
Nonlin. Processes Geophys., 16, 43–56, 2009
www.nonlin-processes-geophys.net/16/43/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Nonlinear Processes
in Geophysics

Climate spectrum estimation in the presence of timescale errors
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Abstract. We introduce an algorithm (called REDFITmc2)
for spectrum estimation in the presence of timescale errors.
It is based on the Lomb-Scargle periodogram for unevenly
spaced time series, in combination with the Welch’s Over-
lapped Segment Averaging procedure, bootstrap bias correc-
tion and persistence estimation. The timescale errors are
modelled parametrically and included in the simulations for
determining (1) the upper levels of the spectrum of the red-
noise AR(1) alternative and (2) the uncertainty of the fre-
quency of a spectral peak. Application of REDFITmc2 to
ice core and stalagmite records of palaeoclimate allowed a
more realistic evaluation of spectral peaks than when ignor-
ing this source of uncertainty. The results support qualita-
tively the intuition that stronger effects on the spectrum es-
timate (decreased detectability and increased frequency un-
certainty) occur for higher frequencies. The surplus informa-
tion brought by algorithm REDFITmc2 is that those effects
are quantified. Regarding timescale construction, not only
the fixpoints, dating errors and the functional form of the
age-depth model play a role. Also the joint distribution of
all time points (serial correlation, stratigraphic order) deter-
mines spectrum estimation.

1 Introduction

A classical decomposition of a climate process is into a trend
and a noise component. Spectral analysis investigates the
noise component. A Fourier transform into the frequency do-
main makes it possible to separate short-term from long-term
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variations and to distinguish between cyclical forcing mech-
anisms of the climate system and broad-band resonances.
Spectral analysis allows to learn about the climate physics.

The major task is to estimate the spectral density function.
This poses more difficulties than, for example, linear regres-
sion (which may be used for trend estimation) because here
we estimate a function and not just two regression parameters
(intercept and slope). Spectral smoothing becomes therefore
necessary, and this brings a tradeoff between estimation vari-
ance and frequency resolution.

In the case of evenly spaced records, the multitaper
smoothing method achieves the optimal tradeoff (Thomson,
1982). The focus of this paper, however, is spectrum estima-
tion for unevenly spaced records. Such a situation is ubiqui-
tous in palaeoclimatology. In this case the method of choice
is combining the Lomb-Scargle periodogram with Welch’s
Overlapped Segment Averaging (Welch, 1967; Lomb, 1976;
Scargle, 1982; Schulz and Mudelsee, 2002), which yields an
estimation in the time domain and avoids distortions caused
by interpolation.

Bootstrap resampling enhances Lomb-Scargle methods by
providing a bias correction. It supplies also a detection test
for a spectral peak against realistic noise alternatives in form
of an AR(1) model (which belongs to the wider class of
“red noise” processes). We introduce a bootstrap algorithm,
called REDFITmc2, which takes into account the effects of
timescale uncertainties on detectability and frequency reso-
lution. REDFITmc2 is a further development of the REDFIT
algorithm (Schulz and Mudelsee, 2002), which assumes neg-
ligible timescale errors.

Palaeoclimate time series from two different archives
serve to illustrate our concept. The first example is an
ice core from Antarctica, which covers the past 800 ka and
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constitutes the, at present, longest glacial archive. The sec-
ond is a stalagmite from southern Arabia (Oman), which cov-
ers a large portion of the Holocene (last∼11 ka).

2 Method

Let X(T ) be a stationary climate process in continuous
time,T . The one-sided non-normalized power spectral den-
sity function, h(f ), wheref ≥0 is frequency, can be de-
fined (Priestley, 1981, Chapter 4 therein) via a truncation
of X(T ) and a Fourier transformation.h(f ) integrates to
VAR[X(T )]=S2, the variance ofX(T ). The power is a mea-
sure of the variability (“energy”) within a frequency interval
[f ; f +df ].

The spectral theory in the case of a processX(i) in discrete
time, T (i), is similar (Priestley, 1981, Sect. 4.8.3 therein),
except that the frequency range has an upper bound and the
discrete Fourier transform is invoked to calculateh(f ).

The objective of spectrum analysis is to estimateh(f ) us-
ing a time series sample,{t (i), x(i)}ni=1. The time points,
t (i), may be unevenly spaced.n is the sample size. The spac-
ing is given byd(i)=t (i)−t (i−1), its average is denoted as
d̄. A spectral peak at a frequency,f ′, corresponds to a period
we denote asTperiod=1/f ′.

2.1 Lomb-Scargle periodogram

An early spectrum estimator isSchuster’s (1898) peri-
odogram,I (fj ), which is evaluated at discrete frequency
points,fj . Scargle(1982) suggested for the case of uneven
spacing a new version,

ILS(fj ) = d̄ ·

{[ ∑n
i=1 X(i) cos

(
2πfj [T (i) − τLomb]

) ]2

∑n
i=1

[
cos

(
2πfj [T (i) − τLomb]

) ]2

+

[ ∑n
i=1 X(i) sin

(
2πfj [T (i) − τLomb]

) ]2

∑n
i=1

[
sin

(
2πfj [T (i) − τLomb]

) ]2

}
,

(1)

whereLomb’s (1976) time shift,τLomb, is given via

tan
(
4π fj τLomb

)
=

∑n
i=1 sin

(
4πfjT (i)

)∑n
i=1 cos

(
4πfjT (i)

) . (2)

For even spacing (d(i)=d), evenn and frequency points
fj=1/(nd), . . . , 1/(2d), it follows that τLomb=0 and
ILS(fj )=I (fj ). To calculateILS(fj ) on the sample level,
that is, using the time series sample, plug inx(i) for X(i)

andt (i) for T (i).
Scargle’s objective behind introducing the Lomb-Scargle

periodogram was that the probability distribution ofILS(fj )

should be equal to the distribution ofI (fj ). Scargle(1982,
1989) showed that this is so (chi-squared distribution) when
X(i) is a Gaussian white noise process (with mean zero and
varianceS2), X(i)=EN(0, S2)(i).

