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Abstract. Lovejoy and Schertzef19903 presented a sta- 1 Introduction
tistical analysis of blotting paper observations of the (two-

dimensiongl) spatigl distribution of raindrop_ stains. They Detailed knowledge of the microstructure of precipitation is
found empirical evidence for the fractal scaling behavior Ofimportant from both a fundamental and an applied point of

raindrops in space, with potentially far-reaching implications view (e.g.,Uijlenhoet and Sempere Tore200§. The spa-
for rainfall microphysics and radar meteorology. In particu- o anq temporal distributions of precipitation particles (hy-

lar, the fractal correlation dimensions determined from the'rdrometeors) in the atmosphere: (1) determine the manner

b'°‘“”9 paper observations led them to cqnclude that 'fd“?p%n which the concept of a particle size distribution should
are (hierarchically) clustered” and that “inhomogeneity in . interpreted (e.gPor et al, 1998 Jameson and Kostin-

rain is likely to extend down to millimeter scales”. Confirm- ski, 2001a Kostinski et al, 2009; (2) have important im-

ing previously reported Monte Carlo simulations, we demon- yicavions for the microphysical processes involving inter-
strate analytically that the claims based on this analysis ”eeactions between hydrometeors, such as the efficiency of
to be reconsidered, as fractal correlation dimensions similag,, .ojiision-coalescence proces,s in producing rainfall (e.g

to the ones reported (i.e. smaller than the value of two eX'Pruppacher and Kletl978 Rogers and Yaul996 Kostin-
pected for uniformly distributed raindrops) can result from ski and Shaw2009; (3) strongly influence the sampling

instrumental artifacts (edge effects) in otherwise NOMOGe+y, 4 4 teristics of both in situ and remote sensing instruments

neous Poissonian rainfall. Hence, the results of the blotting s for measuring the microstructure of precipitation, such
paper experiment are not statistically significant enough t0.s disdrometers (e.gSmith et al, 1993 Uijlenhoet et al,

reject the Poisson homogeneity hypothesis in favor of a fraC'ZOOQ and vertically pointing Doppler radars
tal description of the discrete nature of rainfall. Our analysis '

is based on an analytical expression for the expected overlap With regard to raindrops (but the same holds for cloud
area between a circle and a square, when the circle Cemé}lroplets), the classical hypothesis is that they behave accord-

is randomly (uniformly) distributed inside the square. The ing to Poisson statistics, i.e. that they are as homogeneously
derived expressiont2—8r3/3+r4/2, wherer denotes the distributed in space and time as randomness allows. This hy-

ratio between the circle radius and the side of the square) caROtN€sis forms the basis of the sampling theory of in situ rain-
be used as a reference curve against which to test the statisf@!! 0Pservations (e.gCornford 1967 Joss and Waldvogel
cal significance of fractal correlation dimensions determined:969 Gertzman and Atlas977) and can be considered one

from spatial point patterns, such as those of raindrops an@f the comerstones of the physical theory of precipitation-
rainfall cells. induced pulse-to-pulse echo fluctuations in weather radar ob-

servations arshall and Hitschfeld1953 Wallace 1953.
Although traces of empirical evidence for the Poisson ho-
mogeneity hypothesis during rare periods of exceptionally

