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Abstract. In a collisionless plasma, when reconnection in-
stability takes place, strong shear flows may develop. Under
appropriate conditions these shear flows become unstable to
the Kelvin-Helmholtz instability. Here, we investigate the
coupling between these instabilities in the framework of a
four-field model. Firstly, we recover the known results in the
low β limit, β being the ratio between the plasma and the
magnetic pressure. We concentrate our attention on the dy-
namical evolution of the current density and vorticity sheets
which evolve coupled together according to a laminar or a
turbulent regime. A three-dimensional extension in this limit
is also discussed. Secondly, we consider finite values of the
β parameter, allowing for compression of the magnetic and
velocity fields along the ignorable direction. We find that the
current density and vorticity sheets now evolve separately.
The Kelvin-Helmholtz instability involves only the vorticity
field, which ends up in a turbulent regime, while the current
density maintains a laminar structure.

1 Introduction

Magnetic reconnection is believed to be a crucial mechanism
in order to explain different phenomena in laboratory as well
as in astrophysical plasmas. Sawtooth oscillations and solar
flares are examples of such phenomena. Although magnetic
reconnection is a local process, occurring on small scale, its
main feature is a rearrangement of the magnetic field lines
topology on a global scale. Typically a magnetic island forms
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together with vorticity and current density layers. Related to
these layers, strong shear flows may develop and, under ap-
propriate conditions, become unstable to a hydrodynamical
instability of the Kelvin-Helmholtz type, generating turbu-
lent structures on small scales.

In high temperature plasmas the reconnection time is usu-
ally shorter than the electron-ion collision time so that the
electron inertia becomes the main mechanism responsible
for the reconnection process. Although a kinetic approach
should be invoked in order to treat such low collisional
regimes, fluid models, which offer a computational advan-
tage, are often used. Thus, a collisionless approach in the
framework of the two-dimensional four-field model ofFitz-
patrick and Porcelli(2004) is adopted. This model, in the
low β limit, reduces to the two-field model ofSchep et al.
(1994). Due to the absence of dissipation, this model admits
a Hamiltonian formulation that make it possible to identify
the invariants of the system evolution. In the framework of
the two-field model it has already been shown that the evo-
lution of the current density and vorticity layers change de-
pending on the value of the electron temperature (Del Sarto et
al., 2003, 2005; Grasso et al., 2007). In particular, when the
electron temperature is negligible, the strong shear flow that
is generated during the reconnection process develops into a
turbulent regime under the effect of hydrodynamical insta-
bilities. On the other side, when electron temperature effects
are taken into account, the current density and vorticity layers
evolve according to a stable laminar structure. This different
behavior has been explained in terms of the evolution of the
invariants of the system, that undergo a phase mixing process
in the presence of finite electron temperature (Grasso et al.,
2001). Here we recover these results, adopting the more gen-
eral four-field model. Incidentally, this difference between
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cold and hot electron regimes has been also proved in more
general 3-D configurations (Grasso et al., 2007). Here we
present new simulations of the two-field model in this 3-D
context.

When we add more degrees of freedom to the system, al-
lowing for perturbations of the magnetic and velocity fields
along the ignorable coordinate, and consider finiteβ regimes,
we find that this distinction between laminar and turbulent
regimes depending on the value of the electron temperature
does not longer apply. Indeed, the Kelvin-Helmholtz type in-
stability may develop on the top of the reconnection process
regardless the value of the electron temperature. Indeed, we
find that the vorticity layers undergo a Kelvin-Helmholtz in-
stability, while the current density layers evolve according
to a laminar structure. This twofold behavior will be ex-
plained in terms of the invariants of the model. The paper
is organized as follows: in Sect.2 we introduce the four-
field model; in Sect.3 its Hamiltonian structure is recalled;
in Sect.4 the lowβ limit of the model is recovered together
with its 3-D extension; while in Sect.5 the new higherβ
regime is presented. Conclusions will end the paper.