2.2 Welch’s overlapped segment averaging

The periodogram is a suitable estimator of line spectra,
where harmonic signal components appear as sharp peaks.
To enhance the unfavourable inconsistency of the peri-
odogram (i.e., the variance does not decrease withn in-
creasing) when (mis-)applied to estimate continuous spec-
tra,Welch(1967) advanced the idea ofBartlett (1950) to di-
vide a time series{t (i), x(i)}ni=1 into different time segments,
calculate the periodograms segment-wise and average them
to obtain a reduced estimation variance.Welch (1967) al-
lowed the segments to overlap (for example, by 50%), and
the method is called “Welch’s Overlapped Segment Averag-
ing” or WOSA procedure. Overlapping has the positive ef-
fect that the number of segments, and therefore the number
of averaged periodograms, is increased.

The negative effect of using WOSA (number of segments,
n50>1) is that the frequency points, where the periodograms
are calculated, are spaced wider than forn50=1. More pre-
cisely,1fj=(n50+1)/(2nd)>1/(nd) for n50>1. This is the
smoothing problem in the spectral domain, the tradeoff be-
tween spectral estimation variance and frequency resolution.

Instead of calculating the Lomb-Scargle periodogram at
frequenciesfj=1/(nd̄), 2/(nd̄), . . ., there is no hindrance
to using a finer frequency grid. The oversampling factor
(OFAC) (Schulz and Stattegger, 1997) gives the increase in
frequency resolution. Oversampling is mainly for “cosmetic”
reasons, to have a smoother curve and to be able to determine
precisely the frequency of a spectral peak. Like interpolation
in the time domain, oversampling does not generate new in-
formation and cannot solve the smoothing problem.

Welch (1967) showed also that tapering (weighting) the
data pointsX(i) within segments improves the spectrum es-
timate in terms of bias, variance and suppression of spurious
peaks (sidelobes). The overview byHarris (1978) lists the
properties of many taper functions, including the Welch ta-
per (negative parabola) that is used in the present paper.

2.3 Bandwidth

The degrees of freedom of the chi-squared distribution of a
Lomb-Scargle spectrum estimate based on WOSA with 50%
overlap and Gaussian distributedX(i) are

ν = 2n50

/(
1 + 2c2

− 2c2/n50

)
, (3)

wherec≤0.5 is a constant representing the taper. A uniform
taper hasc=0.5, a Welch taperc=0.344; further values are
listed byHarris(1978).

The discrete Fourier transform of a pure harmonic process
(X(i) composed of sinus and cosinus terms with frequency
f ′) has a peak atf ′. The decay on the flanks of the peak to a
value of 10−6/10

≈0.251 times the maximum value defines a
width in frequency, the 6-dB spectral bandwidth,Bs. This is
a useful quantity for assessing the frequency resolution, how
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good closely neighboured spectral peaks can theoretically be
separated (Harris, 1978; Nuttall, 1981). The 6-dB bandwidth
depends onn, n50 and the type of taper.

2.4 Bootstrap bias correction

If X(i) is a red-noise process on an unevenly spaced
timescale, perhaps with superimposed peaks in the frequency
domain, the distribution ofILS(fj ) cannot be calculated an-
alytically. Here, simulation methods can be used to infer the
distributional properties of the Lomb-Scargle periodogram.
Of particular interest is its bias (systematic error).

Monte Carlo experiments (Schulz and Mudelsee, 2002)
reveal the bias of the Lomb-Scargle periodogram for an
AR(1) process and uneven spacing. The “absolute bias”, of
ILS(fj ) as an estimator of non-normalized power,h(f ), can
be substantial. The bias disappears (i.e., becomes smaller
than the “simulation noise”) for an AR(1) process and even
spacing. Also in peak detection, where normalized power,
g(f )=h(f )/S2, is analysed, the Lomb-Scargle periodogram
exhibits bias. That means, even if the normalization is
known, the bias of the Lomb-Scargle periodogram is signifi-
cant, and it is frequency-dependent.

Spectrum estimation for unevenly spaced time series can
be enhanced by combining the WOSA procedure with the
Lomb-Scargle periodogram (Schulz and Stattegger, 1997). A
bias correction for such estimates was devised bySchulz and
Mudelsee(2002). It uses a bootstrap simulation approach
based on artificially generated AR(1) time series (“surrogate
data”), for which the theoretical spectrum is known (Priest-
ley, 1981). The frequency-dependent bias correction factor
is calculated as the ratio of the theoretical AR(1) spectrum
and the average Lomb-Scargle spectrum. The bias-corrected
spectrum estimate iŝh′(fj ).

2.5 Peak detection by red-noise test

A hypothesis test helps to assess whether peaks (or lows) in
the estimate ofh(f ), denoted aŝh(f ), are significant or not.
Such information is for the climate time series analyst of ma-
jor relevance because it helps to filter out the variability, to
construct and test conceptual climate models – the absolute
value ofh(f ) is less important. The typical test performed
in climate spectral analysis is ofH0: “X(i) is an AR(1) pro-
cess, with continuous, red spectrum”, the red-noise hypoth-
esis, againstH1: “X(i) has a mixed spectrum, with peak at
fj=f ′

j on a red-noise background.”
Schulz and Mudelsee(2002) devised the following red-

noise test. The null distribution of̂h(f ) is obtained by fitting
an AR(1) process to{t (i), x(i)}ni=1, that is, estimating the
persistence time,τ , followed by bootstrap resampling.

The process is given by

X(1) = EN(0, 1)(1), (4)

X(i) = exp{− [T (i) − T (i − 1)] /τ } · X(i − 1)

+EN(0, 1−exp{−2[T (i)−T (i−1)]/τ })(i),

i = 2, . . . , n.

The parameterτ defines the “equivalent autocorrelation co-
efficient”,a′, viaa′

= exp(−d̄/τ ) for the case of uneven time
spacing. For even spacing,a′ equalsa, the ordinary AR(1)
autocorrelation parameter.

