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Abstract. In this paper we study the transformation of an
internal solitary wave at a bottom step in the framework of
two-layer flow, for the case when the interface lies close to
the bottom, and so the solitary waves are elevation waves.
The outcome is the formation of solitary waves and disper-
sive wave trains in both the reflected and transmitted fields.
We use a two-pronged approach, based on numerical sim-
ulations of the fully nonlinear equations using a version of
the Princeton Ocean Model on the one hand, and a theo-
retical and numerical study of the Gardner equation on the
other hand. In the numerical experiments, the ratio of the
initial wave amplitude to the layer thickness is varied up one-
half, and nonlinear effects are then essential. In general, the
characteristics of the generated solitary waves obtained in the
fully nonlinear simulations are in reasonable agreement with
the predictions of our theoretical model, which is based on
matching linear shallow-water theory in the vicinity of a step
with solutions of the Gardner equation for waves far from the
step.

1 Introduction

Internal solitary waves (solitons) are commonly observed on
ocean shelves, and their role in mixing and sediment trans-
port has been intensively studied (Bogucki and Redekopp,
1999; Ribbe and Holloway, 2001; Stastna and Lamb, 2008).
Observations show that there is a wide variety of processes
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for the transformation of a nonlinear wave in the shelf zone
due to changes in the depth and the background density
stratification, including soliton fission (Zheng et al., 2001;
Zhao et al., 2003; Orr and Mignerey, 2003; Helfrich, 1992;
Vlasenko et al., 2005; Bourgault et al., 2007). Theoreti-
cally such processes have been well studied for a smoothly
and slowly varying background when the Korteweg-de Vries
equation and its modifications can be applied (Djordevic and
Redekopp, 1978, Helfrich and Melville, 1986, Holloway
et al., 1997, 1999; Zheng et al., 2001; Grimshaw et al.,
2004, 2007). Such processes for internal waves in a basin
of variable depth have also been studied numerically in the
framework of fully nonlinear equations (Lamb, 2002, 2003;
Vlasenko et al., 2005; Vlasenko and Stashchuk, 2007).

Recently, processes of solitary wave transformation have
been explored for rapidly varying bottom topography. One
such example is the shelf between Taiwan and Dongsha Is-
lands which includes very steep areas when the bottom slope
is 0.25, while the solitary wavelength is comparable with the
size of the area (Ramp et al., 2004). In the laboratory, in-
terfacial solitary wave transformation on a sloping wall with
slopes varying from 30◦ to 130◦ has been studied (Chen et
al., 2007a, c). Theoretically, solitary wave transformation
in a two-layer flow with a bottom step has been studied in
the framework of the Korteweg-de Vries and Gardner equa-
tions, an extended version of the Korteweg-de Vries equa-
tion which includes both quadratic and cubic nonlinearity,
(Grimshaw et al., 2008), and in a Boussinesq-like system for
a two-layer flow with rapidly varying bottom topography (De
Zarate and Nashbin, 2008).

The goal of this present paper is to study fission of an in-
terfacial solitary wave at a bottom step for solitary waves of
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Fig. 1. Problem configuration.

moderate amplitudes (the ratio of the initial wave amplitude
to the layer thickness is varied up to 0.5). The weakly non-
linear theory of such wave transformation at a step was de-
veloped by Grimshaw et al. (2008), and is briefly reproduced
in Sect. 2, where we present some formulas for the solitary
waves of moderate amplitude obtained in the framework of
the Gardner equation). The applicability of the Korteweg-
de Vries and Gardner equations to model interface solitary
waves is discussed in this section. Then we use a numerical
model based on the Princeton Ocean Model (POM) (see Ka-
narska and Maderich, 2003; Brovchenko et al., 2007), which
is briefly described in Sect. 3. This numerical model is ap-
plied here to a typical laboratory situation, in which a two-
dimensional fluid is stratified by salinity; two layers of dif-
ferent salinities are separated by a very narrow layer with
a continuously varying salinity. The results of our numeri-
cal simulations for the transformation of a solitary wave at
a step are discussed in Sects. 4 and 5 for waves of moderate
and large amplitudes. The amplitude of the initial solitary
wave of elevation in the computations is 1 and 4 cm, while
the thickness of the lower layer is 8 cm, and after the step
the thickness is 4 cm; hence nonlinear effects for such waves
are essential. The numerical results are then compared with
theoretical predictions based on the Korteweg-de Vries and
Gardner equations. Our results are summarized in the con-
clusion.

