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Abstract. We present a complete expression for the total
energy associated with a rapid frictional granular shear flow
down an inclined surface. This expression reduces to the of-
ten used energy for a non-accelerating flow of an isotropic,
ideal fluid in a horizontal channel, or to the energy for a ver-
tically falling mass. We utilize thickness-averaged mass and
momentum conservation laws written in a slope-defined co-
ordinate system. Both the enhanced gravity and friction are
taken into account in addition to the bulk motion and de-
formation. The total energy of the flow at a given spatial
position and time is defined as the sum of four energy com-
ponents: the kinetic energy, gravity, pressure and the friction
energy. Total energy is conserved for stationary flow, but for
non-stationary flow the non-conservative force induced by
the free-surface gradient means that energy is not conserved.
Simulations and experimental results are used to sketch the
total energy of non-stationary flows. Comparison between
the total energy and the sum of the kinetic and pressure en-
ergy shows that the contribution due to gravity acceleration
and frictional resistance can be of the same order of magni-
tude, and that the geometric deformation plays an important
role in the total energy budget of the cascading mass. Rela-
tive importance of the different constituents in the total en-
ergy expression is explored. We also introduce an extended
Froude number that takes into account the apparent potential
energy induced by gravity and pressure.

1 Introduction

There is a wide spectrum of applications for granular flow,
ranging from large-scale snow, rock or debris avalanches in
nature, to small scale transport of granular materials in indus-
trial handling and production processes. The energy associ-
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ated with such flows is a major concern to avalanche dynam-
icists with respect to avalanche defense, hazard mitigation
and planning. Estimation of the total energy carried out by
the avalanching mass is important for civil engineers in de-
signing structures and spacing because they must withstand
at least the total destructive power of the avalanche. As an
example, cone-shaped earthen mounds are frequently built in
the lower part of the track and the run-out zone to retard and
dissipate the destructive power of an avalanche by absorb-
ing its energy from reducing velocity and shortening its flow
path. Thus, the avalanche stops before it reaches the area
needing protection (Rao, 1985; Pudasaini and Hutter, 2007).
Simple energy balance is often used to determine the runout
efficiency of the events. To analyze basic features, like the
horizontal displacementL and the vertical height dropH , the
energy conservation in the rigid mass model (Heim, 1932) is
still widely used (Hs̈u, 1975; Ui, 1983; Erismann and Abele,
2001). In this simple model a single block with massm

steadily slides down an incline with uniform basal friction.
A comparison of the energy at the beginning and end of the
motion leads to the equationgmH=W , with the gravitation
constantg and the workW done by friction. By assuming
Coulomb friction,F=µmg, whereµ is the effective coeffi-
cient of friction, one obtainsH/L=µ, whose reciprocal is
a measure of the efficiency of mass movement (Ward and
Day, 2006). This simple expression can be used to get infor-
mation about flow characteristics without requiring the full
equations of motion or determining the friction parameters
from the experimental or field observation.

Recently, the energy mechanics of geophysical mass flows
has attracted interest. Gwiazda (2005) considered kinetic
and pressure energies for avalanche flows. Similarly, Dutykh
and Dias (2009), Castro et al. (2006), and Fine et al. (2003)
addressed the kinetic and gravitational energy for tsunami
waves. Jin and Wen (2004) and Noelle et al. (2006, 2007)
took into account the kinetic, gravitational and pressure en-
ergies for steady state shallow water flow in Cartesian coor-
dinates with a lake at-rest conditions. However, none of these
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papers involves the role of the dissipative frictional resis-
tance, and thus the entire energy of the flow was not consid-
ered. Bartelt et al. (2005, 2006) and Buser and Bartelt (2009)
studied the energetics of snow avalanches by showing how
frictional processes taking place at the basal surface are re-
lated to dissipative mechanisms within the avalanching body.
They wrote an energy balance for thickness averaged flows,
including the production of kinetic energy associated with
the random movement of the snow granules; however, they
always assumed a constant flow height and steady-state flow.
Thus, they were not able to deduce how changes in flow
height affected the overall energy balance and therefore the
production of random energy.