Correspondence taR. Uijlenhoet stationary rainfall have occasionally been reported in the lit-
BY (remko.uijlenhoet@wur.nl) erature (e.gKostinski and Jamesoa997 Uijlenhoet et al,
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1999 Larsen et al.2009, it now becomes more and more sembled the famous experiments carried out more than four
clear that rainfall exhibits pronounced spatial and temporaldecades earlier bilarshall and Palme{1948 at the same
drop clustering. Since the homogeneous Poisson proceamiversity. The statistical analysis of the digitized blotting
(which per definition exhibits a constant mean intensity) is paper consisted of drawing concentric circles with increas-
not able to cope with these types of clustering, more versaing radii around the centers of each of a total of 452 raindrop
tile descriptions of raindrop statistics are needed. stains. The radii of the circles were increased from a few
There exist different approaches to tackling this prob-mm (i.e. of the order of the size of the stains) to more than
lem. One consists of generalizing the restrictive homoge-1.5m (i.e. largely exceeding the size of the blotting paper) in
neous Poisson process to a Poisson process with a randomhp equal logarithmically spaced steps per decade. For each
varying mean, that is a so-called doubly stochastic Poissowalue of the radius, the numbers of drop stains falling inside
process or Cox process (e.G.ox and Isham1980. This  each of the 452 circles were averaged. In this manner, LS
type of approach was pioneered Bpasyo(1965 and has obtained an average number of drop stains as a function of
later been applied bgmith (1993. Kostinski and Jame- the circle radius. This empirical function was subsequently
son(1997 andLarsen et al(2005 have proposed alternative plotted on log-log paper (see their Fig. 2).
non-Poissonian yet statistically homogeneous descriptions of Apart from a “fall-off” both at small radii (due to the fi-
rain. Another approach is the (multi-)fractal description of nite number of drop stains in the sample) and at large radii
rain, based on models which have originally been used tddue to the finite size of the blotting paper), the function was
describe turbulence. Since rainfall is intimately related tofound to be reasonably well described by a straight line for
the (turbulent) wind field in the atmosphere, it seems natu-‘the part of the graph [...] that was relatively unaffected by
ral to employ the same type of models for describing rainthe [...] fall-off”. This part of the graph was reported to be
fields (e.g.Lovejoy and Schertzed9900. There have also the range between 2 mm and 40 cm, although from Fig. 2 of
been recent approaches to describing inhomogeneous rainfdllS it appears that the straight line was actually fitted to the
via non-fractal methods (e.glameson2007). Finally, con-  data points within the range between 3mm and 63cm. The
firming the earlier hypothesis ¢fabry (1996, Lovejoy and  obtained slope of the straight line, interpreted by LS as a frac-
Schertze (2006 2008 have recently shown how the multi- tal correlation dimension (e.gGrassberger and Procaccia
fractal and Poisson descriptions of rain can be reconciled. 1983ab; Theiler, 1987, was found to be 1.83, with reported
Probably the first application of fractal geometry to de- values of 1.79 and 1.93 for the two other, manually analyzed,
scribe thediscretenature of rainfall was the statistical (cor- samples. These values are significantly smaller than a slope
relation dimension) analysis of the (two-dimensional) spa-of 2 that would be expected for uniformly distributed rain-
tial distributions of raindrop stains on pieces of blotting pa- drop stains resulting from a homogeneous Poisson process.
per reported byLovejoy and Schertze(1990a LS here- LS interpreted this result as “evidence that rainfall is scal-
after). Later,Zawadzki(1995, Lavergnat and Gél (1999 ing over this range” and concluded that “drops are (hierarchi-
presented fractal analyses of the (one-dimensiceafjpo-  cally) clustered over the range”. They also discussed the pro-
ral distribution of raindrop arrivals at the ground (such found implications of this clustering for radar remote sensing
analyses were recently challenged lyrsen et al.2005. of rainfall. For instance, there would no longer be a simple
Desaulniers-Soucy et a)2001), Lovejoy et al.(2003 and  proportionality between the expected number of raindrops in
Lilley et al. (200§ reported on multi-fractal analyses of a radar sample volume and the size of that volume. In addi-
(three-dimensional) spatial distributions of raindrops mea-tion, due to increased coherent scattering, it would strongly
sured using stereo-photography. Here we concentrate on thaffect the statistics of the sample-to-sample radar echo fluc-
blotting paper experiment of LS, which has lead to a lively tuations as well. Hence, it would essentially be necessary to
debate in the scientific literature concerning the statisticalrevise the theory of weather raddgrshall and Hitschfeld
significance of the supposed fractal nature of the microstruc1953 Wallace 1953.

ture of rain Jameson and Kostinski998 Gabella et al. The conclusions of LS have recently been put into per-
2001 Jameson and Kostinsk2001h Gabella and Perona spective by several authors. Boflameson and Kostin-
2001). ski (1998 and Gabella et al(2001) have presented results

of Monte Carlo simulation experiments intended to mimic

LS’s blotting paper analysis (selameson and Kostinski
2 Blotting paper experiment and fractal analysis 2001h Gabella and Peron2001, for subsequent discus-

sions). Even though these numerical simulation experiments
The experiment of LS consisted of exposing threewere based on 452 uniformly distributed raindrops, consis-
128x128 cn? pieces of chemically treated blotting paper — tent with the Poisson homogeneity hypothesis, both studies
during exposure times of approximately 1s — to “a moder-reported (nearly) the same fractal correlation dimensions as
ately heavy stratiform rain” at McGill University in Mon- those found earlier in real rain by LS. These simulation re-
treal, Canada. One of the blotting papers was digitized,sults indicate that the fractal correlation dimension reported
the other two were manually analyzed. The experiment reby LS may have been merely a sampling artefactedge
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Fig. 1. Schematic representation oflax L piece of chemically
treated blotting paper (bold square) with a raindrop stain (black dot)
and a circle with radiu® (0O<R<L/2) around the center of the stain

(bold circle). The surface of the blotting paper can be divided into & 107} 1

covered by circle (<)
=
o

three separate regions (as indicated by the thin lines) according asg
to whether the circle surrounding a raindrop center will fall entirely »g
inside (region A) or partly outside the boundary of the blotting paper 5107 -8k r+12t
(regions B and C). g n?