2 Theoretical model

The configuration is shown in Fig. 1, where the upper (lower)
layer has densityρ1(ρ2). An interfacial solitary wave ap-
proaches the bottom step from the right, and the water depth
is then decreased. The solitary wavelength is assumed to be
always larger than the water depth but for convenience we
will say that the wave approaches from deep to shallow wa-
ter.

If the solitary wave has a small amplitude, the process of
its transformation in the vicinity of the step can be described
by linear long-wave theory. This assumption was used by
Grimshaw et al. (2008) who derived the following expres-
sions for coefficients of wave reflectionR and transmission
T at the step,

R =

1 −
c+

c−

1 +
c+

c−

, T =
2

1 +
c+

c−

, (1)

wherec± is the speed of linear long interfacial waves in the
deep (−) and shallow (+) parts of the water basin,

c± =

√
g

1ρ

ρ

h1h±

h1 + h±

. (2)

1ρ/ρ is the relative density jump,g is the acceleration due to
gravity,h1 is thickness of upper layer,h± are the thicknesses
of lower layersh2± (the index 2 is omitted here and hereafter)
in the deep (−) and shallow (+) parts of the water basin. In
fact, the applicability of these linear formulas to the trans-
formation of nonlinear waves is not self-evident. It has been
the subject of many special experimental and numerical stud-
ies for surface wave transformation at a step (Seabra-Santos
et al., 1987; Liu and Cheng, 2001; Chang et al., 2001; Lin,
2004), and as a result, it has been concluded that formulas
such as (1) are a very good description of the transformation
for waves of moderate amplitude (the ratio amplitude/depth
up to 0.4). We expect that this conclusion is valid also for
interfacial solitary waves.

Far from the step (left or right), the wave propagates in
a basin of constant depth and its unidirectional propagation
can be described by the Korteweg- de Vries (KdV) equation
if the wave amplitude is weak,

∂η

∂t
+ (c + αη)

∂η

∂x
+ β

∂3η

∂x3
= 0, (3)

where the dispersive and nonlinear coefficients are (in the
Boussinesq approximation when1ρ/ρ�1),

β =
ch1h2

6
, α =

3c

2
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. (4)

The steady-state solution of (3) is the KdV soliton,

η = Asech2
[√

3A

4
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2
2

(x−(c + αA/3)t)

]
. (5)

The amplitude is positive (elevation wave) ifh1−h2>0
(α>0), and negative (depression wave) if (h1−h2)< 0
(α<0). If h1−h2=0, as is well-known, interfacial solitons
do not exist. We assume that the incident solitary wave prop-
agates from the right towards the step, and henceh2=h−. In
the vicinity of the step, the reflected and transmitted waves
have the KdV soliton-like shapes, but their parameters do not
satisfy the steady-state soliton solution (5),

ηref = Arefsech2
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, Aref=RA, (6)
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, Atr=T A. (7)
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Then for wave propagation away from the step, a soliton-like
disturbance evolves in general into solitons and a dispersive
wave train. The parameters of these secondary solitons are
calculated in Grimshaw et al. (2008) using the rigorous the-
ory of the KdV equation. In particular, only one soliton is
formed in the reflected wave with amplitude

Asr

A
=

[√
2R +

1

4
−

1

2

]2

. (8)