2 Model equations

The four-field model ofFitzpatrick and Porcelli(2004) is
given by the following dimensionless equations:

∂(ψ − d2
e∇

2ψ)

∂t
+ [ϕ,ψ − d2

e∇
2ψ] (1)

−dβ [ψ,Z] = 0,

∂Z

∂t
+ [ϕ,Z] − cβ [v, ψ] − dβ [∇

2ψ,ψ] = 0, (2)

∂∇2ϕ

∂t
+ [ϕ,∇2ϕ] + [∇

2ψ,ψ] = 0, (3)

∂v

∂t
+ [ϕ, v] − cβ [Z,ψ] = 0. (4)

The four fieldsψ ,Z, ϕ andv are functions ofx, y and time
t , and are related to the magnetic fieldB and to the plasma
fluid velocity v by the following relationships: lengths are
normalized on the equilibrium variation scale of the mag-
netic field,L, and time is normalized on the Alfvèn time,
τA=L/vA, where the Alfv̀en velocity is based on the poloidal
magnetic field.

B = (B0 + cβZ)ez + ∇ψ × ez, (5)

v = ez × ∇ϕ + v ez, (6)

whereB0 is a constant guide field,cβ=
√
β/(1+β) with

β=(5/3)p0/B0, beingp0 the constant background plasma
pressure,dβ=dicβ , whiledi andde indicate the ion and elec-
tron skin depth, respectively. The symbol[, ] indicates the
canonical Poisson bracket, so that[f, g]=(∇f×∇g)·ẑ, for

generic fieldsf andg. The system of Eqs. (1–4), the deriva-
tion of which is based on the assumption thatZ�B0, is ob-
tained from the standard two-fluid description of a plasma.
Equation (1) is a reduced Ohm’s law where the presence of
finite electron inertia, which makes it possible for magnetic
reconnection to take place, is indicated by the terms propor-
tional to the electron skin depthde. Equations2, 3 and4 are
obtained from the electron vorticity equation, the plasma vor-
ticity equation and the parallel plasma momentum equation,
respectively.

3 Hamiltonian structure

Given the absence of dissipative terms, the set of Eqs. (1–4) is
a natural candidate for being a Hamiltonian system. Indeed,
the non-canonical Hamiltonian structure of the system has
been derived inTassi et al.(2007) and thoroughly discussed
in Tassi et al.(2008b). The derivation of such structure fol-
lows from having realized that the functional

H =
1

2

∫
D
d2x (d2

e J
2
+ |∇ψ |

2
+ |∇ϕ|

2
+ v2

+ Z2) (7)

is a constant of motion for the system. In Eq. (7) J=−∇
2ψ

is the parallel current density whereasD is a domain of inte-
gration on the boundary of which the fields are supposed to
vanish. The functionalH represents the total energy of the
system, which includes both kinetic and magnetic contribu-
tions. The derivation of the Hamiltonian structure of an-field
system is completed (see, e.g.Morrison, 1998) when a suit-
able antisymmetric bilinear form{, } (Lie-Poisson bracket),
satisfying the Jacobi identity is found, such that the model
equations can be written in the form

∂ξi

∂t
= {ξi, H }, i = 1, . . . , n, (8)

with ξi indicating a set of field variables. The expression for
the Lie-Poisson bracket of the four-field model in the origi-
nal physical variables is rather lengthy and can be found in
Tassi et al.(2008b). Lie-Poisson brackets are associated to
Casimir functionalsC (Morrison, 1998), which are constants
of motion characterized by the property{f,C}=0, for every
f . In the case of the four-field model four infinite families of
Casimirs have been found, corresponding to

C1 =

∫
d2xωF(D) , (9)

C2 =

∫
d2xK(D) , (10)

C± =

∫
d2x g± (T±) . (11)

In the above expressions for the CasimirsF , K, g+ andg−

are arbitrary functions and we introduced the quantities

D = ψ − d2
e∇

2ψ + div , (12)
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ω = U +
di

cβd2
Z , (13)

T± = ψ − d2
e∇

2ψ +
(
di −

α

cβ

)
v ∓

deα
1/2

dic
1/2
β

Z (14)

whereα=cβd
2/di , d=

√
d2
i + d2

e andU=∇
2ϕ is the parallel

vorticity. Note that, by making use of the variables suggested
by the Casimirs, the set Eqs. (1–4) can be rewritten in the
much more compact form

∂D

∂t
+ [ϕ,D] = 0, (15)

∂ω

∂t
+ [ϕ, ω] = d−2

i [D,ψ], (16)

∂T±

∂t
+

[
ϕ±, T±

]
= 0, (17)

where, for convenience, we have defined

ϕ± = ϕ ±
dβ

de
ψ . (18)

and terms of orderd2
e /d

2
i have been neglected. This form

makes it evident that the fieldsD, T+ andT− are Lagrangian
invariants of the system and are advected by the incompress-
ible flows associated to the stream functionsϕ, ϕ+ andϕ−,
respectively.