In this paper, we focus on the general aspects of de-
formable avalanching mass rapidly sliding down a slope and
the associated total energy budget carried out by the flow.
We attempt to answer the question of how frictional dissipa-
tion and the gravity acceleration are linked to spatial varia-
tions in flow height and the flow velocity. To do so, we first
rewrite the thickness averaged frictional granular flow equa-
tions (Savage and Hutter, 1989; Pudasaini and Hutter, 2003,
2007) in terms of a single state variable, the flow height, fol-
lowing Le Roux (1998). For such equations, internal defor-
mations, which are assumed to be governed by an earth pres-
sure coefficient, can be directly related to spatial variations
of the flow height. We then present a complete total energy
function for accelerating rapid granular flows that is applica-
ble for a non-steady deformable mass sliding down inclines.
Our energy expression takes into account all contributing
factors, including kinetic energy, pressure potential, gravita-
tional potential and the thermal energy due to frictional heat.
The energy equation shows how variations in flow height
and the net driving acceleration influence the overall energy
distribution of granular masses sliding down inclines. Our
analysis does not restrict itself to purely steady flows and
therefore we can use the derived energy relations to constrain
constitutive models for granular flows. We demonstrate that
the contribution of the gravity potential and friction energies,
collectively induced by the net driving acceleration, plays a
crucial role in determining the total energy. In a series of
simulations, we then show how and under which conditions,
the term governing the internal deformations, bulk motions
and the net driving acceleration of the system influence the
total energy balance.

2 Frictional granular flow equations

We consider one-dimensional frictional granular flow equa-
tions with Coulomb basal sliding law to describe incom-
pressible rapid shear granular flows down inclined channels
(Pudasaini et al., 2008, 2005; Pudasaini and Hutter, 2007,
2003; Gray et al., 1999; Savage and Hutter, 1989). These are
thickness-averaged balance laws of mass and momentum in

slope-fitted coordinates in the form of non-linear hyperbolic
partial differential equations:

∂h

∂t
+

∂

∂x
(hu) = 0

∂

∂t
(hu) +

∂
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(
hu2

+
1

2
βh2

)
= g cosζ (tanζ − tanδ) h,

(1)

whereh is the flow depth,u the velocity parallel to the slid-
ing surface,ζ the channel slope angle, tanδ the coefficient
of friction, g the magnitude of gravitational acceleration,

β=gK cosζ andK=2 sec2 φ
(
1 ∓

√
1−cos2 φ sec2 δ

)
−1 is

the earth pressure coefficient. This coefficient is a function of
the internal (φ) and basal (δ) angles of friction that are active
during extensional motion (upper sign) and passive during
compressional motion (lower sign). The right-hand side of
the momentum balance in Eq. (1) contains the net driving
accelerations=g cosζ (tanζ− tanδ), which can be split into
the acceleration due to gravity,sg=g sinζ , and the resistance
due to friction,sf =−g cosζ tanδ. K ands incorporate the
internal interaction of the media with itself and its interaction
with the basal surface. Note thats is the source term, which
makes the system of equations inhomogeneous. If the grav-
ity is exactly balanced by friction, the mass is only subject to
internal deformation as modeled by the term∂(0.5βh2)/∂x,
which corresponds to the pressure gradient induced by the
free-surface and the anisotropy (normal stress effect) in the
granular material.

Rapid shear flows

The flows of granular material down a silo gate, or in the
form of dam-break flows, are essentially rarefied flows (Pu-
dasaini et al., 2005, 2007; Mangeney et al., 2000). One par-
ticularly interesting case is the granular flow down a steep
rectangular chute, where the material is uniformly fed from
the silo gate (Pudasaini and Kröner, 2008). In such a situa-
tion the velocity can be expressed locally as a function of the
flow depth, i.e.,u=u(h). This simplifies the situation and re-
duces the number of field variables from two to one, namely,
the flow depth. With this, Eq. (1) take the form (u′

=du/dh):(
1 hu′

+ u

hu′
+ u 2hu′u + u2

+ βh

)(
∂h/∂t

∂h/∂x

)
=

(
0

sh

)
. (2)

Since the flow is driven by the net driving acceleration, the
entire analysis depends on the parameters. Depending on
whether it is zero, positive or negative, the flow as a whole
would be non-accelerating, accelerating or decelerating, re-
spectively. However, in each case the individual particles
may accelerate or decelerate due to the free surface gradi-
ent. Here, the classical (original) shallow water or Saint-
Venant (1871) equations differ from our equations (Bouchut
et al., 2003; Rudenko et al., 2007). In the shallow water
model, the momentum transfer is only due to the free-surface
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(hydraulic) gradient of the flow. The model Eq. (1) reduce to
the shallow water equations ifK=1 andζ=φ=δ=0, which
implies that the net driving force vanishes.

