
Nonlin. Processes Geophys., 16, 365–372, 2009
www.nonlin-processes-geophys.net/16/365/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Nonlinear Processes
in Geophysics

On the ionospheric coupling of auroral electric fields

G. T. Marklund

Space and Plasma Physics, School of Electrical Engineering, Royal Institute of Technology, KTH 10044 Stockholm, Sweden

Received: 22 December 2008 – Revised: 9 April 2009 – Accepted: 20 April 2009 – Published: 30 April 2009

Abstract. The quasi-static coupling of high-altitude poten-
tial structures and electric fields to the ionosphere is dis-
cussed with particular focus on the downward field-aligned
current (FAC) region. Results are presented from a pre-
liminary analysis of a selection of electric field events ob-
served by Cluster above the acceleration region. The de-
gree of coupling is here estimated as the ratio between the
magnetic field-aligned potential drop,18II , as inferred from
the characteristic energy of upward ion (electron) beams for
the upward (downward) current region and the high-altitude
perpendicular (toB) potential,18⊥, as calculated by inte-
grating the perpendicular electric field across the structure.
For upward currents, the coupling can be expressed analyti-
cally, using the linear current-voltage relation, as outlined by
Weimer et al. (1985). This gives a scale size dependent cou-
pling where structures are coupled (decoupled) above (be-
low) a critical scale size. For downward currents, the current-
voltage relation is highly non-linear which complicates the
understanding of how the coupling works. Results from this
experimental study indicate that small-scale structures are
decoupled, similar to small-scale structures in the upward
current region. There are, however, exceptions to this rule
as illustrated by Cluster results of small-scale intense electric
fields, correlated with downward currents, indicating a per-
fect coupling between the ionosphere and Cluster altitude.

1 Introduction

A key issue in magnetospheric and auroral physics is how
electrons and ions, producing discrete aurora and contribut-
ing to planetary plasma escape, gain their energy. Particle
acceleration is a key issue for a vast number of phenomena
in space and astrophysical plasmas. It was the main scientific
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objective for the Viking and Freja satellite missions which
made many pioneering contributions on this topic (Mark-
lund et al., 2004). During auroral activity, quasi-static elec-
tric potential structures are formed in the transition region
between the ionosphere and the magnetosphere. In the up-
ward current region, negative potential structures associated
with converging electric fields and an upward magnetic-field-
aligned component, are formed at altitudes between 1 and 2
RE . When passing through such potential drops, the Earth-
ward moving electrons will increase their energy, resulting
in a penetration deeper into the atmosphere and an intensi-
fication of the aurora. In the downward current region, po-
tential structures of opposite polarity, with diverging elec-
tric fields and a downward pointing electric field, are formed
at altitudes between 1000 and 4000 km, accelerating elec-
trons away from Earth. Characteristics of the downward cur-
rent region and the duality between the two opposite auroral
current branches, were discussed by Marklund et al. (1994,
1997) using Freja observations and by Marklund et al. (2001,
2004, 2006) using Cluster observations. FAST satellite data
have added much new insight into the physics of the aurora,
including the downward current region (Carlson et al., 1998;
Ergun et al., 1998, 2001; Lynch et al., 2002). In addition
to quasi-static acceleration, acceleration by inertial or kinetic
Alfv én waves, play a crucial and sometimes dominant role
for certain types of aurora (Chaston et al., 2003). Other
types of wave particle interaction and turbulence occur in
both the upward and downward current region, as discussed
by Paschmann et al. (2003). In the downward current region,
there are two kinds of turbulence known to be operative, a
current-driven ion cyclotron turbulence and an electrostatic
solitary wave turbulence (Jasperse et al., 2006 a, b).