This is also the form adopted for the numerical inte-
gration performed by a code based on a finite volume
scheme. The averaged values ofT±,D andω are advanced
in time using an explicit third order Adams-Bashfort scheme.
We choose an equilibrium configuration such thatψeq =

1/ cosh2(x/L), withL=1,φeq=veq=Zeq=0. We perturb the
system adding to the equilibrium current density the follow-
ing expression forδJ :

δJ (x, y) = J (x)exp(ikyy)

where ky=πm/Ly , m is the mode wave number along
y, and J1 is a function localized within a width of order
de, around the rational surface located atx=0. Periodic
boundary conditions are imposed over the rectangular do-
main(x, y) : −Lx<x < Lx,−Ly<y<Ly , withLx=2π and
Ly=π , discretized over 1024×512 grid points.

In all the numerical investigations of collisionless recon-
nection we present here we restrict ourselves to the so-called
large1′ regime, being1′ the standard instability parameter.
This choice is motivated by the fact the this regime is rel-
evant to the more general problem of fast reconnection, not
explicitly addressed here, but firstly reported inOttaviani and
Porcelli, 1993; Aydemir, 1993; Kleva et al., 1995; Wang and
Bhattacharjee, 1993.

4 Low β limit

If one considers theβ→0 limit, i.e. cβ→0, together with the
di→∞ limit, thendβ→ρs , the sonic Larmor radius. In this

case Eq. (4) decouples from the system, Eqs. (2) and (3) give
Z=−ρs∇

2φ and the all system (1–4) reduces to the stan-
dard two-field system ofSchep et al.(1994). In particular,
the Casimirs of the model reduce to the two generalized field
G±=ψ−d2

e∇
2ψ±deρs∇

2φ, which are also Lagrangian in-
variant and obey the following equations:

∂G±

∂t
+ [ϕ±,G±] = 0 (19)

where the generalized stream functions have now become

ϕ±=ϕ ± ρs/deψ.

This lowβ limit has been extensively studied in the litera-
tureGrasso et al., 2001; Cafaro et al., 1998; Del Sarto et al.,
2003, 2005, 2006and we recall here its main features, recov-
ering the aforementioned results by solving the full four-field
system of Eqs. (1–4).

When the electron temperature effects are negligible and
dβ=ρs→0, the system of Eq. (19) degenerate, sinceG+ co-
incides withG−. An expansion to first order in theρs pa-
rameter is necessary in order to recover the equations for
the canonical momentum,F=ψ+d2

e J , and the vorticity,U
(Cafaro et al., 1998). In this limit F becomes the only La-
grangian invariant of the model.F is advected by the ve-
locity field v=∇ϕ×ez. Its field lines are pushed towards
each other and concentrate in a narrow region of the order
of de. Consequently, the current density and vorticity lay-
ers tend to align along the neutral line of the initial equilib-
rium configuration. In this situation strong velocity shears
develop and, when the reconnection process has reached sat-
uration, these layers undergo a secondary instability of the
Kelvin-Helmholtz type (Del Sarto et al., 2003). This cou-
pling of the reconnection instability with the hydrodynamical
one lead to the development of turbulence inside the mag-
netic island. Two jets generate in the current density and
vorticity layers in correspondence of theX-point and move
towards theO-point, where they collide and change direc-
tion, moving to the edge of the island, where they destabi-
lize. Here we solve the four-field model equations assuming
cβ=0.001, de=0.24, anddβ=0.0024. A sequence of the dy-
namical steps described above is illustrated in Fig.1, where
the contour plots of the vorticity field (first row) and of the
current density (second row) are shown att=40 ,45, 50 τA.