3 Total energy in rapid granular flows

Le Roux (1998) derived an energy function for non-
homogeneous shallow-water equations which were written
in Cartesian (horizontal-vertical) coordinates. The non-
homogeneity emerges from the bottom elevation as measured
from a horizontal datum. A ramp between two horizontal
steps with two singularities is defined, on which rarefaction
(thinning of the medium depth) of the flow takes place. No
basal friction is considered. Therefore, the flow is driven by
the free-surface (pressure) gradient and the gradient of the
bottom elevation, which is treated as the source term. Al-
though Le Roux did not derive the total energy for this sit-
uation (he neglected the potential energy due to gravity and
the internal energy induced by friction) this concept is still
useful. If the flow takes place in a steep slope, simulations
produce better results when coordinates are defined by the
slope instead of Cartesian coordinates. Therefore, we de-
fined the coordinates along the slope and normal to it. As a
consequence we do not need to consider the bottom eleva-
tion function that was treated before as the source term by
Le Roux. Instead, the source term is composed of the gravity
component along the channel minus the Coulomb friction,
which has not yet been considered. In the present analysis,
rarefaction can take place down the entire plane. We closely
follow Le Roux (1998).

3.1 Introduction of the energy function

Absence of the net driving force

We start our analysis of a system whens=0. Sinceh6=0, the
matrix in Eq. (2) is necessarily singular, so the corresponding
determinant must vanish, implying:

h(u′)2
− β = 0. (3)

This is an exact ordinary differential equation, which can be
solved to yieldu±2

√
βh=3, where3 are constants of inte-

gration. These are Riemann invariants and remain constant
along the flow characteristicsdx/dt=u±c, wherec=

√
βh is

the wave celerity. There is some experimental evidence that
Eq. (3) has some validity. By applying geometric arguments,
Bartelt et al. (2007) also derived a similar relationship be-
tweenh andu, more precisely,h∝u2. They compared this
formula to actual granular flows and showed how the tails –
which are near steady state – agree with this result.

Presence of the net driving force

One immediate observation is that Eq. (3) no longer holds if
s 6=0. Therefore, the usual Riemann invariants do not play a

role (Le Roux, 1998). We introduce a functionE to analyze
the system for the general case:

E ′(h) = β − h(u′)2. (4)

Below, we will show thatE is anenergy function, which is
related to the total energy of the system. This is the first
energy function that we consider. By combining Eq. (4) with
Eq. (2) we obtain:

E ′(h)
∂h

∂x
= s,

∂E(h)

∂x
= s. (5)

This shows that the spatial derivative ofE is the net acceler-
ation of the system. Again from the mass balance in Eq. (2)
and applying the chain-rule of differentiation, we get:

∂E(h)

∂t
= −s

d

dh
(hu). (6)

The time rate ofE is also related to the net driving acceler-
ation, and therefore the energy functionE is constant if the
system does not accelerate. Even if the flow is stationary
(which here means the flux is constant with respect to the
flow depth),E is not constant (although the time rate ofE
vanishes) because this does not apply to the partial deriva-
tive with respect to space. Equations (5) and (6) lead to the
following representation of the energy function

E(h) = sg (x − xd) + sf x + λ(t), (7)

wherexd is the constant of integration, which is the distance
from the point of the mass release along the channel to the
point where the flow hits the horizontal reference datum.
Gravitational potential energy is maximum at the position
of the mass release where the frictional dissipation is min-
imum (or zero), and vice versa at the reference datum. This
is the reason for choosing different but appropriate references
for sg andsf , respectively, in Eq. (7). Since the “granular-
graph” varies in space for rarefied granular flows on inclines,
∂h/∂x 6=0. With Ext=Etx , this leads to the following exact
representation of the granular-flux or momentum,

hu = ηh + µ, (8)

whereη andµ are constants of integration andη is the flux
gradient, so has a dimension of a velocity. This establishes a
simple and explicit linear relationship between the flux and
the flow height.

An alternative representation ofE is achieved by combin-
ing Eq. (4) with Eq. (8):

E(h) =
1

2
(u − η)2

+ βh. (9)

Combining the two equivalent representations in Eqs. (7) and
(9), we obtain

E(h) =
1

2
(u − η)2

+ βh

≡ sg[(x − xd) − ηt] + sf [x − ηt] + λ0, (10)
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whereλ0 is a constant. Note that the constantsη, µ andλ0
are problem-specific and their values can be determined dif-
ferently for different problems, e.g., dam-break flows, roll
waves, splash flows, or a flow discharged from a silo (Le
Roux, 1998; Pudasaini and Kröner, 2008). The right-hand
side of Eq. (10) shows that the energy functionE is a soli-
tary wave, which travels with speedη. Here,s=sg+sf is the
amplifying factor of the wave andλ0−sgxd is the absolute
shift.