Even the estimation ofa (even spacing) is not trivial be-
cause of estimation bias. For an AR(1) process with un-
known mean, which is the usual case in climatology, the es-
timator ofa is

â =

∑n
i=2

[
X(i) − X̄

]
·
[
X(i − 1) − X̄

]∑n
i=2

[
X(i) − X̄

]2
, (5)

whereX̄=
∑n

i=1 X(i)/n is the sample mean. The approxi-
mate expectation of̂a is (Kendall, 1954)

E (̂a) ' a − (1 + 3a) / (n − 1) . (6)

That means,̂a underestimatesa. Eq. (6) can be used to cor-
rect for the negative bias. However, Eq. (6) is valid only fora
not too large (Kendall, 1954). A bias formula applicable also
to large values (above, say, 0.9) ofa has yet only been de-
rived for the simpler case of known mean (Mudelsee, 2001).

Regarding the estimation ofτ (uneven spacing), Monte
Carlo simulations (Mudelsee, M.: Climate Time Series Anal-
ysis: Classical Statistical and Bootstrap Methods, Springer,
Heidelberg, manuscript in preparation) show that the least-
squares estimator ofa′

= exp(−d̄/τ ) has a bias similar in size
to the bias of̂a. Mudelsee(2002) presented a least-squares
estimation procedure ofτ with bias correction and bootstrap
percentile confidence intervals. Our conclusions for the prac-
tice of persistence time estimation (Mudelsee, 2002) are as
follows.

– Large data sizes and not too large values ofτ make bias
correction via the application of Eq. (6) to a′ accurate,

– It may in practice be difficult to show statistically sig-
nificant changes ofτ over short time intervals and there-
fore be often advisable to assume a constant persistence
time. We use this approach because own analyses (not
shown) with the ice core records (Sect.3.1) divided
into sub-intervals, do not indicate significant changes
in τ . An option that may apply to a situation where
the physics of the sampled climate system indicates a
change in the persistence properties and where also very
long time series are available, may be to consider a
model that divides the time interval into sub-intervals
with specific persistence times.Divine et al. (2008)
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have recently suggested a similar model (for even spac-
ing), accompanied by a maximum likelihood estimation
procedure.

Resampling is done (Schulz and Mudelsee, 2002) via the
surrogate data approach. Instead of (or in addition to) per-
forming bootstrap resampling for deriving the null distribu-
tion, one may calculate upper (lower) bounds via the chi-
squared distribution (Schulz and Mudelsee, 2002). Of prac-
tical relevance in climatology, although conventionally ig-
nored, should be not only peaks but also lows inĥ(f ), fre-
quency intervals where less power than under an AR(1) hy-
pothesis resides. Also the information about the absence of
power in a frequency range is helpful; it may, for example,
support an argumentation that a certain mechanism doesnot
play a role for generating an observed climate phenomenon.

So far we have assumed as a realistic noise alternative an
AR(1) process with positive persistence timeτ (uneven spac-
ing) or positive autocorrelation parametera (even spacing).
This corresponds to a “red” spectrum, with more power for
lower than for higher frequencies.Fisher et al.(1985) and
Andersen et al.(2006) describe the interesting observation
that postdepositional effects (wind erosion) at a site of an ice
core may lead to “blue” noise, with more power for higher
frequencies. This would make, however, the testing of the
spectrum alternative problematic. Uneven spacing does not
allow to embed a discrete-time, blue-noise process within a
continuous-time, blue-noise process (Robinson, 1977; Chan
and Tong, 1987) This means that for uneven spacing it is not
possible to infer uniquely the parameters of the underlying
continuous-time process. Embedding is an important prop-
erty because it allows a foundation on physics, which works
in continuous time (differential equations). A practical ap-
proach to ice core spectrum estimation may be to use extra
caution in the interpretation of high-frequency peaks.

2.6 Multiple tests

Assume for convenience even data size, even spacing and no
oversampling. If the red-noise hypothesis test for the exis-
tence of a spectral peak is to be carried out for one single,
pre-defined frequencyf ′

j ∈
{
fj

}n/2
j=1, then selection of the

100(1−α)th percentage point of the red-noise distribution
leads to a one-sided hypothesis test with a P-value equal toα.
If, what is usually the case, the test is multiple, that means,
it is to be carried out for many (if not all) frequencies from
the set

{
fj

}n/2
j=1, then a higher frequency-point-wise confi-

dence level,(1−α′) with α′<α, has to be employed to yield
an overall P-value ofα. If a test is performed multiple times,
it becomes more likely to find a significant single result.

One may define a “maximum effective number of
test frequencies”,M, via the overall prescribed P-value:
(1−α′)M=1−α. For small α and largeM this leads to
α′

≈α/M. The effective number of frequencies refers to a
hypothetical situation whereM frequenciesf ′

j are tested and

the spectrum estimateŝh(f ′

j ), a set of sizeM, are mutually
independent. For the simple case of even data size, even
spacing, Gaussian distributional shape and periodogram es-
timation, independence is fulfilled and the maximum num-
ber is M=n/2. If n is odd (other setting unchanged),
M=(n−1)/2. Also if the Gaussian assumption is violated
not too strongly, the effects onM should be negligible.

Stronger influence onM can have uneven spacing with
Lomb-Scargle periodogram estimation (no WOSA). Because
the periodogram estimates are then no longer independent,
M is reduced.Horne and Baliunas(1986) andVanDongen
et al. (1997) studied the effects by means of Monte Carlo
simulations. If the{t (i)}ni=1 are more or less uniformly dis-
tributed, the approximationM≈n/2 is still acceptable. This
formula may also be applied to series where the timescale
is even with the exception of a few missing observations.
However, if the time points are highly clustered in time, one
should not use the number of points,n, but rather the number
of clusters, to determineM (VanDongen et al., 1997). The
effects of segmenting (WOSA) onM with Lomb-Scargle or
ordinary periodogram estimation (no tapering) can be taken
into account by using instead ofn the number of points per
segment:M=NINT[n/(n50+1)], seeSchulz and Mudelsee
(2002). NINT is the nearest integer function. The effects
of tapering could in principle be studied by means of Monte
Carlo simulations. Restricting the frequency range where to
study peaks is an other way to reduceM.