107 10" 10°
effectto be more precise. That this may indeed be a valid ex- normalized circle radius, r=R /L (=)

planation can be demonstrated analytically, as will be shown

in the next section. . . L .
Fig. 2. Expected fraction of a square with sidegsovered by a cir-

cle with radiusR, of which the center is uniformly distributed inside
3 Analytical solution to the edge effect th_e squaret as a func_tion of th_e r_lormaliz_ed circle radiuR/L,_
with (bold line) and without (thin line) taking the edge effect into
Figure1 provides a schematic representation of the bbttingconsideration. Top pa_n_el: linear axes;_bottom panel: I_og_arithmic
papers employed by LS in their statistical analysis. For ho-2X€s- Note that the validity of our analytical solution (&jis lim-
mogeneously distributed drops (obeying Poisson statistics)TEd to thg interval &r<1 (the solution for the remaining interval
- : T . <r<+/2is presented elsewhere).
the expected number of raindrop stains falling inside a circle
of a given radius would be the product of (1) the expected
spatial stain density (in this case 4828°~276n?2, radiusR and a square with sidds when the circle center is
i.e. 276 drops per square meter) and (2) the expected potniformly (randomly) distributed inside the square.
tion of the surface area of the circle, with a center uniformly ~ Figure2 shows, using linear as well as logarithmic axes,
(randomly) distributed over the blotting paper, falling inside EQ. (1) for the interval Gr<+/2 (bold line), compared to
the boundaries of that blotting paper. The latter can be calthe relation without correcting for the edge effect (thin line),
culated analytically in a straightforward manner for circles i-€. just the first term on the right-hand side of E). (This
with radii up to half the length of a side of the blotting pa- first term simply represents the area of a circle with radjus
per, using the subdivision in regions A, B, and C as shown inwhereas the second and third terms on the right-hand side of
Fig. 1. In AppendixA we show that the expected fraction of EQ. (1) account for the edge effect. Although Et)) bas been
a square b|0tting paper with sidéscovered by a rand0m|y derived in Appendlm assuming that the normalized circle

located circle with radiu® equals radius belongs to the intervak@<1/2, it can be demon-
strated that its validity extends te<1.
(Ag) = r? — §r3 + }r4, (1) Clearly, the expected surface area of the circle inside the
3 2 blotting paper edges will eventually become equal to the area

where r=R/L is the normalized circle radius. Hence, of the blotting paper itself, when the circle covers the pa-
(Ao) x L? is the expected overlap area between a circle withper entirely no matter where its center is located. This will
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2 A direct appreciation of the edge effect on the value of the
correlation dimension for homogeneously distributed rain-

18 1 drops may be obtained by taking the derivative 4§) with
1.61 ] respect to the normalized circle raditisR/L on a log-log
~ AT T T , plot (i.e. the local slope of the bold line in the bottom panel
| B
= of Fig. 2):
T 12r 1
=1 +din(Ag) _ r d(Ao) _, _ 8r/3-r? B
< 08 ] dinr — (Ag) dr 7w —8r/34+7r2/2
© 06 ] (O<r=<1). This function is plotted in Fig3, which shows

how the local slope of the bold line in the bottom panel

0.4t 1

0ol —2-@Br-1)/ (-8B r+121) | of Fig. 2 decreases from 2 to 0 as a function of the nor-

- - - maximum r and resulting local slope malized radius of the C|rcle_ cons_lderec_i. The value of 2

0 =) - corresponds to the “correlation dimension” expected for a
10 10 10

homogeneous Poisson process in the absence of an edge
effect. For the maximum circle radius considered by LS
to determine the correlation dimension (corresponding to

Fig. 3. The local slope of the bold line in the bottom panel of 7=R/L=631/1280~0.5), the local slope would be about
Fig. 2 as a function of the normalized circle radiusR/L (bold ~ 1.45 (dashed line in Fig). The actual effect of the edge of
line). The dashed line indicates the maximum normalized circlethe blotting paper will be less pronounced because the corre-
radius considered by LS and the corresponding local slope. Notéation dimension is not determined as fibeal slope but as

that the validity of our analytical solution (EQ) is limited to the  the averageslope over a certain range of circle radii, as will
interval O<r <1 (the solution for the remaining intervakt <+/2 is be shown in the next section.
presented elsewhere).