Riemann variables and rarefied flows

The model Eq. (1) constitutes a system of hyperbolic
partial differential equations. They can be written in
the general vectorial construct of the Riemann vari-
ables W=W (h, u) and slopes of the characteristic lines
RK=RK(h, u) as ∂W/∂t+RK ·∂W/∂x=S, where S

is the source term withW=(u+2
√

βh, u−2
√

βh)T ,
RK=(u+

√
βh, u−

√
βh), and S=(s, s)T , where T is

the transpose. For rarefied waves, such as induced by
dam-break and silo discharge, the method of characteristics
and the Riemann variables can be used to construct exact
solutions for unknown fieldsh andu in terms of a similar-
ity variableξ=x/t (thus rarefaction fan). The solutions read:
(h, u)(ξ)=

[
(2

√
βh0−ξ−0.5st)2/9β, 2(

√
βh0+ξ−2st)/3

]
,

whereh0 is the initial flow height.

3.2 Constant flux and the total energy

If there is a relatively large amount of granular material fed
from the outlet of the silo or the source, and if the flow takes
place in an inclined channel, the flow quickly shears down
the channel and the stationary or steady-state condition (con-
stant flux) may prevail for a long time throughout the channel
(Pudasaini et al., 2007; Pudasaini and Kröner, 2008). A sta-
tionary flow can be characterized by settingη=0 in Eq. (10).
Then the energy function takes the form:

E(h) =
1

2
u2

+ βh ≡ sg (x − xd) + sf x + λ0. (11)

It is interesting to observe the two expressions forE in
Eq. (11). The right-side of the expression explicitly contains
s but the left does not, which is influenced bys intrinsically
through the dynamical field quantitiesu andh. Although the
right-hand side does not containu andh explicitly, the effect
is implicit through the travel distancex.

In the following we consider only the left side forE in
Eq. (11). The first term 0.5u2 corresponds to thekinetic
energy(Ekin) and the second termβh is the pressure po-

tential energy
(
E

p
pot

)
due to the pressure gradient.E is

a convex function ofh. The energy level goes to infin-
ity for either h→∞ or h→0, which corresponds physi-
cally to a very large inflow height at the top of the chan-
nel (silo gate), or a very thin flowing layer at long dis-
tances in the channel, respectively. Analysis of the re-
sult is rather simple. The situationh→0 implies that,

E
p
pot tends to zero butEkin tends to infinity. In con-

trast, h→∞ implies that, Ep
pot tends to infinity butEkin

reduces to zero. The energy function attains its minimum
Emin=0.5µ2/h2

min+βhmin with hmin=µ2/3/β1/3 for which
the critical velocity isumin=

√
βhmin .

We now define thetotal energy functionE, which repre-
sents the total energy of the system at a given position and
time (this is the second energy function that we consider):

E(h) =
1
2u2

+ βh + sg (xd − x) − sf x ,︸︷︷︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸
Ekin E

p
pot E

g
pot −Efric

(12)

where we identify the kinetic energy asEkin, the two po-
tential energies byEp

pot and E
g
pot (these are caused by the

free-surface gradient of the flow with respect to the inclined
sliding surface and the gravity in the direction of motion, re-
spectively) and the thermal or internal energy induced by the
frictional dissipation along the bed byEfric . The thermal en-
ergy is distributed among the sliding mass, the basal surface
and possibly to the ambient environment that collectively de-
fine a closed system. For a stationary flow,E is equal toλ0
and consequently a conserved quantity. If the flow is non-
accelerating, i.e., the gravity is exactly balanced by the ma-
terial friction, the sum of the kinetic and the potential energy
due to pressure always remains constant. This is the total me-
chanical energy for a flow when the net driving acceleration
is neglected. The third energy function is:

6 := Ekin + E
p
pot

(
= E − E

g
pot − Efric

)
. (13)

Otherwise, there is an additional contribution,E
g
pot+Efric ,

induced by the net acceleration. This clearly demonstrates
that even for a constant flux, the energy6 is not constant.
It must incorporate the enhancing or dissipative contribution
due to the non-vanishing acceleration, and take into account
the gravitational and frictional forces. In generalE and6 are
related byE=6+E

g
pot+Efric . For non-accelerating and non

stationary flowsE and6 differ only by sgxd : E=6+sgxd .
For accelerating but stationary flows, the energy functionE
takes a physical meaning:E=6.

3.3 Extended total energy function

For a non-stationary flow the total energy Eq. (12) is no
longer a constant. Instead the following applies:

E = λ0 −
1

2
η2

− sηt + uη, (14)

as deduced from Eqs. (10) and (12). The time dependence
of E is a consequence of the time-dependence of the flow
height, which leads to the fact that the force induced by
the free-surface gradient is not conservative. This becomes
more clear when calculatingdE/dt from Eq. (14), and using
the mass and momentum conservation together with Eq. (8):
dE/dt=−ηβ∂h/∂x=β∂h/∂t, where η=u+hdu/dh is a
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non-trivial wave speed. In the following the physical mean-
ing of the total energy function is explained in more detail.