Weimer et al. (1985) studied the coupling of high-altitude
electric fields to the ionosphere. They used a linear current-
voltage relation applicable to upward but not to downward
currents, and derived a critical scale size, depending on the
ratio a/6P. (where a is the field-aligned conductance and6P

is the height-integrated Pedersen conductivity). For typical
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Fig. 1. Reproduction from Weimer et al. (1985) showing the ratio
between the low-altitude electric field E2, measured by Dynamics
Explorer-2 and the high-altitude electric field E1, measured by Dy-
namics Explorer 1, versus 1/λ (wavelength or scale size) at the field
line base.

parameter values, the critical scale size was found to be of the
order of 100 km. Larger (smaller) structures were found to
be coupled to (decoupled from) the ionosphere, as illustrated
in Fig. 1, showing the ratio between the low-altitude electric
field E2, measured by Dynamics Explorer-2 and the high-
altitude electric field E1, measured by Dynamics Explorer 1,
versus the inverse of the wavelength (or scale size) at the field
line base.

The coupling of electric fields in the downward current re-
gion depends critically on the current-voltage relation, which
has been found to be highly non-linear, as shown in Fig. 2
from Elphic et al. (1998). A problem is that the depletion
process limits the time that charge carriers are available in
the original current channel. A way for the current sheet
to adjust for this is to broaden, as has been observed for a
few Cluster events (Marklund et al., 2001, 2006; Aikio et al.,
2004) and in numerical simulations (Karlsson and Marklund,
1998; Streltsov and Marklund, 2006). The current-voltage
relationship in the downward current region has been sub-
ject to several recent theoretical studies, a few of which are
discussed below.

Temerin and Carlson (1998) used the continuity equation
to determine how the density of the ionospheric electrons
depends on the current and to find a potential that reduces
the density of magnetospheric electrons by the same amount
to keep the plasma quasi-neutral. The current-voltage rela-
tion was determined for simple profiles of the background

 

Fig. 2. Reproduction from Elphic et al. (1998) showing the relation
between potentials and currents for different ranges of the magnetic
field-aligned conductance.

ion density and the current found to be a few times larger
in the downward current region compared to currents in the
upward current region for similar potential drops. Potential
drops up to a few thousand volts, as observed by FAST, are
a necessary consequence of the observed current densities in
the downward current region.

Using quasi-neutrality and steady-state plasma kinetic
equations, Jasperse (1998) derived a model for the genera-
tion of a self-consistent downward pointing parallel electric
field, an ion conic, and up-flowing field aligned electrons,
all characteristic features of the downward field-aligned cur-
rent region. Vedin and R̈onnmark (2005) used the station-
ary Vlasov equation to derive the self-consistent potential in
an auroral flux tube carrying downward current. The poten-
tial was found to peak at values of a few kV, correspond-
ing to altitudes around 1RE and downward FAC densities of
10µA/m2. Below the peak there is a downward electric field
and above the peak a weak upward electric field resulting in
a very small potential difference between the ionosphere and
the magnetosphere.

Hwang et al. (2006 a, b) used experimental data from the
FAST satellite to estimate the coupling in the downward cur-
rent region. They studied a large number of electric field
events and found significant differences between sheet-like
and curved structures, as illustrated in Fig. 3 for each of these
structures. The panels show from top to bottom, time energy
spectrogram for electrons, the axial electric field, the spin
plane electric field, and the eastward and northward electric
field components, the Poynting flux, and the perpendicular
electric field (green line) together with the derivative of the
characteristic electron energy (black line). For the sheet-like
structure the Poynting flux is upward and the ratio between
the electric field and the derivative of the characteristic elec-
tron energy (their coupling parameter), is 0.3 indicating a
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Fig. 3. Reproduction from Hwang et al. (2006) showing FAST
data obtained for a sheet-like structure (left) and a curved struc-
ture (right). Panel 1 shows a time energy spectrogram for electrons.
Panels 2–4 show the axial, the spin plane, and the eastward and
northward electric field components, respectively. Panel 5 shows
the Poynting flux and panel 6, the derivative of the characteris-
tic electron energy (black line) and the perpendicular electric field
(green line). Note that the ratio between these two parameters, the
coupling ratio, is significantly less than one (around 0.3) for the
sheet-like structure (left) and about 1 for the curved structure (right).

strong coupling. For the curved structure the results showed
a downward directed Poynting flux and a coupling ratio of 1,
indicating a decoupling. From their dataset they concluded
that potentials associated with curved structures, such as spi-
rals and folds, had a tendency to be decoupled from the iono-
sphere (0.5<η<1) whereas potentials associated with sheet-
like structures, such as black arcs, were more coupled to the
ionosphere (0<η<0.5). The structures had typical scale sizes
of a few ten km, slightly larger than the scale sizes of 5–
10 km derived from Cluster data.