normalized circle radius,r=R /L (-)

happen if the circle radius exceed® times the length of 4 Blotting paper experiment revisited
a side of the blotting paper (i.e>+/2). As noted in Ap-
pendix A, for the interval kr<+/2 we have been able to Ideally, we would have preferred to take the original data of
solve (Ag) analytically as well. However, the derivation of the blotting paper experiment reported by LS, repeat their
this expression is beyond the scope of this paper. The resuftactal analysis, and confront the outcome with the analyti-
is more complicated than Edl)(and will be presented else- cal solution to the edge effect presented in S&cHowever,
where. Moreover, for the problem at hand, Ef).¢overs all  unfortunately the original data (i.e. the raindrop stain coor-
relevant values of. Since for a Poisson process the expecteddinates) are no longer availabl&dbella et al.2001). In
number of raindrop stains in a circle with a given radius is order to be able to obtain a quantitative appreciation of the
proportional to the expected surface area of that circle fallingstatistical significance of the fractal correlation dimensions
inside the blotting paper boundary, multiplication of the or- reported by LS, notwithstanding the absence of the original
dinate of Fig.2 with the (expected) total number of raindrop data, we have therefore proceeded as follows. We have digi-
stains on the blotting paper yields the expected number ofized the individual raindrop stains indicated as small squares
drop stains in the circle as a functionrof in Fig. 1a ofSchertzer and Lovejo§1989, which is an en-
The difference between the thin line and the bold line in larged version of Fig. 1 of LS. In this manner, we have been
Fig. 2, i.e. the expected portion of a circle with a given radius able to recover 438 of the 452 drop stains that were suppos-
falling outside the blotting paper, provides a measure for theedly present on the original blotting paper. The 438 individ-
underestimation of the number of raindrop stains caused byial raindrop coordinates (in mm, given the 128280 mn#?
the edge effect. For the largest radius considered by LS taize of the blotting paper) are shown in Fig. The reso-
fit a straight line to their Fig. 2 (corresponding to a normal- lution with which the individual points have been digitized
ized circle radius of=R/L=631/1280~0.5), almost 40% is approximately 2.15 mm in the-direction and 2.35mm in
of the circle area falls outside the blotting paper boundarieghe y-direction.
on average, indicating that the number of raindrop stains will  Figure5 shows how the fractal correlation dimension of
be underestimated by about 40% for circles of this size (ifthe spatial point pattern of Figt is determined. The em-
the stains are uniformly distributed). It should be empha-ployed procedure is the same as that described by LS (see
sized that this underestimation can be entirely explained aslso Sect2): the correlation dimension is estimated as the
an edge effect in an otherwise homogeneous rainfall samplelope of a straight line determined using linear regression on
and does not require invoking any scaling hypothesis. the logarithmic values, uniformly distributed over the radius
interval in logarithmic space (10 values per decade, with a
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in a radiusR around each drop for the spatial point pattern of Big.

(filled squares and diamonds). The resulting fractal correlation di-
Fig. 4. Digitized version of Fig. 1a oBchertzer and Lovejo{1989 mension of 1.92 has been determined using linear regression on the
(equivalent to Fig. 1 of LS) with the approximate locations of 438 of 0garithmic values for circle radii between 10mm and 63 cm (indi-
the original 452 raindrop stain centers collected on aiz#EB cn? ~ cated by the dashed line passing through the filled squares). The

chemically treated blotting paper during an exposure time of ap-CPen squares indicate the average number of drops in equally loga-
proximately 1s. rithmically spaced annuli (corresponding to the differences between

subsequent filled squares or diamonds). The bold lines indicate our
analytical solution to{n(R)) for homogeneously distributed rain-

drops, including the edge effect .Fig. 2).
minimum circle radius of 18°=10 mm and a maximum ra- P 9 g (Et-Fig. 2)

dius of 1&8~631 mm). In accordance with the analysis of o o
LS (their Fig. 2), we have also included a comparison of SOme statistics of the 1000 exponents determined in this

our analytical solution with the average number of drops inManner are given in Table(2nd column, “LS (1/1)"). The
equally logarithmically spaced annuli. uncertainty due to the finite resolution associated with the

Our Fig.5 closely corresponds to Fig. 2 of LS, the main d|g|_||t|zat|on ptrr?cess 'f Steif‘ o be SITaf"i:' is that
difference being that LS obtain a fractal correlation dimen- OWEVET, tN€ MOSL Striking resutt o 1§.is that our an-
sion of 1.83, whereas we find the slightly larger value of alytical solution to the edge effect in homogeneous Poisso-

1.92. This difference can partly be attributed to the 14 miss—nian rain (Eq.1) closely follows the experimentally deter-
ing raindrop stains in our Figt as compared to their Fig. 1 mined average raindrop stain counts as a function of increas-