To get the total energy function in proper dimensional
form we multiply Eq. (12) by the massm=ρ (per unit vol-
ume, whereρ is the bulk density of the granular material)

E(h) =
1
2mu2

+ mβh + msg (xd − x) − msf x .︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Ekin E

p
pot E

g
pot −Efric

(15)

Note that the energiesE, Ekin, Ep
pot, E

g
pot andEfric have been

redefined to include the multiplicity ofm. The contribution
E

g
pot+Efric is of particular importance as it is driving the en-

tire energy dynamics. The potential energy,E
p
pot+E

g
pot, at-

tains a maximum value at the point of mass release (e.g., the
silo gate) and becomes a minimum (or may even reduce to
zero if the flow depth is negligible) as the flow hits the refer-
ence horizontal datum. At that moment the potential energy
is transferred to the kinetic energy,Ekin, and the friction in-
duced internal energy,Efric .

In order to obtain the energy for an isotropic friction-
less ideal fluid, we setK=1 and φ=δ=0. Then, with
β=gK cosζ andsg=g sinζ , Eq. (15) reduces to:

E(h) =
1

2
mu2

+ mg cosζ h + mg sinζ (xd − x) . (16)

For the energy of an ideal fluid in a horizontal channel(ζ=0)

we obtain the often used formE=0.5mu2
+mgh. Therefore,

we conclude that Eq. (15) is theextended form of the total
energybudget associated with rapid (or creeping) granular
flows down a channel.

Finally, the most simple forms of total energies for granu-
lar flows are

ζ = 0◦
: E(h) =

1

2
mu2

+ mgKh + mg tanδ x, (17)

ζ = 90◦
: E(h) =

1

2
mu2

+ mg (xd − x) . (18)

In Eq. (17), the only deformation is due to the pressure po-
tential and the internal anisotropic pressure (K 6=1), and re-
sisted by the basal friction because the material is in contact
with the channel. In this case, the flow can be rapid or creep-
ing (like viscous deformation), depending on the free-surface
gradient. By contrast, in Eq. (18) the potential energy is due
only to the vertical drop of the material position(xd−x) be-
cause there is a free-fall of the material that is not in contact
with the sliding surface, and the basal and the internal fric-
tions are ineffective. This means that the material does not
deform due to the change in the internal pressure or the basal
shearing. Therefore, in Eq. (18) the total energy takes the
usual form for a rigid body moving in a gravitational field.
Moreover, in practice it is desirable to consider kinetic and
pressure potential energies, and gravity potential energy to-
gether with the friction contribution. Hence, Eq. (15) repre-
sents a unified and complete form of the total energy.

Importance of different terms in the total energy function

It is desirable to properly understand the relative importance
of different terms in the total energy function in Eq. (15).
The termmβh is very important and plays a dominant role
when there is a large height gradient. Examples include the
situation just after avalanche release and the onset of dam-
break flows (both in inclined and horizontal surfaces), and
the flow hitting defense structures (Pudasaini and Kröner,
2008). So,mβh can cause a massive acceleration or decel-
eration in either situation. Here, the momentum transfer is
mainly due to the hydraulic (pressure) gradient. To correctly
model dam-break flows, one must properly take into account
the fluid pressure gradient. This arises because in situations
of rapidly spreading non-shallow (deep) flows, basal friction
(Efric) plays virtually no role and the gravity potential (E

g
pot)

is dominated by the pressure potential (E
p
pot). On the other

hand, for shallow flows, the pressure gradient (mβh) is neg-
ligible whereas gravity and friction forces are effective. At
high elevations, gravity potential plays dominant role, while
in the lower part of the channel the friction dominates the en-
ergy budget. A part of the gravitational potential energy goes
to the kinetic energy (Ekin) while the remaining energy is lost
to frictional heat, which goes to the thermal (internal) energy
in the granular body, the basal surface and the surrounding.
This reduces the momentum of the flow.

Extended Froude number and its significance

With the definition of the total energy in Eq. (15), we
can now define an extended Richardson or Froude number,
which accounts for the potential energies,E

g
pot and E

p
pot,

associated with the accelerating granular flows down in-
clines and the pressure. Theextended Froude numberis
defined as the ratio between the kinetic and the potential
energy: Fr=u/