The dynamics of the transmitted wave depends on the sign
of the quadratic nonlinear term after the step. If the coef-
ficient of the nonlinear term changes its sign after the step,
the initial soliton-like disturbance is completely destroyed
and transforms into radiation. Here we consider the situa-
tion when the sign of the nonlinearity is not changed (this re-
quires thath2<h1 everywhere), and so the transmitted wave
is transformed into secondary solitons (soliton fission) and
their amplitudes are
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(9)

wherem=0, 1, 2, . . .N −1, andN is the number of transmit-
ted solitons,
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The values ofα± andβ± are the nonlinear and dispersive co-
efficients at the different sides of step. The analysis of these
secondary soliton parameters for various conditions based on
Eqs. (8)–(10) is described in Grimshaw et al. (2008).

The KdV equation is valid for interfacial waves of weak
amplitude. With an increase in amplitude cubic nonlinear ef-
fects become essential, and an extended version of the KdV
equation should be used, Grimshaw et al. (2002b). If the
interface lies approximately at the middle depth, it can be re-
duced to the Gardner equation which includes only the cubic
nonlinear term when compared with KdV equation,

∂η

∂t
+ (αη + α1η

2)
∂η

∂x
+ β

∂3η

∂x3
= 0. (11)

Here α1 is the cubic nonlinear coefficient which is al-
ways negative for interfacial waves (Kakutani and Yamasaki,
1978)

α1 = −
3c

8h2
1h

2
2

(h2
1 + h2

2 + 6h1h2). (12)

The Gardner equation like the KdV equation is fully inte-
grable. Steady-state solitary wave solution of the Gardner

equation can be found explicitly (see for instance Grimshaw
et al., 2004, 2007),

η(x, t) =
D

1 + Bcosh(γ (x−V t)),
(13)

D =
6βγ 2

α
, B2 = 1 +

6α1βγ 2

α2
, V = βγ 2 , (14)

whereγ is a parameter characterizing the inverse width of
the soliton. The soliton amplitude is

A =
D

1 + B
, (15)

and its sign coincides with the sign of the coefficient of
quadratic nonlinearityα. For interfacial waves the param-
eterB varies between 0 and 1. The soliton amplitude varies
from small values, when the Gardner soliton (13) coincides
with the KdV soliton (5), to the limiting value

Alim =
α

|α1|
, (16)

when the soliton has a “table-top” shape.
As has been pointed out previously for surface waves

of moderate amplitude, the linear formulas for wave trans-
formation at a step give a correct estimation of reflected
and transmitted waves (Seabra-Santos et al., 1987; Liu and
Cheng, 2001; Chang et al., 2001; Lin, 2004). We assume
that the same result holds for interfacial waves of moder-
ate amplitudes. With these assumptions the wave shape for
transmitted and reflected waves in the vicinity of a step has
the Gardner-soliton shape, but their parameters do not satisfy
the soliton conditions,

ηtr(x) =
DT

1 + Bcosh
(

c−

c+
γ x

) , D =
6β−γ 2

α−

,

B2
= 1 +

6α1 − β − γ 2

α−2
. (17)

ηref(x) =
DR

1 + Bcosh(γ x)
(18)

The number and amplitudes of the secondary solitons in the
framework of the Gardner equation can in principle be found
using the inverse scattering technique. However, simple ana-
lytical expressions such as Eqs. (8)–(10) are not available for
the Gardner equation, and instead we will find them numeri-
cally.

