rence is certainly due to the too high variability of the TGS,
especially on short time scales. Actually, the TGS is essen-
tially based on an initial random set generation, unable to
account for the observed persistence (inertia) in large-scale
ocean circulation.

4.2 Gaussian TGS

The results from GT (not shown) indicate that this simple
statistical model cannot account for the ENSO asymmetry.
However, q–q plots (cf. Fig. 9b) show that it leads to a bet-
ter statistical distribution of the generated series than alpha-
stable TGS. Still, warm EEs remain underestimated (Fig. 9b
upper quadrant). It is noteworthy that cold events are well
represented by this generation method.

4.3 Non-stationary TGS

This non-stationary process enhances the representativeness
of cold events (see Fig. 9c). Actually q–q plot matches quasi-
perfectly for negative SSTAs whereas warm events remain
under-represented (Fig. 9c upper quadrant).

4.4 Non-stationary stable TGS

This process clearly enhances the representation of warm
events, but without altering the probability of the occurrence
of cold events as a purely stationary stable TGS described
in the first part of this section (cf. Fig. 9d). This is par-
ticularly true when observing q–q plot of the TGS versus
K98. Although there is strong agreement between observa-
tions and this TGS, the latter does not statistically fit with the
ZC model results. It is believed that this is due to the fact that
the ZC model cannot account for all the nonlinear dynamics
leading to EEs.

The results of the proposed “naı̈ve” models illustrate the
complexity of ENSO with regard to its statistical properties.
It indicates that ENSO cannot be accounted for by a single
statistical law, or at least by a law whose intrinsic parame-
ters are permanent over time. Unlike a purelyα-stable dis-
tribution, a Gaussian law fails to represent positive SSTAs
while cold events have a perfect Gaussian distribution. Fi-
nally, the results of this “näıve” parameterisation of ENSO
further suggest that ENSO experiences various types of be-
haviour, which combines Gaussian distribution for cold sym-
metrical periods (α=2) andα-stable for warm active periods
(α<2). Such a parameterisation (a non-stationary stable pro-
cess with the main parameter values following the slowly
varying Tropical Pacific mean state) could account for the
rectified effect leading to the occurrence of EEs.

In the following paragraphs, in the light of the above, we
investigate the statistics of the full-physics models based on
q–q plot analyses.

To quantify the ability of the IPCC models to represent
strong warm episodes, we then propose the following crite-
rion C:

C = Tdata(qT = 99%) − Tmodel(qT = 99%) (11)

It consists in measuring the difference between models and
data (K98) in the value of the NINO3 SST index below which
99% of the values of the observed NINO3 SST index are
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the C criterion (see Section 4.4.). 

Fig. 9. Quantiles of an asymmetrical alpha stable TGS (withα=1.8 andβ=1) versus quantiles of data/model outputs,(a); quantiles of a
Gaussian TGS (with m=0.0040 andσ=0.8082) versus quantiles of data/model outputs,(b); quantiles of an non-stationary Gaussian TGS
(with m=−0.0639 andσ=0.7464 on the first homogeneous period, m=−0.1241 andσ=0.7738 on the 2nd and m=0.3696 andσ=0.8338 on
the 3rd) versus quantiles of data/model outputs,(c); quantiles of stable, asymmetrical, non-stationary TGS (withα=1.85 andβ=0.99 on the
first homogeneous period,α=2 andβ=−0.17 on the 2nd andα=1.66 andβ=0.99 on the 3rd) versus quantiles of data/model outputs,(d).
Upper quadrants are associated with warm anomalies whereas lower quadrants are related to cold anomalies. Red colour is associated with
the NINO3 index computed from K98, purple colour with the NINO1.2 index computed from K98, green colour with the NINO3 index
computed from ZC and blue colour with the NINO1.2 index computed from ZC. On each panel, the ideal q–q plot (NINO3 quantiles from
K98 vs. NINO3 quantiles from K98) is indicated in black solid line. The black arrow represented on the upper quadrant of (d) indicates the
measurement of theC criterion (see Sect. 4.4.).
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Figure 10. Schematic of the mechanism of interaction between ENSO time scales variability 

and change in mean state and its relationship with ENSO statistics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.Schematic of the mechanism of interaction between ENSO time scales variability and change in mean state and its relationship with
ENSO statistics.