√
βh+sg (xd−x). In the classical defini-

tion of the shallow-water or granular flow Froude number,
the potential energy associated with the surface elevation,
E

g
pot=msg (xd−x), is not considered. The extended Froude

number differs substantially from the classical Froude num-
ber for higher surface elevations. The termβh emerges from
the change of the geometry of the moving mass along the
slope. Dimensional analysis suggests that for shallow flows
βh is of order�1, while u and sg(xd−x) are both of or-
der unity. If the mass is shallow with a virtually bed-parallel
free-surface, thenβh can be disregarded. In this situation, if
the gravity potential is not taken into account, then Fr is un-
bounded even though the kinetic energy is bounded. So, for-
mally considering the additional contribution due to the grav-
itational potential energy, the singularity in Fr is removed.
This explains the significance of the new definition of the
Froude number.
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Fig. 1. (a)Energy curvesE , 6 and differenceE−6 in accelerating rapid frictional granular flows down a steep channel with respect to the
flow height.(b) Same as in (a) but with respect to the flow length.u andh are obtained from simulation of Eq. (1). Flow is from right to left.

3.4 Simulation results for the total energy

In the following we consider the total energyE for a non-
stationary flow as given by Eq. (15) and compare it with6,
which is defined in Eq. (13) and given by the sum of the ki-
netic and the potential energy due to pressure. Therefore,
6 is the obtained energy if one neglects the net driving ac-
celeration. This comparison allows us to evaluate additional
contributions to the total energy of the system due to the
potential energy induced by gravity and the frictional heat
internal (thermal) energy. We simulated a rapid frictional
granular flow down a channel with different inclines. Our
analysis is based on uniform material inflow height of 1 m
at the silo gate (x=0), and the outlet velocity is assumed to
be 0.5 ms−1. The internal and basal friction angles and the
density are set toφ=33◦, δ=25◦, andρ=1750 kg m−3. The
flow variablesu andh are obtained by numerically integrat-
ing Eq. (1) with TVD-NOC scheme (Pudasaini and Kröner,
2008). It is worth mentioning that the travel distance and the
flow height are reciprocally related. This relation depends
on many physical and geometrical parameters and flow con-
figurations. As the travel distance increases, the flow height
quickly decreases and the flow velocity increases.

In Fig. 1a both energiesE and6 are shown as a function
of the flow heighth for an accelerating flow down a channel
with inclines fromζ=25◦ up to 50◦. At the silo gate both po-
tential energies are maximum and the kinetic and the thermal
energy are zero. As the flow hits the horizontal reference da-
tum (x=xd ), the gravitational potential energy becomes zero,
the pressure potential energy reaches a minimum (or is even
negligible), and the kinetic energy and thermal energy attain
their maxima. Hence, bothE and6 obtain maxima atx=0
andx=xd . Furthermore, the simulations reveal that asζ in-

creases,E also increases (for a givenh), because of the asso-
ciated higher potential energy. But for all slope angles6 is
smaller thanE because it does not take into account the pos-
itive net driving acceleration. Therefore,6 underestimates
the associated energy of the flow, as anticipated. This be-
comes more clear with the energy difference curves,E−6

(in the inset). For the caseζ=δ=25◦, the difference is con-
stant over the entire channel (blue line), but forζ>δ, the flow
is accelerating,E−6 is very large and strongly varies. For
a large range ofh, this difference is bigger for higher dif-
ferences between slope and basal friction angles,ζ−δ. This
analysis can also be complemented by plotting the energies
as a function of the flow lengthx (Fig. 1b). The total energy
decreases very rapidly just below the silo gate because the
flow height decreases strongly, as does the pressure potential
energyEp

pot. This is also the reason for the constant value of
the energy difference curve for big flow heights in Fig.1a.
The interesting point in the above analysis is that both total
energy functions attain their minima, and thatE is always
bounded from below by6.

To complete the discussion, we also present the total en-
ergy curves for decelerating flows (δ>ζ ) and the correspond-
ing energy difference curves in Fig.2. Here,φ andδ are kept
fixed as before, but the channel slope angles are decreased to
ζ=25◦, 20◦, 15◦ and 10◦, respectively. Therefore, the flow
is driven only by the surface gradient and resisted by the net
driving deceleration (basal friction in excess to the gravity
load). The results are analogous to Fig.1, except that the en-
ergy difference (E−6, in the inset) is now increasing instead
of decreasing alongx due to the deceleration. Furthermore,
the energy difference is bigger for higher differencesδ−ζ

over a large portion of the channel. So, in general, for an
accelerating or decelerating flow the magnitude ofE−6 is
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Fig. 2. (a)Energy curvesE , 6 and differenceE−6 in decelerating frictional granular flows down a steep channel with respect to the flow
height.(b) Same as in (a) but with respect to the flow length.u andh are obtained from simulation of Eq. (1). Flow is from right to left.

related to the absolute value of(ζ−δ). It is very important to
properly include the net driving acceleration (deceleration)
while calculating the total energy for flows when the friction
(gravity) is dominated by gravity (friction). The net driving
acceleration (or deceleration) plays an important role in de-
termining the total energy.