For applications and comparison with the numerical re-
sults of the fully nonlinear system, the nonlinear effects need
to be characterized quantitatively. In the Gardner equation
nonlinearity may be characterized by a parameterε,

ε = εq + εc =
αA

c
+

α1A
2

c
, (19)

whereA is the wave amplitude; it represents the sum of the
quadratic and cubic nonlinear terms. For weakly nonlinear
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Fig. 2. The ratio of the Gardner soliton length to the KdV soliton
length versusA/Alim .

waves the quadratic nonlinear term prevails. With increase in
the wave amplitude the cubic nonlinear term is comparable
with the quadratic one, and in the case of the limiting soli-
ton having amplitude Eq. (16) it is fully compensated, so that
the nonlinear parameter isεlim=0. The maximum ofε is for
A=Alim/2. In fact, the parameterε characterizes the nonlin-
ear correction to the soliton speed, and solitons of small and
large amplitudes (with respect to the limiting values) move
with the same speed. Alternatively nonlinearity can be char-
acterized by

εn = εq + |εc| =
αA

c
+

|α1|A
2

c
. (20)

With this definition the nonlinear parameter is maximal for
the soliton of limiting amplitude. The influence of the cubic
nonlinearity on the soliton characteristics can be shown by
comparing the Gardner soliton lengthλG and the KdV soli-
ton lengthλK ; their ratio depends on the ratio of the soliton
amplitudeA to the table-top soliton amplitudeAlim Eq. (16),

λG

λK

=

√
Alim

A
tanh−1

[√
1

Alim
A

−1

]
. (21)

Here both soliton lengths are defined as the soliton mass (de-
fined here as the integral ofη over allx) divided by the soli-
ton amplitude (Grimshaw et al., 2002a). This ratio is shown
in Fig. 2. Note that when the ratioA/Alim is 0.2 the differ-
ence in the lengths of the Gardner and KdV solitons is 20%,
but when the ratioA/Alim=0.3 it is 40%. Based on Fig. 2, we
call waves withA/Alim<0.1weakly nonlinear(KdV waves).

Fig. 3. The limiting soliton amplitude versus the thicknesses of the
layers: the red line is the Euler soliton amplitude and the black line
is the Gardner soliton amplitude.

Waves withA/Alim>0.1 require another classification. Ifεn

is relatively small, the Gardner equation is valid because it
is derived formally using a perturbation technique based on
the small nonlinear parameterε up to the second order. We
may call such waves Gardner waves, ormoderate nonlinear
waves. Ifεn is comparable with 1 or exceeds it, the Gard-
ner equation is formally not applicable, and such waves are
strongly nonlinear.The applicability of the Gardner equation
can be analyzed by comparison of the limiting solitary waves
in the full Euler and the Gardner equations. Solitary waves
in the Euler equations have been studied intensively (Grue
et al., 1999; Choi and Camassa, 1999); they also exist for
amplitudes less than the maximal value

_

Alim =
h1 − h2

2
(22)

Comparison of the limiting soliton amplitudes in the Gardner
and Euler equations is shown in Fig. 3. The curves are close
to each other if 0.6<h2/h1<1, which corresponds to wave
amplitudes greater than 0.2h1 or h2/3. This value separates
the regimes of moderate and strongly nonlinear waves. The
formulas given above will be used for comparison with the
results from the fully nonlinear simulations.

3 Numerical fully nonlinear model

The numerical model is based on the Navier-Stokes equa-
tions for a continuously stratified fluid (Kanarska and
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Maderich, 2003; Brovchenko et al., 2007). It is a non-
hydrostatic extension of the Princeton Ocean Model (POM).
The density stratification in the numerical simulations is
modeled by salinity stratification, appropriate for a typical
laboratory experiment. The basic equations for continuity,
momentum and salinity are written in the Boussinesq approx-
imation as,

∇ · U = 0 (23)

DU

Dt
= −

1

ρ0
∇P + ν∇

2U − g
ρ

ρ0
, (24)

DS

Dt
= χ∇

2S. (25)