What practical conclusions can be drawn for peak detec-
tion in climate spectra? A typical situation is an unevenly
spaced timescale without strong clustering, and where the
researcher is interested also in the longer periods of varia-
tions recorded by the time series. Here, Lomb-Scargle pe-
riodogram estimation with tapering, WOSA andn50 not too
high (less than, say, 10) is an option. To have more relia-
bility in the low-frequency spectrum portion, one decides to
follow a rule of thumb (Bendat and Piersol, 1986) and re-
quires at least two cycles per segment, that is, one sets the
minimum test frequencyfj equal to[(2n50)/(nd̄)]. This also
reducesM. Regarding the high-frequency spectrum portion,
theoretically the uneven spacing allows inferences also for
frequencies above 1/(2d̄), seeScargle(1982). On the other
hand, an archive may a priori be known not to preserve a
high-frequency signal, for example a marine sediment core
affected by bioturbation. Then it would make sense to ignore
a part of the high frequencies, leading to a further reduction
of M.

2.7 Timescale errors

In palaeoclimatology the timescale is usually expected to
have uncertainties. The time assigned to a sample,T (i), de-
termined by dating and constructing an age-depth curve, is
expected to deviate from the true time value,Ttrue(i). In such
cases we write the measured times as
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T (i) = Ttrue(i) + Tnoise(i), (7)

i=1, . . . , n, whereTnoise(i) is the error owing to age uncer-
tainties. Equivalently, the spacing,d(i), has an error compo-
nent.

To recapitulate,T (i) is a sequence of random variables
representing the observed time of a sequence of samples,
that is,T (i) is a discrete-time stochastic process (“process
level”). The sequencet (i) are the actually observed time
values (“sample level”), a realization of theT (i). The func-
tion Ttrue(i) is the true time – uniquely defined, but unknown
numbers. Because of dating errors we cannot expect that
T (i) equalsTtrue(i). Hence, there is a noise component,
Tnoise(i). The noise process is not required to have zero
mean. This allows for measurement bias, that is, system-
atic over- or underestimations. Eq. (7) is a rather general de-
scription of uncertain timescales; it may be used for various
combinations of climate archives and dating techniques.

Timescale errors lead to a distortion of the estimated spec-
trum. Two effects are expected:

1. reductions of significance (detectability) of peaks com-
pared to a situation with exact timescale and

2. increases of frequency uncertainty for a detected spec-
tral peak.

Moore and Thomson(1991) and Thomson and Robinson
(1996) studied the influence of a “jittered” spacing on the
process level. The simple case of independent Gaussian jit-
ter,

d(i) = d + EN(0, δ2
d )(i), (8)

is analytically tractable.δd is the standard deviation of the
spacing error distribution. Its effect on the true continuous-
time spectrum,h(f ), amounts (Moore and Thomson, 1991;
Wunsch, 2000) to a multiplication by a frequency-dependent
factor:

hdistort(f ) = exp
(
−4π2 δ2

d f 2
)

· h(f ) + c0, (9)

where the constantc0 serves to give the distorted spectrum,
hdistort(f ), the nominal area ofS2. This means, timescale
errors in the form of independent jitter add white noise (c0).
As a result, spectral peaks have a reduced detectability.

Several assumptions went into the derivation of Eq. (9) by
Moore and Thomson(1991), this limits its applicability to
the practice of climate spectrum estimation.

– No aliasing (h(f )=0 for f >fNy=1/(2d)). This may in
practice be violated to some degree, and lead to power
“folded” back into the interval[0; fNy] and, possibly,
to spurious spectral peaks. In addition, for unevenly
spaced time series the Nyquist frequency is not well de-
fined.

– Independent jitter. This is not realistic for many records
(e.g., from ice or sediment cores).Moore and Thom-
son(1991) study AR(1) dependence in the jitter equa-
tion (Eq. 8), finding potential for larger effects on the
spectrum if the dependence is strong. Still it is ques-
tionable how relevant the AR(1) jitter model is. Ice core
data could exhibit heteroscedastic jitter owing to com-
paction. Timescales derived from layer counting might
be better described by means of a random walk (i.e., a
nonstationary AR(1) process with parametera=1) than
by a jitter model. The argument is as follows. If a layer
is miscounted (e.g., missed), then this error propagates
without “damping” to the next layer to be counted. It is
rather difficult to obtain analytical results in such cases.

– Gaussian jitter distribution. This assumption is not
fulfilled without imposing a constraint to guarantee a
monotonic age-depth curve. (Moore and Thomson,
1991had the purpose to study other data, in the spatial
domain, where no such constraint is required.)

– Process level. The mentioned paper does not study the
spectrum estimators on the sample level, in particular,
Lomb-Scargle estimation.

Based on the limited relevance of available analytical re-
sults on the effects of realistic types of timescale errors
on spectrum estimates (Lomb-Scargle), we suggest a novel
numerical algorithm. It is based on simulations of the
timescale. One mode of it quantifies the reduced detectabil-
ity, the other the increased frequency uncertainty.

2.7.1 Algorithm REDFITmc2, mode “a”: peak detection

Algorithm REDFITmc2 adapts the REDFIT algorithm
(Schulz and Mudelsee, 2002) to take into account timescale
errors. Mode “a” of the algorithm performs peak detection.

1. Time series,{t (i), x(i)}ni=1.

2. Bias-corrected Lomb-Scargle spectrum estimate
(Schulz and Mudelsee, 2002), ĥ′(fj ).

3. Estimated, bias-corrected persistence time (Mudelsee,
2002), τ̂ ′.

4. Determine area,Aĥ′ , under spectrum within
[0; 1/(2d̄)].

5. Generate AR(1) data,
{
t (i), x∗

AR(1)(i)
}n

i=1
after Eq. (4).

6. Use timescale model (an implementation of Eq.7) to
simulate times,{t∗(i)}ni=1.

7. Bias-corrected Lomb-Scargle spectrum estimate,

ĥ′∗b(fj ), calculated from
{
t∗(i), x∗

AR(1)(i)
}n

i=1
.