Influence of the earth pressure coefficient

Recently, Pudasaini and Kröner (2008) studied the influence
of the earth pressure coefficient on the dynamics of the rapid
granular flows down an inclined channel. Their results, as
compared with the experimental data, demonstrated that it
is essential to employ the anisotropic earth pressure coeffi-
cient (K 6=1) in contrast to the isotropic pressure (K=1). For
extensional flow, withφ=33◦, δ=25◦, K=0.7656, which is
less than unity. Therefore, by usingK=1, the pressure poten-
tial energy would be increased non-physically by more than
23%. This influence is substantial when the flow height and
the difference in the friction angles (φ−δ) are larger, mainly
in the vicinity of the silo gate. The influence ofK is larger
for 6 than forE.

Total energy of the experimental granular channel flow

We now consider an experiment with granular quartz parti-
cles of mean diameter 5 mm flowing down a 2 m long steep
rectangular channel inclined at an angle 50◦. The opening
gap of the silo gate is 0.06 m andφ andδ are as before (Puda-
saini et al., 2007). The total energy curves, both with respect
to the flow height and the flow length, are shown in Fig.3.
The data is used to analyze the lower part of the channel. As
explained before, the energy curves show large deviations of

6 from E. However, we do not have enough data to show
how these energy curves would attain their minima like in
Fig. 1. As inferred from the simulation, for6 the energy
minimum lies on the right side of the curve whilst forE on
the left. Moreover, Figs.1 and3 represent similar qualitative
behavior but for different boundary conditions.

The curvesE−6 in Figs.1–3 clearly demonstrate that the
potential energyEg

pot and the friction energyEfric can not be
neglected in the energy considerations for an accelerating (or
decelerating) flow of frictional granular materials down slop-
ing surfaces. Otherwise, one gets a substantial discrepancy to
the actual total energy. This discrepancy can be of the order
of tens of kilojoule per cubic meter of material for even one
meter or a few centimeters of silo gate opening. This would
be substantially higher for natural avalanches or debris flows
consisting of up to 1012 m3 of material.

4 Conclusions

This paper considered the total energyE; carried out by the
rapidly deforming and flowing frictional granular material
down inclined slope; that takes into account the net driving
acceleration of the system, spatio-temporal variations in flow
height and the flow velocity. To derive an expression forE,
we introduced an auxiliary energy functionE which mani-
fests itself as a solitary wave.E has some interesting fea-
tures. It is related to the determinant of the corresponding
matrix of the flow equations. The spatial derivative ofE is
the net-acceleration of the system and thus it is a constant if
the system does not accelerate. For the case of an acceler-
ating but stationary flow, this function is given by the sum
of the kinetic and pressure potential energy associated with
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Fig. 3. (a)Energy curvesE , 6 and differenceE−6 in an accelerating rapid frictional granular flow down a steep channel with respect to
the flow height.(b) Same as in (a) but with respect to the flow length.u andh are obtained from the experimental data (Pudasaini et al.,
2007). Flow is from right to left.

the variations in flow height and bulk deformations. There-
fore, E supplies these two energy contributions to the total
energyE, which additionally takes into account the gravita-
tional potential and the dissipative frictional energy essential
for modelling granular flows. The dissipative frictional en-
ergy is induced by the Coulomb friction force acting at the
basal surface. It characterizes, together with the pressure po-
tential energy (which takes into account the extensional or
compressional nature of the flow with an anisotropic earth
pressure coefficient), the whole frictional behavior of the
granular flow. Since the force induced by the free-surface
gradient is not conservative, the total energyE is not con-
stant for non-stationary flows. It is a conserved quantity only
for a stationary flow. If the flow is non-accelerating the to-
tal mechanical energy of the flow, as the sum of the kinetic
and the potential energy due to pressure, always remains con-
stant. When the media is an ideal fluid and the net-driving
force vanishes, the total energy reduces to an often used en-
ergy form. Simulation and experimental results demonstrate
that the influence of the net-driving force and the geomet-
ric deformation of the sliding mass on the total energyE is
substantial. We have also defined the extended Froude num-
ber that differs substantially from the classical thin-film flow
Froude number for higher surface elevations in that it takes
into account the additional contribution due to gravitational
potential energy not previously considered. Finally, we men-
tion that this paper enhances our understanding of mass flows
and offers an explicit expression for the total energy for ac-
celerating flows of frictional material down inclined slopes.
Practitioners can find the energy functions derived here use-
ful in dealing with the avalanche defense, hazard mapping

and planning. A practical application is to help derive en-
gineering formulas describing the dissipation of flow energy
when avalanches strike retarding structures such as catching
dams and breaking mounds.
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Hsü, K.: On sturzstroms-catastrophic debris streams generated by
rockfalls, Geol. Soc. Am. Bull., 86, 129–140, 1975.