Figure5 also exhibits a lack of small distances as compareojng search radiu_s, both for the ci_rcles (the upper bold line)
to Fig. 2 of LS, which may be partly due to the limited res- and for the annuli (the lower bold line). This suggests that the

olution with which we digitized their figure. This explains edge effect identified above could be the main reason for the
why we were forced to employ a minimum circle radius of observed correlation dimension being smaller than 2. This is

10mm, as opposed to the 3mm used by LS, which may b&onsistent with earlier observations Ggabella et al(2001),

another reason why our estimated correlation dimension i%/v?o CO?C(IjUdtid to“r;hthe ba5||s tgf a(lj|.m|ted 'Montet.Ca;Io ds]lmu—
larger than that of LS. Nevertheless, our value is still smaller 210N study that the correfation dimension estimated from

than 2, potentially indicating a fractal clustering behavior of the raindrop distr_ibution obsery ed by Lovejoy an_d Sc_he_rtzer
the spatial distribution of raindrops. could be compatible with a uniform random spatial distribu-

To test the statistical significance of the obtained valuetlon '
given the finite resolution with which the individual raindrop
stains have been digitized, we have generated 1000 replis Monte Carlo experiment
cates of Fig.4, assuming thec- and y-coordinates of the
stain centers to be independent uniformly distributed randoniTo investigate the statistical significance of the estimated
variables with means corresponding to the digitized valuescorrelation dimension in a more rigorous manner, we have
and ranges corresponding to the resolutions indicated abovgenerated 1000 realizations of a homogeneous spatial Pois-
(2.15 mm in thex-direction and 2.35 mm in the-direction). son point process, each mimicking the original experimental
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Table 1. Statistics (means, standard deviations, and the 5th, 25th,
50th, 75th and 95th percentiles) of the probability distribution of the
fractal correlation dimension determined for 1000 independent ran-
domly generated replicates. The replicates of the supposedly clus-
tered spatial point pattern of LS (Fid) represent the uncertainty
associated with the coordinates of the raindrop stains as a result of

the digitization process. Those of the uniform spatial point pattern + 10"

~

represent the uncertainty associated with the coordinates of simu- A,
lated raindrop stains obeying a homogeneous Poisson point proces%
in space with the same number density as EigColumns 2 and 3
(indicated as “(1/1)") correspond to the entir@8x 1.28 113 square,
whereas columns 4 and 5 (indicated as “(1/9)") correspond to the

3

10

10

vV 10°
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---<n(R)> ~ R192

—analytical solution

central square, after the entire square has been subdivided into nine 10 ]
equal squares.
-2
10 10° 10°
Statistic LS (1/1) Poisson (1/1) LS (1/9) Poisson (1/9)
mean 1.9226 1.9155 2.0287 2.0204
Zoi 38217; 25(3)2558 gggfg f;gg; Fig. 7. The same analysis as Fig.but applied to the spatial point
25% 1'9174 1‘ 8859 2'0129 1'9532 pgttern of Fig.ﬁ. Note that the frac.tal (.:orrelation.dimension deter-
50% 1:9219 1:9131 2:0263 2:0120 mined for this homogeneous_ realization (1_.92) is the same as that
75% 19274 1.9447 20407 20791 for the supposedly fractal point pattern of FHg.
95% 1.9362 1.9884 2.0671 2.1873
uniform probability distributionCox and Ishan1980. Fig-
ure 6 shows one of the generated realizations and Fihe
corresponding fractal analysis. These figures are the homo-
(5~ 8 C T o e RN geneous equivalents of Figsand>5, respectively. Note that
1200f® ® o % B o 8o o, DDDD o ] the correspondence between theory and (numerical) exper-
. DDSFDS 0 DZD . T i : ] iment is excellent (Fig7), demonstrating the usefulness of
10007D - g R el Po o our analytical solution. Also note that the fractal correla-
& °. . Yo, DDD 0% & ° % o tion dimension determined for the homogeneous realization
o DEDDD %o, % DDDDD $ Sioqeo of Fig. 6 (1.92) is the same as that determined previously for
800[ %o 7 %o o L A i S the supposedly fractal point pattern of Fi. This is a co-
a DDDD 9% o o o, DDD DDDDDE% . g o incidence, ho_we\_/er, as the correlation dimension will vary
£ 600k % 0o S0 8 g B o, i from one realization to the next.
> bl L 08 gg ° B Op o, B 5.9 Exactly how variable the determined correlation dimen-
bog oo . E o O e o sions are, is shown in Table(3rd column, “Poisson (1/1)"),
400r gy o "% om o 9o ", ° kit _ 7o which provides some summary statistics of the probability
L oG %" "8 . distribution of the estimated correlation dimension. It can be
0, & s 1 0o n 0" ° 5 seen that both the mean and the median of the correlation di-
2007 0Bw . L P Pos g O | mension are actually very close to the previously mentioned
g o & B oo i value of 1.92. The distribution is seen to be nearly symmet-
ollm = S = o, @ \ rical, with 90% of the probability mass concentrated in the
O 200 400 600 800 1000 1200 interval between 1.85 and 1.99. This shows that a value of
X (mm) 1.92 for the correlation dimension cannot be considered as