HereU=(U, V,W) is in general the three-dimensional ve-
locity in Cartesian coordinatesx=(x, y, z), with x a coordi-
nate along the computational flume,y is the transverse co-
ordinate, andz is directed vertically upward;D/Dt is the
material derivative;P is the pressure;ρ is density andρ0
is the undisturbed density;g=(0, 0, g), g is the gravitational
acceleration;S is a salinity;ν andχ are the kinematic viscos-
ity and diffusivity respectively. The system Eqs. (23)–(25) is
closed by an equation of state (Mellor, 1991) for the density
ρ of waterρ=ρ(S, T , P ). The numerical solution of these
governing equations, with the relevant boundary conditions
on the solid boundaries and the free-surface, is based on the
modified algorithm by Kanarska and Maderich (2003) with
a four-stage procedure; (i) computation of the free surface
level and the depth-integrated velocity field; (ii) computa-
tion of the provisional hydrostatic components of velocity;
(iii) computation of the non-hydrostatic components of the
velocity and pressure fields; (iv) computation of the scalar
fields. The computational tank has the geometry shown in
Fig. 1. The total length of the flume is 24 m, with the length
of the deep partL1=10 m. The problem is solved in a two-
dimensional mode. Non-slip boundary conditions (U=0) at
the bottom and end walls were used, whereas at the free sur-
face the viscous stresses were set to zero. The flux of salinity
through the flume boundaries was set to zero.

The background stratification in the flume is modelled by
two layers with upper and bottom layer salinitiesSup=2 and
Sbot=15 at constant temperature, respectively. The density
jump 1ρ/ρ0 is equal 0.01. The vertical profileS(z) in the
transition zone is approximated by

S (z) =
Sup + Sbot

2
−

Sup − Sbot

2
tanh

(
(z − h1)

dh

)
(26)

where dh=0.2 cm is much less than the thickness of the
layers. In the simulations we visualized the interface as
an isocline with salinity equal 8.5. Numerical experi-
ments were carried out with molecular values of viscos-
ity ν=0.01 cm2 s−1 and diffusivity of saltχ=1·10−3 cm2 s−1.
The computational grid was 1900×120.

Table 1. Gardner equation parameters.

Right from Left from
a step (−) a step (+)

c, cm/s 7.48 5.71
α, s−1 0.842 1.715
α1, cm−1* s−1

−0.156 −0.3
β, cm3/s 199.55 76.21
Alim, cm (Gardner) 5.4 5.7
Âlim cm (Navier-Stokes) 6 8

The problem of initialization for the Navier-Stokes equa-
tions is not simple for large amplitude internal solitary
waves in a continuously stratified fluid because we are
required to specify two-dimensional salinity and velocity
fields. Vlasenko and Hutter (2001) used for initialization the
analytical solution that describes a weakly nonlinear KdV
solitary wave. Often the solitary wave in a laboratory tank
is generated by a “collapse” mechanism (see e.g. Chen et al.,
2007). To generate the leading wave of elevation, the initial
thickness of the collapsing volume should be less than the
thickness of the upper layer; in the opposite case a depres-
sion wave is generated. In our simulations this approach is
applied and a leading wave of elevation type is generated.
Then the tail of small scale waves was cut out.

In the numerical experiments the thickness of the up-
per layer ish1=20 cm. The thickness of the lower layer is
h−=8 cm (on the right before the step) andh+=4 cm. Initial
wave amplitudes are 1 cm and 4 cm. For these conditions the
calculated coefficients of the Gardner equation are given in
Table 1. The amplitudes of the limiting solitary waves com-
puted in the framework of the Gardner and Navier-Stokes
equations are also presented. In the experiment the thick-
ness of the layers differ significantly (h2/h1= 0.2–0.4) and
formally the limiting wave is astrongly nonlinearwave. In
fact, the limiting solitary wave is more nonlinear after the
step than before, and this is manifested in the difference be-
tween the amplitude values in Table 1. So, in our experiments
formally we could not use the Gardner equation for the de-
scription of the limiting solitary waves.