Jin, S. and Wen, X.: An efficient method for computing hyperbolic
systems with geometrical source terms having concentrations, J.
Comput. Math., 22, 230–249, 2004.

Le Roux, A. Y.: Riemann solvers for some hyperbolic problems
with a source term, in: ESIAM Proceedings/Actes du 30EME
Congres d’Analyse Numerique: CANum’98, 75–90, 1998.

Mangeney, A., Heinrich, P., and Roche, R.: Analytical solution for
testing debris avalanche numerical models, Pure Appl. Geophys.,
157, 1081–1096, 2000.

Noelle, S., Pankratz, N., Puppo, G., and Natvig, J.: Well-balanced
finite volume schemes of arbitrary order of accuracy for shallow
water flows, J. Comput. Phys., 213, 474–499, 2006.

Noelle, S., Xing, Y., and Shu, C.-W.: High Order Well-balanced
Finite Volume WENO Schemes for Shallow Water Equation with
Moving Water, J. Comput. Phys., 226, 29–58, 2007.

Pudasaini, S. P. , Hsiau, S.-S., Wang, Y., and Hutter, K.: Velocity
measurements in dry granular avalanches using Particle Image
Velocimetry-Technique and comparison with theoretical predic-
tions, Phys. Fluids, 17(9), 93301, doi:10.1063/1.2007487, 2005.

Pudasaini, S. P. and Hutter, K.: Rapid Shear Flows of Dry Granu-
lar Masses Down Curved and Twisted Channels, J. Fluid Mech.,
495, 193–208, 2003.

Pudasaini, S. P. and Hutter, K.: Avalanche Dynamics: Dynamics
of Rapid Flows of Dense Granular Avalanches, Springer, Berlin,
Germany, 2007.

Pudasaini, S. P., Hutter, K., Hsiau, S.-S., Tai, S.-C., Wang, Y., and
Katzenbach, R.: Rapid Flow of Dry Granular Materials down
Inclined Chutes Impinging on Rigid Walls, Phys. Fluids, 19(5),
053302, doi:10.1063/1.2726885, 2007.

Pudasaini, S. P. and Kröner, C.: Shock waves in rapid
flows of dense granular materials: Theoretical predictions
and experimental results, Phys. Rev. E, 78(4), 041308,
doi:10.1103/PhysRevE.78.041308, 2008.

Pudasaini, S. P., Wang, Y., and Hutter, K.: Modelling Debris Flows
Down General Channels, Nat. Hazard Earth Sys., 5, 799–819,
2005.

Pudasaini, S. P., Wang, Y., and Hutter, K.: Rapid motions of free-
surface avalanches down curved and twisted channels and their
numerical simulation, Philos. T. R. Soc. A, 363(1832), 1551–
1571, 2005.

Pudasaini, S. P. , Wang, Y., Sheng, L.-T., Hsiau, S.-S., Hut-
ter, K., and Katzenbach, R.: Avalanching granular flows down
curved and twisted channels: Theoretical and experimental re-
sults, Phys. Fluids, 20(7), 073302, doi:10.1063/1.2945304, 2008.

Rao, N. M.: Avalanche Protection and Control in the Himalayas,
Defence. Sci. J., 35(2), 255–266, 1985.

Rudenko, O. V., Sobisevich, A. L., and Sobisevich, L. E.: Nonlin-
ear dynamics of slope flows: simple models and exact solutions,
Dokl. Earth Sci. 416(7), 1109–1113, 2007.

Saint-Venant, A. J. C.: Theorie du mouvement non-permanent des
eaux, avec application aux crues des rivieres et a l’introduction
des marees dans leur lit, Comptes rendus des seances de
l’Academie des Sciences, 36, 174–154, 1871.

Savage, S. B. and Hutter, K.: The motion of a finite mass of granular
material down a rough incline, J. Fluid Mech., 199, 177–215,
1989.

Ui, T.: Volcanic dry avalanche deposits-identification and compari-
son with nonvolcanic debris stream deposits, J. Volcanol. Geoth.
Res., 18, 135–150, doi:10.1016/0377-0273(83)90006-9, 1983.

Ward, S. N. and Day, S.: Particulate kinematic simulations of de-
bris avalanches: interpretation of deposits and landslide seismic
signals of Mount Saint Helens, 1980 May 18., Geophys. J. Int.,
167, 991–1004, 2006.

www.nonlin-processes-geophys.net/16/399/2009/ Nonlin. Processes Geophys., 16, 399–407, 2009