Spectrum estimate subsequently scaled to areaAĥ′ .
b counts how often Steps 5 to 7 are called.
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Fig. 1. Ice core EDC, data; δD, 55-cm resolution
data (n=5785, d̄=139 a); log(nssCa flux), 100-a means
(n=7880, d̄=102 a) and log(ssNa flux), 100-a means
(n=7891, d̄=102 a). A small number of the 100-a intervals
have no data. Timescale is EDC3 (Parrenin et al., 2007). Vertical
grey lines and numbers indicate marine isotope stages (Lisiecki and
Raymo, 2005).

8. Go to Step 5 untilb=B replications exist.

9. Test at eachfj whether̂h′(fj ) exceeds a pre-defined

upper percentile of
{
ĥ′∗b(fj )

}B

b=1.

The selection ofB depends on the size of the percentile;
higher percentiles require higher values ofB.

The sets of frequenciesfj at Steps 2 and 7 are identical.
Taking into account that the test is usually per-

formed not only at one single frequency but at
fj=0, 1/(nd̄), . . . , 1/(2d̄) requires to adjust the signif-
icance level for a single test. See Sect.2.6.

2.7.2 Algorithm REDFITmc2, mode “b”: frequency uncer-
tainty

Mode “b” of the algorithm quantifies the effect of timescale
errors on the uncertainty of the frequency of a spectral peak.

1. Time series,{t (i), x(i)}ni=1.

2. Bias-corrected Lomb-Scargle spectrum estimate
(Schulz and Mudelsee, 2002), ĥ′(fj ).

3. Estimated, bias-corrected persistence time (Mudelsee,
2002), τ̂ ′.

4. Determine area,Aĥ′ , under spectrum within
[0; 1/(2d̄)].

5. Spectral peak at frequencyf ′

j , area under peak,∫ f ′
j +0.5Bs

f ′
j −0.5Bs

ĥ′(f )df =γ ·Aĥ′ .

6. Generate AR(1) data,
{
t (i), x∗

AR(1)(i)
}n

i=1
after Eq. (4).

7. Generate sinusoidal data,
{
t (i), x∗

sin(i)
}n

i=1, with

x∗

sin(i)= (2γ )1/2 sin
(
2πf ′

j t (i)
)
.

8. Mix series:x∗(i)= (1−γ )1/2 x∗

AR(1)(i)+x∗

sin(i). Note

thatVAR
[
X∗(i)

]
=(1−γ )+VAR

[
X∗

sin(i)
]
≈1.

9. Use timescale model to resample times,{t∗(i)}ni=1.

10. Bias-corrected Lomb-Scargle spectrum estimate,
ĥ′∗b(fj ), calculated from{t∗(i), x∗(i)}ni=1, scaled to
areaAĥ′ under peak atf ′∗

j . b, counter.

11. Go to Step 6 untilb=B (usuallyB=2000 is sufficient
(Efron and Tibshirani, 1993)) versions off ′∗

j exist.

12. Calculate standard error, sef ′
j
, by taking the standard

deviation of
{
f ′∗b

j

}B

b=1
.

3 Examples

We illustrate spectrum estimation using two types of palaeo-
climate archives: ice cores and speleothems. We describe
shortly the records (proxy variables) and their timescales.
The results of the application of the REDFITmc2 algorithm
are discussed with a focus on statistical aspects. Climatic
interpretations shall be presented elsewhere.

3.1 Ice core: EPICA Dome C (Antarctica)

The European Project for Ice Coring in Antarctica (EPICA)
core from the Dome C site (75◦ S, 123◦ E) has a length of
∼3260 m and covers the past∼800 000 a (EPICA Commu-
nity Members, 2006; Wolff et al., 2006; Jouzel et al., 2007).
We refer to this as the EDC core.

3.1.1 Data

The deuterium isotope (δD) time series (Jouzel et al., 2007)
records variations in air temperature at the inversion height
over the EDC site. This proxy may indicate, at a reduced ac-
curacy, also the temperature changes over the entire southern
hemisphere. The non-sea-salt calcium (nssCa) flux record
(Wolff et al., 2006; Röthlisberger et al., 2008) documents
variations in the climate variable dust (transported from
South America to Antarctica). The sea-salt sodium (ssNa)
flux (Wolff et al., 2006; Röthlisberger et al., 2008) series is a
proxy for changes in the extent of sea ice around Antartica.
The nssCa flux and ssNa flux records have rather strongly
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skewed data distributions. We employ the logarithmic trans-
formation (Röthlisberger et al., 2008) to bring the distribu-
tions closer to a symmetric/normal shape.

All three climate variables display long-term variations
during the late Pleistocene (Fig.1) and belong potentially to
the set of variables governing the ice-age climate. Spectrum
estimates may shed further light to the current understand-
ing (Raymo and Huybers, 2008; Röthlisberger et al., 2008)
of glacial–interglacial transitions. We followJouzel et al.
(2007) and divide the interval into an earlier (400–800 ka)
and a later (0–400 ka) interval.

3.1.2 Spectra, without timescale errors

First, we present the raw periodograms (Fig.2), then the cli-
mate spectra calculated with timescale errors ignored (Fig.3)
and compare finally (Sect.3.1.4) some of these results with
those resulting from taking timescale errors into account.

In the δD spectrum for the earlier interval (400–800 ka)
(Fig. 3b), from the Milankovitch periods only one peak ap-
pears to exist, at the period of obliquity variations (41 ka).
Jouzel et al.(2007) find this and also an other peak, at a pe-
riod of roughly 100 ka. For the later interval (0–400 ka) there
are three peaks in the Lomb-Scargle spectrum (Fig.3a), at
the periods 109 ka, 40 ka and 23 ka. This agrees with the
findings ofJouzel et al.(2007).

The question of the statistical significance of the Mi-
lankovitch peaks of theδD spectra is deferred to Sect.3.1.4.
Here we remark that the peaks at 64 ka and 30 ka period in
the unsmoothed periodogram forδD (Fig. 2a), do not appear
in the (more reliable) smoothed spectrum estimate (Fig.3a,
b). The reason could be that the shortness of the 400-ka in-
tervals leads to a large bandwidth,Bs, which in turn prevents
detection and separability of those peaks. An other reason
is that their appearance in the unsmoothed periodogram is
spurious owing to the large estimation variance.