For an initial wave of 1 cm the cubic nonlinear term
is small, and the nonlinear parameterε∼ εn∼0.1, but
A/Alim>0.1. Therefore, the initial solitary wave is amod-
erate nonlinearwave which can be described by the Gardner
equation. The soliton with initial amplitude 4 cm isstrongly
nonlinear, becauseε=0.12 andεn=0.78. Formally, the Gard-
ner equation is not applicable for this case. Analysis of the
wave dynamics in both cases using the fully nonlinear and
the Gardner equations can clarify the applicability of these
approximate models to describe the solitary waves of differ-
ent amplitudes.
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Fig. 4. The initial pulse (black) and its approximation by a KdV
soliton (red) and Gardner soliton (blue).

Fig. 5. The wave approaching the step (t=45 s) from the right
(black) and the Gardner soliton approximation (blue).

4 Simulation of the transformation of a moderate am-
plitude wave

The first simulation is for an initial moderate solitary wave of
1 cm amplitude. According to the linear theory Eq. (1) the re-
flected wave has an amplitude 0.1 cm and is very weak. The
transmitted wave is about 1.3 cm in amplitude, which is com-

Fig. 6. The reflected wave (black) near the tank wall, and the com-
parison with a KdV (red) and Gardner (blue) soliton shapes.

parable with the thickness of lower layer after the step (4 cm).
Hence, nonlinear effects in the transmitted wave should be
essential. According to the KdV prediction (2.11) three soli-
tons should be formed far from a step. As we have indicated,
the wave has a moderate amplitude and we should instead
apply the Gardner equation. The initial impulse generated
by the collapse mechanism is displayed in Fig. 4. The theo-
retical shapes of the KdV (red) and Gardner (blue) solitons
are also presented. The agreement with the Gardner soliton
shape is excellent, but the KdV soliton is narrower than the
observed soliton. The soliton approaches the step (from right
to left) and keeps its shape very well (Fig. 5).

The reflected wave has a very small amplitude (about
1.3 mm), and moves with a very slow change in shape and
amplitude. This process is unsteady, and the wave shape is
not well described by the KdV or Gardner soliton shapes (see
Fig. 6). The wave transformation at the step is illustrated in
Fig. 7. It is seen that transmitted wave has increased in ampli-
tude up to 1.1 cm and propagates into shallow water. A weak
wave of 0.13 cm amplitude reflects from the step. The com-
puted wave amplitudes in the vicinity of a step are in good
agreement with the predictions of linear theory Eq. (1). Far
from the step (225 s after generation) the transmitted wave
transforms into two soliton-like waves. The shape of the
leading wave is quite well described by both the KdV and
Gardner equations (Fig. 8), because its amplitude 1.4 cm is
less then maximal value for the soliton amplitude (6–8 cm).

The process of soliton fission is not finished at this time.
According to KdV theory, the amplitude of the leading soli-
ton at the final stage should be 1.5 cm. To compare the re-
sults of the fully nonlinear simulations with the theoretical
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V. Maderich et al.: Interfacial wave at a step 39

Fig. 7. Wave transformation at the step.

predictions, a numerical simulation was also performed in
the framework of the Gardner equation for the wave prop-
agation after the step with the initial condition Eq. (18). A
finite-difference scheme which satisfies the Courant criterion
is used to solve the Gardner equation (Holloway et al., 1997,
1999). The comparison between the Gardner (blue) and full
nonlinear (black) computations is presented on Fig. 9.

The wave shape just after the step is almost the same in
the Gardner and Navier-Stokes simulations (Fig. 9a), and the
difference in amplitudes is 0.09 cm or 8%. Far from the step
there is relatively large difference in the leading soliton am-
plitudes at the timet=225 s, and in their locations (Fig. 9b).
The amplitude of the first soliton far from the step in the
Gardner model is 1.5 cm and in the full equation model it is
1.35 cm, a difference of about 10%. This difference in wave
amplitudes is related with the difference in the wave ampli-
tudes just after the step, and the difference in the numeri-
cal models. The big difference in the wave locations, 34 cm
(Fig. 9b) can be explained by the difference in the wave speed
(0.26 cm/s or 5% of mean nonlinear velocity), as even if the
amplitudes are close together, at large times (distances) the
phases will be significantly different.