Fig. 6. One realization of 438 uniformly distributed raindrop stain
centers on a 128128 cnf square, the homogeneous (Poissonian)

equivalent of Fig4.

an unequivocal proof for the fractal nature of the microstruc-
ture of rain. Such a value is not significantly different (in
a statistical sense) from values that would be expected for a
homogeneous spatial raindrop distribution over a square of
finite size. Edge effects alone are sufficient to explain such
“fractal” correlation dimensions.

setup of LS. Given the fixed number of 438 raindrop stains Figure 8, finally, shows the influence of the maximum

on the blotting paper, the Poisson homogeneity hypothesigircle radius considered on the estimation of the correla-
dictates that the coordinates of the 438 stain centers are indéton dimension. In accordance with LS, slopes have been
pendent identically distributed random variables following a obtained using linear regression on the logarithmic values,

Nonlin. Processes Geophys., 16, 289% 2009
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uniformly distributed over the interval in logarithmic space 22
(10 values per decade, with a minimum circle radius of J
10mm and a maximum radius of 63cm). Fig@ehows _215¢ i J
that, apparently, the influence of the blotting paper’s finite J;
size remains appreciable even for circles which are an order-g 21 T
of magnitude smaller than the paper itself: the mean corre- é 205 r l
lation dimensions in Fig8 (indicated by the circles) remain G [ I T
smaller than the limiting value of 2, even for the smallest § A e B HHEH T
maximum radii considered. £
The indicated slopes represent “apparent” correlation di- = 1957
mensions, as their fractal values are entirely the resultofa £ ;4.
sampling artifact (edge effect). Interestingly, the correlation &
dimensions determined on the basis of Higi.e. the crosses 1.85¢
in Fig. 8) become larger than the Poissonian value of 2 for Il [ ‘
maximum circle radii smaller than about 20cm. The av- 1'201 102 10°
erage correlation dimensions for homogeneously distributed R (mm)

raindrops (indicated by the circles) never exceed the limiting
value of 2, although values in excess of 2 may be reached for_ . .
individual realizations. Nevertheless, the crosses always falg_'g' 8. Box andf Wh's_kersfp'k?t of the appar_er:t fragt_gl co(rjrelatlon
within the 50% confidence limits of the homogeneous corre-2imension as a function of the maximum circle radii used to per-

. . . . . . form the regression analyses. The circles correspond to the mean
lation dimensions, confirming our previous observation that

h ial Doi f Fid. d hibi . .. correlation dimensions for 1000 homogeneous realizations such as
the spatial point pattern of Fig. does not exhibit a statisti- o gne shown in Figs. The boxes show the corresponding 25th

cally significant departure from Poissonian homogeneity (ingng 75th percentiles, whereas the whiskers show the 5th and 95th
any case, not as far as its correlation dimension is considpercentiles. The crosses correspond to the correlation dimensions
ered). Alternative ways to test for (the absence of) completejetermined on the basis of Fi¢. The second to last cross and cir-
spatial randomness in two-dimensional point patterns (e.g.¢le correspond to the maximum circle radius employed in Fgs.
Cressie199]) are beyond the scope of this paper. and7, respectively.

test the statistical significance of fractal correlation dimen-
6 Discussion and conclusions sions determined from spatial point patterns.
In future experiments, the negative bias in the estimated
In conclusion, the claim by LS that their blotting paper ex- cOrrelation dimension due to systematic edge effects may be
periment provides empirical evidence for the fractal hypoth-educed by increasing the area of the blotting paper while
esis that “drops are (hierarchically) clustered” and that “in- K€€Ping the maximum circle radius fixed (thereby reducing
homogeneity in rain is likely to extend down to millimeter the ratio R/L) andfor by keeping a guard area inside the

scales” needs to be reconsidered. Our analytical results Corp_erimeier of the blot_tir_19 paper, as sugge_stedahjz)ell_a et al_.

firm previously reported Monte Carlo simulationiaeson (2003 ~. If we subdivide the entire blotting paper into nine
and Kostinski 1998 Gabella et al.2001) showing that as equa] squares and only. congderthe ceptral square in the cal-
a result of instrumental artifacts (edge effects) the empiri-culation of the correlation dimension (i.e. keeping a guard
cal results presented by LS are not statistically significant2'€2 ©f 128p3~427mm and limiting the maximum circle