Here, we shall apply a similar method to that used by
Hwang et al. (2006a, b) to estimate the coupling of high-
latitude electric fields to the ionosphere. Instead of FAST
data we will use Cluster data collected high above the accel-
eration region as representative of the high-altitude electric
field. The method is described in Sect. 2. The data were
obtained by the electric field instrument (EFW, Gustafsson
et al., 1997), the fluxgate magnetometer (FGM, Balogh et
al., 1997), the electron instrument (PEACE, Johnstone et
al., 1997) and the ion instrument (CIS, Reme et al., 1997).
Section 3 presents and discusses the results for eight auro-
ral events, six of which are from the downward current re-
gion, and two of which are from the upward current region.
The events were selected using various selection criteria de-
scribed below. It should be noted that the particle analyses in
this study were performed by eye inspection rather than by
using the particle distributions for calculating the characteris-
tic energy of the ions and electrons. A more comprehensive
study of a much larger number of Cluster events and using

 
Fig. 4. Schematic illustrating the relationship between the high- and
low-altitude auroral electric potential and between the parallel and
the perpendicular (toB) potential.

a more refined analysis of the particle data is planned for a
forthcoming publication.

2 Methodology

The degree of coupling of auroral potentials is here cal-
culated as the ratio between the parallel potential drop,
18II and the perpendicular potential,18⊥. The former
is given by the characteristic energy of upward ion beams
(in upward current regions), or upward electron beams (in
downward current regions), and the latter by integrating the
perpendicular electric field,E⊥. The ratiok=18II/18⊥

reveals whether the electric field couples completely (k=0),
is decoupled from (k=1), or, partly couples (0<k<1) to
the ionosphere. The relationship between the high and
low-altitude electric field and the potentials is illustrated in
Fig. 4. (The coupling ratio used by Hwang et al. (2006 a,
b) was the derivative of the characteristic energy (e18II )

divided by the perpendicular electric field). The Cluster
data were obtained well above the top of the acceleration
region of the downward current region and typically above
the acceleration region of the upward current region. The
estimate of18⊥ refers to the time when Cluster crosses
the structure (att=t0), whereas the18II estimate refers
to an earlier time (t=t0−1t i) when the ions (electrons)
exited the top of the acceleration region. As an example, the
times needed for up-going beams of O+ ions to travel from
the top of the acceleration region up to Cluster altitude, a
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Fig. 5a. Observations from Cluster spacecraft 1, crossing an auro-
ral plasma boundary in the southern hemisphere on 4 May 2003.
The total time interval is 28 min. Panels 1–3 show time energy
spectrograms of electrons, parallel, perpendicular and anti-parallel
to the magnetic field, as measured by the PEACE instrument. Pan-
els 4–6 show pitch-angle spectrograms versus time for O+ ions at
three energy ranges, 0.2–1 keV, 1–10 keV, and 10–38 keV. Panels 7–
9 show the potential, the perpendicular electric field (black line) and
the tangential residual magnetic field (green line) component, and
field-aligned currents, in blue and red for upward and downward
currents, respectively.

distance being a fewRE , are of the order of a few minutes.
For electrons to travel the same distance the time is of the
order of seconds. (The upward velocity derived from the
parallel potential drop is likely to be an overestimate, since
the derivation assumes that the upward beams are strictly-
field-aligned, the degree of which can be checked for each
particular event. To obtain a more exact value of the travel
times from the Cluster data requires a much more rigorous
analysis of the data which is beyond the scope of this study,

aimed at illustrating the general methodology). Another
uncertainty is the finite crossing time of the structures.
The k-value is therefore representative only on a time scale
comparable to or larger than the crossing and transport times.