So, the case of a moderate nonlinear interfacial solitary
wave interaction with a bottom step shows good applicabil-
ity of the weakly nonlinear theory for the description of the
transmitted and reflected wave shapes and their amplitudes
(the difference is 10%).

Fig. 8. Formation of secondary solitons in the transmitted wave
(experimental wave shape – black) and comparison of the leading
wave with a KdV soliton (red) and Gardner soliton (blue).

Fig. 9. Comparison of Gardner (blue line) and Navier-Stokes (black
line) modeling.

5 Large-amplitude wave transformation at a step

The next simulation is for an initial solitary wave amplitude
of 4 cm. As already indicated, in this case the solitary wave
can be considered asstrongly nonlinear. The incident wave
is shown in Fig. 10 for two time in comparison with the Gard-
ner soliton shape. It is evident that the Gardner and Navier-
Stokes wave shapes coincide quite well. Due to strong non-
linearity the incident wave “feels” the step through its tail and
the radiation of a dispersive wavetrain begins immediately. A
“shelf” of opposite sign is generated behind the solitary wave
approaching the step (Fig. 10b). The total wave amplitude is
increased due to the interaction with the reflected wave from
4 cm to 4.27 cm.

www.nonlin-processes-geophys.net/16/33/2009/ Nonlin. Processes Geophys., 16, 33–42, 2009



40 V. Maderich et al.: Interfacial wave at a step

Fig. 10. Incident wave (black) and its Gardner soliton approxima-
tion (blue).

The wave transformation after passage over the step is il-
lustrated by snapshots shown in Fig. 11. It is interesting
to note that dividing the pulse into the transmitted and re-
flected waves occurs at the time when the peak is just before
the step (Fig. 11a), which has also been noted for the weak
nonlinear case (see Fig. 6a). The wave amplitude here is
4.61 cm and begin to decrease as the wave crosses the step.
At t=80 s (Fig. 11b) when the wave peak has just crossed
the step (Fig. 11b) its amplitude is 3.93 cm, but there is no
full separation on the transmitted and reflected waves. The
division into transmitted and reflected wave is almost com-
pleted att=89 s (Fig. 11c). The leading wave amplitude is
increasing now to 4.33 cm, mainly due to the beginning of
secondary solitary wave generation.

The generation of secondary solitary waves (fission) be-
gins in the transmitted wave just after the step. The wave
amplitude grows (Fig. 11d, c) and the wave transforms into
solitary waves (Fig. 11e, f), the leading wave has an ampli-
tude of 5.4 cm. It is a bit less than the table-top solitary wave
amplitude of 5.7 cm (according to the Gardner theory). The
second solitary wave has an amplitude of 1.8 cm and third
one 0.54 cm. Figure 12 presents a zoom of both generated
solitary waves from Fig. 11f in comparison with the Gard-
ner equation modeling of the transmitted wave. The leading
wave in the full nonlinear computations is close to the Gard-
ner soliton, but the Gardner soliton seems to be a little bit
wider and its amplitude is somewhat less (5.2 cm). The dif-
ference in amplitudes of the leading solitary waves is 0.2 cm,
(about 4%). The second Gardner soliton has an amplitude of
0.96 cm and it is about half the fully-modeled second soli-
tary wave with an amplitude of 1.8 cm. The third soliton in
the Gardner modeling has amplitude of 0.21 cm and it is also
more than half the fully-modeled third solitary wave. Nev-
ertheless, this last soliton in the Gardner model isn’t formed
completely at this time. For comparison we also give the pre-
dictions of the KdV theory for secondary soliton amplitudes:
6.2 cm for the leading soliton (about 20% more than Gard-
ner and fully-modeled waves), 1.8 cm for the second soli-
ton (double the second Gardner wave and equal to the full-

Fig. 11. Large-amplitude wave formation at a step.

modeled waves!) and 0.05 cm for the third soliton, that is 10
times less than the fully-modeled solitary wave.