. 46’\/ .
enough to reject the Poisson homogeneity hypothesis in fafadius t 16°~398 mm) the edge effect disappears, apart

vor of a fractal description of the discrete nature of rainfall. from some remainipg sampljng va[iab_ility (see T"f}meﬂ'th
As such our analytical solution (EcL)j provides an expla- and 5th columns, “LS (1/9)” and "Poisson (1/9)", respec-
nation for whatGabella et al(2003) and Gabella and Per- tively). The resulting average correlation dimensions for the
ona(2001) call the “systematic error” in the statistical anal- SuPPosedly fractal spatial point pattern of Fdgand for the

ysis of the blotting paper experiment, i.e. the negative bias 1 ) o . )
in the estimated correlation dimension resulting from edge " a study concerned with the statistical analysis of spatial pat-
effects. Through Monte Carlo simulations we have also Con_terns of rainfall cellBacchi et al (1996 employed a similar guard

sidered the “random error” resulting from the finite sample area. They also consider_alternative measures to test for comp_le_te
. . S . . . . spatial randomness of point patterns. This shows that the statisti-

size, I.e. uncertainties "_1 the gstlmated correlation dlmenSIOQal results presented in this paper are not restricted to the discrete

due to random fluctuations in the total number of raindrop microstructure of rainfall, but may also be relevant at much larger

stains on the blotting paper from one realization to the next(mesog or -y) scales. Leonard et al(2006 presented an analy-

In more general terms, it seems that the derived expressiosis of edge effects in simulated spatial point patterns of rain cells at

(Eq. @)) can be used as a reference curve against which tauch scales.
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corresponding homogeneous (uniform) Poisson case are vegquare, given that the circle center is located inside region A,
close to 2, the value expected for raindrop stains produced bis thensz 2.
a homogeneous Poisson process unaffected by edge effects. If the circle center falls in region B, the circle will fall
The most appropriate manner to describe the discrete ngsartly outside the square, but on one side only. The prob-
ture of rainfall is still the topic of ongoing debates (e.g., ability that a point uniformly distributed inside the unit
Kostinski et al, 2006 Lilley et al., 2006 Jameson2007). square will fall inside region B is equal to the area of B,
However, that the seemingly conflicting approaches of gend.e. 4(1—2r). Suppose the center of a circle falls inside
eralized Poisson process models versus multi-fractal modelgegion B and the (horizontal or vertical) distance from the
do not necessarily have to exclude each other has been agircle center to the boundary of the squareyis Then the
gued byFabry (1996 and more recently theoretically inves- area of the circle falling outside the square as a function of
tigated bylLovejoy and Schertzg2006 2008. The hypoth-  (0<y<r)is
esis supporting this reconciliation is that gravitational mixing N
(associated with the differential fall_speeds of the ralndrops)Al(y) _ 2/ (m _ y) dr. (A1)
tends to lead to homogeneous rainfall at the smallest spa-
tial scales, whereas (fractal) scaling regimes exist at largeft the circle center is uniformly distributed in region B then
scales. Indeed, spatial distributions of raindrops measurege gistancey from the circle center to the boundary of the
using stereo-photography indicate that the multi-fractal charqyare is a random variable uniformly distributed over the
acter of rain would be more clearly detectable in the spatialieryal [0, 7]. The expected circle area falling outside the

distribution of the liquid (rain)water content than in the spa- square, given that the circle center is located inside region B,
tial distribution of the drops per se — which has been foundg then

to be relatively homogeneous at small scalesgqaulniers- 1
Soucy et al.2001, Lovejoy et al, 2003 Lilley et al., 2009. (A1) = _/ A1(y)dy
0

;
o r /P2
Appendix A =;// <\/r2—x2—y>dxdy
0o Jo

Expected overlap between a circle and a square, 2 (T[N ri=y? \/ﬁd q
when the circle center is randomly distributed inside =) ) rem ATty =
the square