Selection criteria

1. EFW, FGM, CIS, PEACE data should be available and
of high quality.

2. The angle between the magnetic field direction and the
spin plane should exceed 5 degrees (for accurate values
of all three electric field components).

3. The events should be limited to auroral crossings at geo-
centric distances between 4 and 7 Earth radii (at higher
altitudes, temporal effects due to, for example inductive
electric fields will increase the uncertainty of the analy-
sis).

4. The events should be of quasi-static rather than tem-
poral nature, which should be possible to determine
using the method by Karlsson et al. (2004), applying
cross-correlation and minimum-B variance analysis to
the Cluster data.

5. The time intervals between the spacecraft should prefer-
ably range between 10s<δT <20 min, and the number
of s/c with good data should be at least 3, to enable
monitoring of the evolution.

In addition, the database should preferably include electric
field structures covering a broad range of spatial scales, from
1 km up to 100–200 km, mapped to the ionosphere, and will
be used for a more extensive study on this topic.

3 Results and discussion

Figure 5a and b are shown to illustrate the general methodol-
ogy, where Cluster observations have been used to estimate
the parallel and perpendicular potentials for a quasi-static po-
tential structure in the upward current region. Figure 5a, pan-
els 1–3, shows time energy spectrograms of electrons, par-
allel, perpendicular, and anti-parallel to the magnetic field,
measured by the PEACE instrument. Panels 4–6 show pitch-
angle spectrograms versus time for oxygen ions at three en-
ergy ranges, 0.2–1 keV, 1–10 keV, and 10–38 keV. Panels 7–
9 show the potential, the perpendicular electric field (green
line) and tangential residual magnetic field component, and
field-aligned currents, in blue and red for upward and down-
ward currents, respectively. The region of upward FAC is
associated with intense converging electric field structures,
a high-altitude signature of the primary acceleration region.
The top panel of Fig. 5b shows the parallel or acceleration
potential inferred from the characteristic energy of the up-
ward ion beams. The two curves labeled 22◦ and 90◦ in the
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Fig. 5b. Comparison of inferred parallel potential drop,18II , and
perpendicular potential,18⊥, for the Cluster s/c 1 crossing of an
auroral boundary. The two curves labeled 22◦ and 90◦ in the upper
panel correspond to two different angles of incidence for the upward
ion beams.

upper panel correspond to two different incident angles for
the upward ion beams collected by the ion detectors. The
bottom panel shows the perpendicular potential, derived by
integrating the perpendicular electric field along the space-
craft trajectory. The peak value of the perpendicular poten-
tial drop, indicated by the cross, is shown also in the upper
panel for comparison. The peak potential can be seen to lie
roughly in between the two parallel potential estimates. Al-
though the location and magnitude of the parallel potential
estimates are roughly in agreement, there are clear differ-
ences between the two curves. The calculated18⊥ variation
reveals several small-scale adjacent potential drops, and the
calculated18II variation is broader and less structured. The
differences are likely due to a combination of the time mis-
match between the two estimates (of the order of minutes)
and temporal variations of the acceleration process.

Preliminary results for eight Cluster events, all of which
are of quasi-static nature (used here to describe structures
which are stable on time scales much longer than the elec-
tron transition time through the acceleration region and also
longer than the satellite traversal time across the structure),
are given in Table 1. The last three rows present the in-
tegrated perpendicular electric field,18⊥, the parallel po-
tential drop, 18II , inferred from the electron data, and
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Fig. 6. Illustration of a case with a good correlation between the
electric field and the downward FAC. The figure shows from top
to bottom, the measured field-aligned current FAC, the calculated
height-integrated Pedersen conductivity, the model and measured
northward electric field component, and eastward residual magnetic
field (reproduced from Karlsson et al., 2007). The good agreement
between the model and Cluster results implies that the electric field
maps perfectly between the ionosphere and Cluster altitude.

the ratio between the parallel and perpendicular potential,
k=18II /18⊥. It should be mentioned that the energy spec-
tra of ions and electrons were inspected manually, which im-
plies that the estimates of the potentials and coupling param-
eter are relatively rough. Note that for the five downward
current events where thek-ratio could be estimated, it is one
or close to one, in four of the five events. Although the events
are too few to allow any firm conclusions, the results suggest
that small-scale structures in the downward current region
are mainly decoupled from the ionosphere, similar to small-
scale structures in the upward current region.