A completely different scenario shows up when the elec-
tron temperature effects are retained, anddβ=ρs 6=0. In
this case, the fieldsG±, advected by the velocity fields
v±=∇ϕ±×ez, rotate in opposite directions (Cafaro et al.,
1998), while conserving their topology, resembling a baker
transformation. In this way, they undergo a phase mix-
ing process (Grasso et al., 2001), in the advanced nonlin-
ear phase. The current density and the vorticity, which cor-
respond to the sum and the difference ofG±, respectively,
reflect the rotation assuming a cross-structure shape aligned
with the branches of the separatrix of the magnetic island and
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Fig. 1. Contour plots of the vorticity (top row) and of the current density (bottom row) illustrating the turbulent regime occurring in the low
β limit of the four-field model for a case withcβ=0.001, de=0.24,anddβ=0.0024. The three columns represent 40,45,50τA, respectively.

Fig. 2. Contour plots of theG+ field (left frame), current density (middle frame) and vorticity (right frame) illustrating att=70τA, the
laminar regime occurring in the lowβ limit of the four-field model for a case withcβ=0.001, de=0.24,anddβ=0.24.

reflect the phase mixing process exhibiting a laminar struc-
ture that becomes more and more refined as the time goes on.
A typical example of this behavior is given in Fig.2 where a
snapshot ofG+, J andU is given in the saturation phase, at
t=70τA, for a case withcβ=0.001, de=0.24, anddβ=0.24.
We can clearly appreciate here the filamented structure that
characterizes this regime.

4.1 3-D extension

The occurrence of secondary instability on the top of the re-
connection one in theρs→0 limit has already been observed
also in a three dimensional context (Grasso et al., 2007).
The three-dimensional extension of the two field-model in
Eq. (19) reads asBorgogno et al.(2005):

∂G±

∂t
+ [ϕ±,G±] =

∂[ϕ± ∓ (%s/de)G±]

∂z
. (20)

3-D effects introduce magnetic field lines chaoticity (Bor-
gogno et al., 2008). Nevertheless, layers of vorticity and
current density persist even in such a chaotic setting. In
Grasso et al.(2007), these layers have been shown to undergo
secondary instability of the hydrodynamic type, when the

growth rate of the reconnection process is around its higher
value in the cold electron case. Here we present new simu-
lations that support our findings. In particular, we have per-
formed a high resolution run, which allows us to highlight
the intense shear layers formation and their following desta-
bilization. This 3-D simulation has been carried out adopt-
ing the code described inGrasso et al.(2007), that solves
Eq. (20) starting from a static equilibrium configuration
whit an Harris-type magnetic field such thatBeq= tanh(x).
The simulation has been carried out in a slab geometry de-
fined by−Lx<x<Lx, −Ly<y<Ly, and−Lz<z<Lz, with
801×512×512 grid points. Dirichlet boundary conditions
have been imposed along thex direction, while periodicity
has been used alongy andz, for all the perturbed fields.

In order to consider the 3-D effects on the reconnection,
we destabilize the initial equilibrium by the following lin-
early unstable, double helicity current perturbation

δJ (x, y, z) = δĴ1(x)exp(iky1y + ikz1z) (21)

+ δĴ2(x)exp(iky2y + ikz2z)

where ky=πm/Ly , kz=πn/Lz and (m, n) are the mode
wave numbers alongy andz, while δ ˆJ1,2(x) are functions
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Fig. 3. Contour plots of the vorticity (top row) and of the current density (bottom row) on differentz=constant planes, att=210τA, illustrating
the onset of the Kelvin-Helmholtz instability on a three-dimensional reconnection process in the lowβ limit whenρs→0.

localized within a layer of orderde, around the resonant
surfaces corresponding to the two helicities. In the re-
sults reported here we choosede=0.3, ρs=0.03,Lx=11.36,
Ly=4π , Lz=64π andky1=ky2=1/2, kz1=−kz2=1/32.