The log(nssCa flux) record displays remarkably “clean”
spectra (Fig.3c, d), with power concentrated in two fre-
quency bands: approximately 100–109 ka and approximately
41–50 ka. The log(ssNa flux) spectra (Fig.3e, f), on the other
hand, show more peaks that lie above the upper red-noise lev-
els.

We also show spectra for the Holocene (Fig.4). These
were calculated using records of very high temporal resolu-
tion (δD, 55-cm resolution; nssCa flux and ssNa flux, 2-a
downsampled). A number of peaks appear, mainly in the
centennial band.

3.1.3 Timescale

The “official” timescale, called EDC3, was produced (Par-
renin et al., 2007) by employing a snow accumulation and
ice-flow model and invoking constraints in form of a set of
independent age markers. The markers are given, on the one
hand, by events such as a reversal of the Earth’s magnetic
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Fig. 2. Periodograms, EDC records;(a) δD, (b) log(nssCa flux) and
(c) log(ssNa flux). Peaks are labelled with period values (ka). Insets
show full frequency intervals. Periodograms were calculated on the
records shown in Fig.1 subsequent to linear detrending. Lomb-
Scargle parameters: OFAC=6,n50=1 and uniform taper. a.u., arbi-
trary units.

field or a volcanic eruption that has been recorded by an ab-
solutely dated palaeoclimatic archive. On the other hand,
pattern matching of the proxy climate series with insolation
series produced an other kind of absolutely dated fixpoints.

Like any palaeoclimatic timescale, the EDC3 timescale re-
lies on the validness of the assumptions made (e.g., model
formulation, model parameter values) and the precision of
numerical input values (e.g., absolute dates of markers). The
EDC3 timescale is, thus, an estimate of the true, but unknown
timescale. Parrenin et al.(2007, Table 1 therein) give as
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=0.868. a.u., arbitrary units.

error estimate (1-σ standard deviation) values of 4000 a for
T /400 000 a and 6000 a forT '400 000 a.

The application of the REDFITmc2 algorithm requires a
strictly monotonically increasing timescale. We utilized the
regression model ofHeegaard et al.(2005) in a Bayesian
manner to produce copies of{t∗(i)}ni=1 by means of the pos-
terior age distributions. The input to this method are the
EDC3 dating fixpoints and their errors (Parrenin et al., 2007,
Table 1 therein). The same method has been recently used
for timescale construction on speleothem data (Sp̈otl et al.,
2008).

A summary of the Bayesian method is as follows. Ow-
ing to their finite precision, the determined fixpoint ages may
overlap within the dating error bars. This may result in age
reversals in the simulated fixpoint timescale. To avoid such
reversals, we used a version of the Gibbs sampler, which is a

Markov-chain Monte Carlo implementation (Buck and Mil-
lard, 2004). In a first step, an initial fixpoint timescale is
simulated by drawing random numbers from the age distri-
bution of each individual fixpoint. Then a sample age for the
youngest fixpoint (Parrenin et al., 2007, Table 1 therein) is
obtained taking into account (1) its age distribution and (2)
the condition that it is younger than all other fixpoints. If that
condition is violated, the age-simulation is repeated until the
stratigraphic constraint is fulfilled. Similarly, the second fix-
point age of the section is simulated using its age distribution
and the condition that it is older than the fixpoint above but
younger than all other samples. This simulation is performed
for all fixpoint ages of the section, which completes one iter-
ation of the Gibbs sampler and results in a strictly monotoni-
cally increasing sequence of simulated fixpoints. In the next
step we applied theHeegaard et al.(2005) nonparametric
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regression model to the simulated fixpoints, providing a sim-
ulated timescale for the ice core proxy data. It may occur
that the timescale produced by theHeegaard et al.(2005) al-
gorithm does not strictly monotonically increase despite the
simulated fixpoints do increase. (Such cases were rare in
the case of the EDC simulations.) Thus, in a last step ev-
ery simulated timescale,{t∗(i)}ni=1, is tested for apparent age
reversals, and timescales with age reversals are discarded.

We apply the Bayesian method here to the ice core records
for heuristic reasons. Other approaches for constructing
{t∗(i)}ni=1 can be conceived, for example, piecewise-linear
least squares regression (Sect.3.2.2). The similarity be-
tween that (which may be labelled “frequentist”) and the
“Bayesian” approach described in the preceding paragraph
emphasizes the notion that the crucial point is not from which
statistical school the method comes but that it reflects the un-
derlying physics of the sampling of the climate archive. A
further option is a “perturbed” version of physical timescale
modelling (Parrenin et al., 2007). In the latter method, theB
model runs are performed with model parameters not fixed
but randomly drawn for each run.

3.1.4 Spectra, with timescale errors

The δD spectrum for the interval from 0 to 400 ka shows
that the 40 ka obliquity cycle is significant also when tak-
ing into account timescale errors (Fig.5a). The overall con-
fidence level depends on the number of test frequencies,
M. If we adopt a position that investigates only manifes-
tations of three Milankovitch cycles (eccentricity, obliquity
and precession) in the EDC records, thenM=3 and the over-
all confidence level of the peak is approximately equal to
1−(1−99%)×M=97% or higher (Fig.5a). The uncertainty
of the estimated peak frequency, sef ′

j
, is of the same order as

the half bandwidth.
Also the significance of the EDCδD cycle at

Tperiod=109 ka is robust against errors in the timescale
(Fig. 5a). The major uncertainty associated with this cycle
is the large bandwidth, which in turn results from the relative
shortness of the selected time interval.