found (2.25◦C in K98). Simply put,Tmodel(qT =99%) rep-
resents the minimum SSTA for an El Niño to be considered
as an EE in each IPCC model. Graphically,C represents
the distance between the q–q plot of the model and the bi-
sector at theTdata(qT = 99%) (= 2.25◦C) abscissa (see black
vertical arrow on the upper quadrant of Fig. 9d). According
to Hannachi (2006)’s methodology, we are able to compute
error estimates on quantile calculation and can thus provide
confidence intervals onC.

The results of the classification are shown in Table 5.
The lower the value forC, the better the model sim-

ulates ENSO statistics in term of representativeness of
EEs. Negative values forC indicate that the model over-
estimates strong warm events, or in other words gives
too much weight to the positive tail of the distribution.
We can also point out that the majority of “good” mod-
els according to this criterion (BCCR-BCM2, CSIRO-
MK3.5, GFDL CM2 0, INM-CM3.0, MRI.CGCM2.3.2A,
UKMO-HadCM3) exhibit stable statistics. Interest-
ingly, these “good” models (including MIUBECHO G,
MPI ECHAM5) also match models simulating realistic
inter-decadal variability as shown in Lin (2007). In
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particular, Lin (2007) proposes a list of ‘realistic’ models
in a so-called third group: GFDLCM2 0, GFDL CM2 1,
MPI ECHAM5, INM-CM3.0, MIUB ECHO G... It is note-
worthy that, except for 10 models,C does not exceed 0.36
(Table 5), which is the mean value ofC. For this group
of models, the simulated number of shifts is comparable to
SODA (2.32 for a 100 year simulation). Nonetheless, other
models displaying large values forC are also characterized
by heavy tail statistics (for example GISS models, CCCMA-
CGCM3.1-t631; see Table 5). However, unlike K98, these
models tend to simulate more numerous cold EEs than warm
EEs due to the negative asymmetry of their NINO3 SST in-
dex.

5 Discussion and conclusions

In this paper, ENSO statistics which are accounted for by
α-stable distribution are related to some aspects of ENSO’s
observed characteristics, namely its modulation, its asymme-
try and its tendency to produce EEs. As the PDF associated
with the NINO3 SST index deviates significantly from the
Gaussian distribution, the heavy tailedα-stable distribution
is proposed because it better accounts for the occurrence of
EEs. Although it is impossible to have access to its PDF in
a closed form (except in particular cases), the distribution is
characterized by two main parameters,α andβ, that provide
meaningful information on the ENSO statistics, namely EE
abundance and asymmetry, respectively. A shift detection
method initially developed by Potter (1981) was also used
to diagnose the change in mean state of the tropical Pacific
and select warm and cool periods in the time series. The ob-
servations were first investigated based on the K98 SST data
set. Consistent with former studies (Burgers and Stephenson,
1999; Hannachi et al., 2004; An and Jin, 2004), the results
indicate that ENSO hasα-stable non-Gaussian features and
is asymmetrical. Interestingly, cool and warm periods ex-
hibit different statistical behaviour, with cool periods being
more Gaussian and having lower asymmetry than warm pe-
riods. A comparable tendency was found in the ZC model.
In particular the ZC model had increased (reduced) nonlin-
earity quantified through NDH (Timmerman and Jin, 2002)
during warm (cool) periods.