2 [r [P
In this appendix, we derive an analytical expression for the r /0 /0 y i dy,
expected overlap between a circle and a square, when the (A2)
circle center is uniformly distributed inside the square. This
is a problem in geometrical probability (e.d&<endall and
Moran, 1963 Santab, 1979 and stochastic geometry (e.g.,
Stoyan et a).1987. Without loss of generality, we assume o [r =2
the square to have unit area. We limit ourselves to the caséAq) = —f / Vr2 —x2dydx —
where the circle radius is smaller than 12, which guaran- rJo Jo

where(-) is the expectation operator. Changing the integra-
tion order yields

tees that the disk defined by the circle will cross at most two 2 propNrE=x?
sides of the unit square - /o /0 ydy dx
Consider the subdivision in regions A, B, and C as shown 2 7 1 [
PR ; : e _“ 2_ 2 _ =t 2 2
in Fig. 1. Regions B and C define a border of sizenside = / (r X ) dx / <r X ) dx
the square. Therefore, as long as the circle center falls in- ; or r2 0
side region A, the circle WI|| fa_II ennrely |n_S|de the square. — _/ (r2 _ x2) dx = =2 (A3)
The probability that a point uniformly distributed inside the rJo 3

unit square falls inside region A is equal to the area of A, Hence, the expected overlap between the circle and the
namely (1-2r)2. The overlap between the circle and the square, given that the circle center is located inside region B,
is (1 — 2/3)r2.

If the circle center falls in region C, the circle will again

2A related problem is that of the expected area of overlap be-

tween a circle of radius and a unit square, when the circle center is fall partly outside the square, but now awo sides (see
uniformly distributed in a region consisting of all points in the plane partly q ’

whose distance from the square is not greater thdime area of this _F'g_' 1). The.probablllty'that ‘T" Po'm unlformly distributed
region is L-4r+7r2 and the area of the circle isr2. The result-  inside the unit square will fall inside region C is equal to the
ing expected area of overlap equals the probability of any point inarea of C, i.e. 142-_ _ _ _
the unit square being covered by the circle, &2/ (1+4r+7r2) Because the circle center is assumed to be uniformly dis-
(Garwood 1947 Kendall and Moran1963 Santab, 1979. tributed inside the square, its horizontal and vertical positions
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inside the square (and consequently in each of the three re&Zhanging the integration order once more yields
gions identified in Figl) are independent. Therefore, the N
areas of' the two fractions _of the C|rc!e falll'ng out3|de_ the (Ag) = / / mdy ds —
square, if the circle center is located in region C, are inde- n'r2
pendent. Hence, the expected circle area falling outside the 2
square, given that the circle center is located inside region C, § (’ ) ds
is twice that given by Eq.A3) minusthe expected area of 5 pr
the overlap between the two fractions of the circle falling =—>|[ s (,2 —
outside the square. These fractions will only overlap if the r=Jo 21
circle center is located at a distance less thénom the cor-  If the circle center is located in region C, but at a distance
ners of the square, i.e. in that part of region C between thdarger thanr from the nearest corner of the square, then the
dashed circle segments in Fiyand each of the corners of two parts of the circle falling outside the square do not over-
the square. If the circle center is uniformly distributed inside lap. Hence, to obtain the expected area of the overlapping
the unit square, the probability of this eventis?. Hence,  fractions of the circle falling outside the square, given that
given that the circle center is located in region C, this (con-the circle center is located in region C, EA7{ needs to be
ditional) probability isr /4. multiplied by the probability that the distance from the circle

Suppose the center of a circle falls inside region C and thecenter to the nearest corner is less thagiven that the circle
horizontal and vertical distances from the circle center to thecenter is located in region C, i.e/4. The resulting area is
boundary of the square axeandy, respectively. Then the r2/8. As a consequence, the expected overlap between the
area of the overlapping fractions of the circle falling outside circle and the square, given that the circle center is located
the square as a function efandy (v/x2 + y2<r) is inside region C, ig7 —4/3+1/8)r2 or (1 —29/24)r2.

S Finally, the expected overlap between a circle and a
/ Y 2 _ 2 square, when the circle center is randomly distributed inside
( 72 _s —y)d& (A4) .
; the square is (for8r<1/2)

If the circle center is uniformly distributed in the part of re-

gion C between the dashed circle segments and the cornersio) =
of the square (see Fid), then the horizontal distanoeand

the vertical distance from the circle center to the boundary

of the square are independent uniformly distributed random

7Tr2

2
s§m=l< (A7)

Az(x,y) =
2.2 2 2
=A-2rNmr +4rld-2r) <71’——>r +

4 1
4r2(n—§+§>r2

variables such thay/x2 + y2<r. The expected area of the — - §r3 + }r4. (A8)
overlapping fractions of the circle falling outside the square, 3 2

given that the circle center is located in the part of region Clt can be demonstrated that the validity of E48] extends
between the dashed circle segments and the corners of tHe r<1. Moreover, we have been able to obtain an analytical
square, is then solution for the interval £r<+/2 as well. However, these
derivations are beyond the scope of this paper and will be
4 R Y/ p pap
)y )

(Ag) = presented elsewhere. Note that E8) can also be obtained
4 r NP pafr=y?
:—2/ / / Vr2 —s2dsdx dy

Az(x, y)dx dy
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