The significance of the precession cycle (Tperiod=23 ka)
in δD is already not high when ignoring timescale errors
(Fig. 3a). We cannot therefore expect elevated significance
levels in the more realistic test (obtained usingt∗) and do not
show that frequency range in the plot (Fig.5a). It would be
premature to conclude that a precession component does not
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trum estimation parameters are identical to those in Figs.3a and
4b, respectively. Smooth solid black lines show (from bottom) up-
per 90%, 95% and 99% chi-squared bounds for AR(1) red-noise
hypotheses. The influence of timescale uncertainties of the EDC
record (Sect.3.1.3) is studied using algorithm REDFITmc2. The
99% bootstrap bounds (grey, wiggly lines in a and b) are obtained
from mode “a” (Sect.2.7.1) with B=10000. The frequency uncer-
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Sect.2.7.1), calculated withB=10000, are compared with the half
of the bandwidth. (In (a), the value of sef ′

j
is for Tperiod=109 ka

expected to be clearly smaller thanBs/2, and no calculations are
performed.)

exist in Late Pleistocene temperature variations over Antarc-
tica – making such a rather general statement would require
the analysis of the large body of previous evidence (multiple
records and ice cores) analysed using multiple statistical tests
(Sect.2.6). Such tests had to evaluate also the degree of cir-
cular reasoning invoked by astronomically tuning the palaeo-
climate timescales. The less general statement that obliquity

has a stronger power than precession (temperature variations,
0–400 ka), on the other hand, appears to be supported well by
the spectral analyses shown here.

The EDC log(nssCa flux) record in the Holocene has a
clear signal atTperiod=213 a (Fig.4b) that is significant at
a high level also when taking into account timescale errors
(Fig. 5b). These errors do not largely increase the accuracy
of Tperiod. The reason for the small effects is that the EDC
timescale is rather accurately known for the Holocene inter-
val. Parrenin et al.(2007, Table 1 therein) give timescale
errors ranging from 1–6 a in the latest part (last 800 a) to
50–180 a in the earlier part of the Holocene. On basis of
the height of the peak, we suppose that the significance of
the 213-year cycle is valid also when taking into account
the multiplicity of the test (no calculations performed with
higher percentiles).

There exists a considerable body of proxy evidence (Stu-
iver and Braziunas, 1993) for centennial solar activity varia-
tions during the Holocene; the cycle with a period of some-
what above 200 years is named after Hessel de Vries and
Hans Suess. The coincidence of this solar cycle with the
peak in the spectrum of log(nssCa flux) should not be inter-
preted as a proof of solar forcing of dust flux variations in
the southern hemisphere during the Holocene. Rather, this
finding may encourage to explore such relationships using
physical climate models.

3.2 Stalagmite: Q5 (Oman)

Stalagmite Q5 from the Qunf cave (17◦ N, 123◦ E) in Oman
has a length of nearly 1 m and covers the interval from 10 300
a to 2740 a before the present (B.P.), seeFleitmann et al.
(2003). Note that “present” is set toA .D. 1950.

3.2.1 Data

The oxygen isotope (δ18O) time series (Fleitmann et al.,
2003) is a proxy mainly for changes in the intensity of In-
dian Ocean monsoonal rainfall (Neff et al., 2001; Fleitmann
et al., 2003, 2007): high δ18O values correspond to low rain-
fall amounts.

The Q5δ18O record (Fig.6) displays certain long-term
(trend) features: the onset of the Indian Ocean monsoon in
the Early Holocene, a high (“optimum”) level until∼7200
a B.P. and a subsequent gradual decrease in rainfall inten-
sity, which is thought to be related to the change in solar
insolation (Fleitmann et al., 2003). The trend is punctuated
by events of extreme dryness (heavyδ18O); the most promi-
nent are the 8.2-ka and the 9.2-ka events (Fleitmann et al.,
2008). We focus here on the interval [2740 a; 8000 a], that
means, the time span after those events. The fitted trend was
subtracted prior to spectrum estimation to extract the trend-
stationary component. (REDFITmc2 subtracts, as its prede-
cessor REDFIT (Schulz and Mudelsee, 2002), segment-wise
a linear fit).
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Fig. 6. Stalagmite Q5, data and trend. The trend (grey line) is com-
posed of a function with change-points (open circles) in the early
part, fitted by least-squares and a brute-force search (Mudelsee,
2000), and a sinusoid in the late part, fitted by ordinary least-
squares. Spectral analysis focuses on the period after the 8.2-ka and
9.2-ka cold/dry extremes (arrows) (Fleitmann et al., 2008). This
time interval [2740 a; 8000 a] hasn=973 andd̄=5.4 a.

3.2.2 Timescale

Fleitmann et al.(2003, Table S1 therein) contains the U/Th
dates,tdate(j), with standard errors,sdate(j), made at stalag-
mite depthzdate(j); j=1, . . . , ndate. The number of dating
points required for bracketing the [2740 a; 8000 a] interval,
is ndate=11, the average ofsdate(j) is ∼70 a.Fleitmann et al.
(2003) constructed a piecewise linear age-depth model based
on the dating points.

To resample the times,t∗, for feeding them into the RED-
FITmc2 algorithm (Sects.2.7.1and2.7.2), we overtake the
piecewise model. We impose a constraint to ensure that the
{t∗(i)}ni=1 increase strictly monotonically.

1. Dating points,{zdate(j), tdate(j)}
ndate
j=1 .

2. Dating errors,{sdate(j)}
ndate
j=1 .

3. Timescale,t (i)=f (z(i)), i=1, . . . , n. The function
f (·) is a piecewise linear function through the dating
points.

4. Simulated dating points,
t∗date(j)=tdate(j)+sdate(j)·EN(0, 1)(j).

5. If f ∗(·), the piecewise linear function through the sim-
ulated dating points, increases strictly monotonically,
then calculate simulated timescale,t∗(i)=f ∗(z(i)),
i=1, . . . , n.