The full-physics models of the IPCC data base were
then investigated. Interestingly, all the models exhibited a
clear relationship between changes in mean state and ENSO
asymmetry (skewness), in agreement with observations (An,
2004). They did however have contrasting statistics in terms
of their propensity to simulate EEs. In particular, in the light
of the results of the SDT applied to the IPCC models (Ta-
ble 5) and a recent study (Lin, 2007), it was shown that only
the models simulating a realistic decadal variability also ex-
hibited markedα-stable statistics.

Näıve statistical models were then proposed to interpret
these results. The “naı̈ve” model simulations indicated that

ENSO could be accounted for by a non-stationary stable pro-
cess with the typical exponent of the law experiencing vari-
ations that mimic the changes in the tropical Pacific Ocean
background. Asα contains information on EE abundance
but also on the decay rate of the ENSO PDF tail, this corrob-
orated the existence of interactions between statistical mo-
ments of ENSO time series. The results of q–q plot (see Han-
nachi et al., 2004) applied to the IPCC model simulations,
and of the comparison between the various quantities studied
in this paper (NDH,α, β, number of shifts) through power
laws suggest that the interaction between statistical moments
(variability time scales) does not solely operate through non-
linear advection or the nonlinearities associated with ENSO
asymmetry. It is then likely that other nonlinear processes
come into play to explain EE occurrences. Investigating the
sources of these nonlinearities is beyond the scope of this pa-
per. At this stage it is interesting to note that, although cur-
rent measures of ENSO nonlinearities (through either skew-
ness or NDH) have provided meaningful information on the
rectification of ENSO variability by changes in mean state
(An, 2004; An et al., 2005; Dewitte et al., 2007a), they may
not fully account for the complexity of the rectified effect.
In the light of the results, we can hypothesize that EE oc-
currences are part of the feedback loop linking changes in
mean state and ENSO asymmetry (An, 2004; Dewitte et al.,
2007a). The schematic diagram in Fig. 10 summarizes the
parallel that has been made in this paper between ENSO sta-
tistical moments and the physical processes involved in the
rectification of ENSO variability through changes in mean
state. It suggests that higher statistical moments contribute
to the rectified effect by controlling the triggering of EEs,
and supposedly some feedback between EEs and climate
shifts. Non-linear regressions between statistical moments
from IPCC model time series give similar exponents, which
could suggest ENSO chaotic behaviour. This still requires
further study.

Appendix A

Detection of a systematic change

The relevant procedure relies on Maronna and Yohai (1978)’s
test for the detection of a systematic change in mean. This
method can be applied for a couple of normal random vector
(x, y) such that the mean ofx is known to be constant and
the mean ofy might change at a timej0. It was applied by
Potter (1981) in this context; but Maronna and Yohai (1978)
provide a broader method which stays valid in the stable case.

If (xj ; yj ); j=1; . . . ;N denotes a sequence of two dimen-
sional random vectors, the following model is assumed:

yj=bj + cxj + uj

whereyj are observations, thexj are independent and identi-
cally distributed (iid) random variables, with densityh which
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Figure A1. 15 years running mean of the NINO3 index (upper panel) and empirical variance 

of the NINO1.2. Index (lower panel) from K98. Mean shifts and EE detected by the SDT are 

reported on the plot.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A1. 15-years running mean of the NINO3 index (upper panel)
and empirical variance of the NINO1.2. Index (lower panel) from
K98. Mean shifts and EE detected by the SDT are reported on the
plot.

can have unknown parameters, and which are independent of
the unobservable noiseuj . Theuj are iid normal with mean
0 and varianceσ 2

u. Maronna and Yohai called it Model II.
Under these assumptionsx is an ancillary statistic for tests
concerningbj andc. The null hypothesis H0 is thatbj=b;
j=1; . . . ; N for some unknownb; against the alternative H1
that bj=b for j ≤j0 andbj =b+d for j>j0 whereb; d and
j0<N are unknown.

The percentile points are extremely difficult to calculate
either analytically or numerically and depend onh. That is
why; instead of trying to compute p-values we chose a level
far larger than all the published quantiles for these tests and
decided to reject H0 if the computed value of the test statistic
exceeded this level.