An exception to the results presented in Table 1, that small-
scale structures are typically decoupled, has been found for a
special kind of downward current events shown in Fig. 6. The
figure shows from top to bottom, the measured field-aligned
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Table 1. A summary of the characteristics of electric fields and field-aligned currents for 8 Cluster events, the first six of which are from
downward current regions. The last three rows show the perpendicular potential, calculated from integrating the perpendicular electric field
along the satellite orbit, the parallel potential, inferred from the characteristic energies of the upward electrons (events 1–6) and ions (events
7–8), and the coupling parameterk, defined as the ratio between the parallel potential and the perpendicular potential.

Event date 2001 01–14 2001 02–14 2002 04–27 2002 05–19 2002 11–25 2003 02–28 2003 05–01 2003 05–03

MLT 03:30 00:20 20:00 20:00 05:30 00:00 20:00 23:30

Hem NH SH SH SH NH SH SH SH

Potential U U S S U S U(1) S (2) U

FAC up/down down down down down down down up up

E-field peak (V/m) 0.35 1.5 1.7 0.45 0.03 0.07 0.82 0.05–0.1

Scale (km) 15 8 (2) 1.5 (2,4) 2 (1) 1.6 (1) 4.7 (1) 3.0 (1,2,3) 10 (2,4)
1.0 (3) 3.2 (4) 5 (1)

s/c 1,2,3 1,2,3,4 2,3,4 1,2,3,4 1 1 1,2,3,4 1,2,4

18⊥ (kv) 2 3 3 0.2–0.3 0.6 12 10 8 (1)
12 (4)

18II (kv) 2 No data 3 0.2–0.3 0.5 2–6 10 8 (1)
12 (4)

K=18II /18⊥ 1 ? 1 1 0.9 0.2–0.5 1 1

current FAC, the calculated height-integrated Pedersen con-
ductivity, the model and measured northward electric field
component, and eastward residual magnetic field (repro-
duced from Karlsson et al., 2007). Note the good agreement
between the model and measured northward component of
the electric field. For narrow current sheets, embedded in a
large-scale system of upward and downward FAC closing in
the ionosphere, current continuity requires that the electric
field must intensify in the downward current region, because
of the conductivity hole caused by up-flowing electrons and
perpendicular transport of ions.

4 Summary and conclusions

An approach to study the quasi-static coupling of high-and
low altitude electric fields have been outlined here and ap-
plied to a limited set of Cluster events. The results of this
preliminary study suggest that small-scale structures in the
downward current region are typically decoupled from the
ionosphere, similar to small-scale structures in the upward
current region. An exception to this is a special kind of
downward current events, where the electric field correlates
with the downward current and maps perfectly between the
ionosphere and Cluster altitude. Recent statistical studies
of the coupling issue, based on FAST data, show that a
large majority of the events were neither completely coupled
nor completely decoupled, with a clear difference between
sheet-like and curved structures, the latter being more de-
coupled than the former. The coupling depends on the nature

of the highly non-linear current voltage relation. Although
this problem has been addressed in many recent papers, the
current-voltage relationship is still a matter of debate in con-
trast to the well-established Knight (1973) relationship for
the upward current region. A complication for the downward
current region is that the depletion process limits the time for
which the charge carriers are available in the original current
channel. A way to handle this for the downward current sheet
is to broaden, as has been observed in Cluster event studies
as well as in numerical simulations of the downward current
channel.
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