The shift in positions of the leading solitary waves on
Fig. 12 is about 33 cm and it is only 2% of the distance which
both solitary waves have gone from the step. This takes a
time of about 190 s, and the difference in the velocities of
both nonlinear waves is about 0.2 cm/s (3% of the mean non-
linear velocity), and the Gardner solitary wave is faster than
the fully-modeled one. The difference in velocities for the
second solitary waves is smaller, 0.06 cm/s (shift is 12 cm).

The reflected wave has amplitude of about 0.56 cm, which
is close to the linear prediction (0.54 cm). It is shown in
Fig. 13 in comparison with the KdV (red) and Gardner (blue)
solitons. It seems that a solitary wave has not formed at this
time.

Hence, in this strongly nonlinear case we also have a rea-
sonably good comparison of the fully nonlinear simulations
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Fig. 12. Comparison of models after step,t=259 s. Navier-Stokes
model is black line, the Gardner model is blue line.

with the predictions of the theoretical model based on the
Gardner equation. The difference in the leading soliton am-
plitude in the fully nonlinear model and the Gardner simula-
tions is about 4%, and about 2% in velocity. The difference
in amplitudes of the following secondary solitary waves in
both models is more significant, and it reaches to 50%.

6 Conclusions

We have studied the transformation of an interfacial soli-
tary wave transformation at a bottom step numerically in the
framework of the fully nonlinear equations. The wave trans-
formation in the vicinity of the step is reasonably well de-
scribed by linear long wave theory (the difference in the pre-
dictions for the amplitudes of the transmitted and reflected
waves is less 10%) for moderate nonlinear waves and for
strongly nonlinear waves. Indeed, in this respect our simula-
tions coincide with conclusions made previously for surface
waves over a bottom step. The process of solitary wave fis-
sion in the transmitted wave is simulated in both the fully
nonlinear model and in the Gardner equation. This last
equation includes an additional cubic nonlinear term into the
usual KdV equation, and can be applied for interfacial waves
of weak and moderate amplitudes. The shapes of the com-
puted solitary waves are well described by the soliton solu-
tion of the Gardner equation. Although it is not expected that
the Gardner model should describe the properties of strongly
nonlinear waves with good accuracy, in reality, and to our
surprise, the Gardner model is appropriate for the leading
solitary in the strongly nonlinear case. For instance, the dif-
ference in its amplitude in the fully nonlinear model and the
Gardner simulations is about 4%, compared with 10% for

Fig. 13. Reflected wave (zoom). The fully nonlinear model is the
black line, the Gardner model is the blue line, and the KdV model
is the red line.

the case of moderate amplitudes. It is also interesting to note
that the strongly nonlinear solitary wave has a larger ampli-
tude then the Gardner soliton; in the moderate nonlinear case
the situation is opposite. The difference in velocities of the
solitary wave propagation is about 2% for strongly nonlinear
waves, but for moderate waves this difference is 5%. The
difference in amplitudes of the following secondary solitary
waves between both models reaches to 50% in strong nonlin-
ear case. Nevertheless it seems that the Gardner model can
better describe the strongly nonlinear case than the moderate
nonlinear case, at least for the leading wave.

Finally we note that although our fully nonlinear numer-
ical simulations were carried out for a typical laboratory
configuration, the results can be readily extrapolated to an
oceanic situation by simply rescaling the length and time
scales. When this is done, the main issue of concern would
be how well the kinematic viscosity and diffusivity would
scale into the oceanic situation. This is unknown, but we
note that the good agreement here with the Gardner and KdV
models, which contain no such entities, suggests that the re-
sults obtained here are not dependant on the kinematic vis-
cosity and diffusivity in any essential way.
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