We performed the test on the NINO3 index computed from
K98 using various reference seriesX: SSTAs in the whole
tropical Pacific (120◦ E–60◦ W; 29◦ N–29◦ S) and NINO1.2
regions, and a random-generated Gaussian set whose mean
and standard deviation are the same as the NINO3 index.
Consistent with earlier studies (cf. Karspeck et al., 2004, or
Guilderson et al., 1998 among others), a shift in April 1976,
estimated amplitude: 0.29◦C was detected in each of these
experiments. We also evidenced the cold 1903 and 1998
shifts (Overland et al., 2008).

On the other hand, we performed the test on empirical
variance series. An example is given for the NINO1.2. in-
dex. This way of running the method is not only able to iso-
late ruptures in variance (making it possible to identify ho-
mogeneous periods in terms of variability) but also to high-
light isolated extreme bursts in the empirical variance set (al-
lowing EEs to be identified). Following a dichotomic way

of performing the test, we were able to evidence the 1903–
1905 cold shift, the 1943 neutral shift (Karspeck et al., 2004)
and the 1958, 1983 and 1998 EEs (see Fig. 4 and Fig. A1).
Nonetheless, the SDT applied to empirical variance sets did
not permit the 1976 shift to be located as this rupture took
place in the mean rather than in the variance. In this study,
we assumed a minimum inter-shift period of 10 years in order
to parallel the occurrence of ruptures with decadal to inter-
decadal variability.

Appendix B

Generation of alpha stable distributions

In order to test the relevance of the “naı̈ve” models of ENSO,
α–stable series were generated that fit with the proposed
models. The Chambers et al. (1976)’s algorithm permits the
generation of two uniform random real variables on] 0; 1 [,
U1 and U2, respectively. Then, a simple transformation al-
lows to get a uniform law on]−π /2; π /2 [and an exponential
law (with parameter 1).

ϕ = π.U1 −
π
2

W = − log(1 − U2)
(B1)

Finally, from those simple laws, we can generate a symmet-
rical alpha stable law:

Y =
sin(αϕ)

(cosϕ)1/α

(
cos((1 − α)ϕ)

W

) 1−α
α

(B2)

d’Estampes (2003) proposed a more general algorithm al-
lowing the generation of asymmetricalα-stable law. It writes
as follows:

For α 6=1, Y =
sinα(ϕ−ϕ0)

cos(ϕ)1/α

(
cos(ϕ−α(ϕ−ϕ0))

W

) 1−α
α

Where

ϕ0 = −
πβ
2

1−|1−α|

α
;

for α=1,

Y =
2

π

((π

2
+ βϕ

)
tanϕ − β log

(
πW cosϕ

π + βϕ

))
. (B3)

We used this broadened method of generation to elaborate
our TGS.
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Appendix C

GLOSSARY:

CGCM: Coupled General Circulation Model
CMIP3: World Climate Research Programme

Coupled Model Intercomparison
Project phase 3

EE(s): Extreme Event(s)
ENSIP: El Nĩno Simulation Intercomparison Project
ENSO: El Nĩno Southern Oscillation
GT: Graphical Test
IPCC: Intergovernmental Panel

for Climate Change
IPCC-AR4: Fourth Assessment

Report of the Intergovernmental
Panel on Climate Change

iid: independent identically distributed
K98: Kaplan et al. (1998)

tropical Pacific SST dataset.
NDH: Nonlinear Dynamical Heating
PDF: Probability Density Function
q–q plot: quantile versus quantile plot
rms: root mean square
SDT: Shift Detection Test
SSTAs: Sea Surface Temperature Anomalies
SVD: Singular Value Decomposition
TDA: Thermocline Depth Anomaly
TGS: Theoretical Generated Series
TL1A: Telecom Lille I Algorithm
ZC: Zebiak and Cane model
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