3.2.3 Spectrum, with timescale errors

The Q5 spectrum (Fig.7) exhibits a number of peaks
above the upper bounds for the AR(1) hypothesis. Peak I
(Tperiod=10.9 a) is significant also when taking the test mul-
tiplicity into account. This peak from a Holocene mon-
soon proxy record may correspond to the cycle found in the
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Fig. 7. Spectrum, Q5δ18O record;(a) low-frequency part,(b) high-
frequency part. (For a plot over the full frequency range, seeFleit-
mann et al.(2003, Fig. S5 therein).) Spectrum estimation param-
eters: OFAC=64,n50=6, Welch taper,Bs≈0.001 a−1, B=10000
(bias correction). Smooth solid black lines show (from bottom) up-
per 90%, 95%, 99% and 99.9% chi-squared bounds for an AR(1)
red-noise hypothesis (a′

=0.57); highest bound recognizes the test
multiplicity (M=NINT[n/(n50+1)]=139). (Bootstrap bounds (not
shown) are nearly identical to chi-squared bounds.) Spectral peaks
labelled from I to V, possibly reflecting solar activity variations, are
discussed in the text. Their period values are 10.9 a (I), 107 a (II),
137 a (III), 221 a (IV) and 963 a (V). The influence of timescale un-
certainties of the Q5 record (Sect.3.2.2) is studied using algorithm
REDFITmc2. The 90% bootstrap bound (the lower of the grey, wig-
gly lines in a and b) is obtained from mode “a” (Section2.7.1) with
B=10000; the 99.9% bound (upper grey lines) withB=100 000.
The frequency uncertainties sef ′

j
(horizontal bars) due to timescale

errors (mode “b”, Sect.2.7.1), calculated withB=2000, are com-
pared with the half of the bandwidth.

record of the number of sunspots, a proxy for solar activ-
ity variations, observed since early 17th century (Hoyt and
Schatten, 1997). Not as high confidence levels are achieved
by the three periods in the centennial band (II,Tperiod=107
a; III, Tperiod=137 a; IV,Tperiod=221 a). The last peak (V,
Tperiod=963 a), again strong, may be related to a peak in the
spectrum of radiocarbon variations (Stuiver and Braziunas,
1993), which contain information about changes in solar ac-
tivity.

The timescale of stalagmite Q5 is not exactly known, it
has errors stemming from dating uncertainties. How does
this influence the detectability and the frequency accuracy of
the monsoon peaks?

The upper percentiles of the red-noise alternative obtained
with timescale simulations (Fig.7) are over the whole fre-
quency interval higher than the corresponding percentiles ob-
tained from ignoring dating uncertainties, as expected. This
effect seems in case of stalagmite Q5 not excessively large,
except for higher frequencies (Fig.7b). Especially the 99.9%
level becomes inflated by the timescale errors, to such a
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degree that peak I atTperiod = 10.9 a is not significant any-
more in a multiple test. The only peak in the monsoon spec-
trum passing the hard test (timescale errors, multiplicity) is
that atTperiod = 963 a.

Feeding the resampled times into the REDFITmc2 algo-
rithm, mode “b” allows to quantify the standard error, sef ′

j
,

of the frequencies of the monsoon peaks owing to timescale
errors. Again, the effects are larger on the high-frequency
(Fig. 7b) than on the low-frequency side (Fig.7a). There,
the half of the 6-dB bandwidth is in the same order of
magnitude as the frequency standard error, sef ′

j
. On the

high-frequency side the error interval for the period of peak
I (Tperiod=10.9 a) is from 1/(1/10.9+sef ′

j
)=10.6 years to

1/(1/10.9−sef ′
j
)=11.4 years.

To summarize, the contribution of spectral analysis to an-
swering the question after the existence of solar peaks in the
spectrum of the Holocene monsoon proxy record from sta-
lagmite Q5 is as follows. Peak I corresponds within error
bars of frequency to the sunspot cycle, but taking into ac-
count timescale errors reduces its multiple test significance
considerably. Peaks II (Tperiod=107 a), III (Tperiod=137 a)
and IV (Tperiod=221 a), which are partly at periods similar to
what is found for the Holocene radiocarbon record (Stuiver
and Braziunas, 1993), are not statistically significant (multi-
ple test) even when ignoring timescale errors. Only peak V
atTperiod=963 a, also a solar cycle candidate, is significant.

It would be premature for an analysis of the Sun–monsoon
relation to stop at this point. Four lines should be explored.
First, the stability of the phasing between both signals should
be examined by means of bivariate spectral analysis. Second,
the relation can be further investigated, using the same data
sets, in the time domain by means of bandpass or harmonic
filtering (Ferraz-Mello, 1981). Third, the climate physics of
the Sun-monsoon link can be considered. This has been done
by Kodera(2004), who explained a positive correlation be-
tween solar activity and Indian monsoon strength via a weak-
ening of the Brewer-Dobson circulation in the stratosphere.
However, this was established on measurement data from
1958–1999, and the feasibility of this or other mechanisms
on longer timescales is still elusive. Fourth, other records
of Holocene monsoon variations need to be analysed. For
example,Neff et al. (2001) analysed aδ18O record from a
stalagmite from an other cave than where Q5 is from, finding
monsoon peaks atTperiod=10.7 a, 226 a and 1018 a. Com-
bining this evidence with the information from Q5 in a new
multiple test should raise the overall statistical significance.
A synopsis of evidence pro and contra the Sun-monsoon hy-
pothesis in a multiple statistical test, with timescale errors
taken into account, is a major task awaiting to be done.

4 Conclusions

The results from applying the novel REDFITmc2 algorithm
for spectrum estimation in the presence of timescale errors
support in a quantitative manner the intuition that stronger
effects on the spectrum estimate (decreased detectability and
increased frequency uncertainty) occur for higher frequen-
cies. Analogously, the results agree with the spectrum dis-
tortion (Eq.9) that is based on assuming timescale errors in
the form of independent Gaussian jitter.

The surplus information brought by the algorithm consists
of:

1. the corrected upper levels of the spectrum of the red-
noise AR(1) alternative, conjectured to be valid for
timescale errors of arbitrary form;

2. the uncertainty of the frequency of a spectral peak.

This paper is a first, introductory step. Monte Carlo simu-
lations with pre-defined spectral properties and pre-defined
timescale error models, may shed more light on the per-
formance of the REDFITmc2 algorithm for timescale errors
of arbitrary form and further support our conjecture. Such
simulations may also help to quantify the effects of mis-
specification of the timescale error model.

Regarding timescale construction, we conclude that not
only the fixpoints, dating errors and the functional form of
the age–depth model play a role. Also the joint distribution
of all time points, that means, serial correlation (jitter) and
constraints such as the stratigraphic order, determines spec-
trum estimation.

Application of REDFITmc2 to ice core and stalagmite
records of palaeoclimate allowed a more realistic evaluation
of spectral peaks than when ignoring this source of uncer-
tainty.
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