In the 3-D context the nonlinear interaction between
the different helicities depends on thez coordinate, being
stronger when the magnetic islands, corresponding to the
initial perturbations, face each other (Grasso et al., 2007).
Consequently, the developing of the Kelvin-Helmholtz in-
stability starts at different time on the differentz constant
planes. Figures3, 4 illustrate a zoom on the(x, y) plane of
the shaded contours of the current density (top row) and vor-
ticity (bottom row) on the four sectionsz=0, z=4π , z=8π ,
z=16π at the nonlinear timest=210τA and t=220τA, re-
spectively. Att=210τA the interaction between the two dif-
ferent helicity modes initially imposed leads to the formation
of a pair of bar-shaped patterns whose width is smaller than
de. The presence of the characteristic vortex-rings, at this
time clearly visible on the sectionsz=0, z=4π andz=8π ,
shows the fluid behavior of the dynamics inside the sheets.
At t=220τA (Fig. 4) the current density and vorticity fields
start to be affected by the Kelvin-Helmholtz instability an all
thez constant planes. The patterns of the layers appear rather
disrupted and the small scale characteristic vortexes has al-
ready developed.

As a comparison we show in Fig.5 the contour plots of the
vorticity and the current density for a case withρs 6=0. We
point out that the laminar structure, typical of the evolution
of theG± fields, is clearly visible on all the different planes.

5 High β limit

Here we explore the nonlinear dynamics of the system of
Eqs. (1–4) when finiteβ effects are retained. Preliminary re-
sults presented inTassi et al.(2007, 2008a) have shown the
appearance of a new regime where the occurrence of sec-
ondary hydrodynamical instability as a byproduct of the re-
connection one presents new features. In particular, the typi-
cal coupling between the behavior of the current density and
vorticity layers is now broken, allowing for the coexistence
of laminar and turbulent regimes. In particular, we observe
that, increasing the value ofcβ , while the current density re-
tain the laminar structure observed in the lowβ limit, the vor-
ticity eventually develops a hydrodynamical instability end-
ing up, for sufficiently highcβ values, in a totally turbulent
regime. An example of this different behavior is shown in
Fig. 6, where the contour plots of the vorticity and of the
current density are given att=65τA, a time well into the sat-
urated phase of the reconnection process, for a simulation
with cβ=0.4, de=0.24, anddβ=0.96. It is interesting to note
that in the vorticity there is a sort of competition between the
laminar and turbulent regimes, when the secondary instabil-
ity develops. The turbulence can fully develop and destroy
the laminar structure spreading all inside the island depend-
ing on the value ofcβ . This double aspect of the vorticity
can be observed in Fig.7, where a sequence in time is plot-
ted for a simulation withcβ=0.1, de=0.24, anddβ=0.24.
More precisely, snapshots att=75, 90, 100τA are shown.

www.nonlin-processes-geophys.net/16/241/2009/ Nonlin. Processes Geophys., 16, 241–249, 2009



246 D. Grasso et al.: Kelvin-Helmholtz instabilities in collisionless plasmas

Fig. 4. Contour plots of the vorticity (top row) and of the current density (bottom row) on differentz=constant planes, att=220τA, illustrating
the developing of the turbulent regime in a three-dimensional reconnection process in the lowβ limit whenρs→0.

Fig. 5. Contour plots of the vorticity (top row) and of the current density (bottom row) on differentz=constant planes, att=200τA, illustrating
the developing of the laminar structures in a three-dimensional reconnection process in the lowβ limit whenρs 6=0.

This coexistence of opposite regimes can be explained
in terms of the richer Lagrangian structure of the four-field
model. Indeed, we observe that, in this intermediate regime,
the two invariantsT±, advected byϕ±, undergo a phase mix-

ing process in the saturation phase, whileD andω on top of
the reconnection process develop a Kelvin-Helmholtz insta-
bility. Figure8 shows the contour plots ofT± in the left and
right frame in the top row, and ofD andω in the left and right
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Fig. 6. Contour plots of the vorticity (left frame) and of the current density (right frame) att=65τA for a case in the higherβ limit, with
cβ=0.4, de=0.24,anddβ=0.96.

Fig. 7. Sequence in time (t=75,90,100τA) of the contour plot of the vorticity for a simulation withcβ=0.1, de=0.24,anddβ=0.24.

Fig. 8. Contour plots ofT± in the left and right frame in the top row, and ofD andω in the left and right frame in the bottom row, for the
same case shown in Fig.6.

frame in the bottom row, for the same case shown in Fig.6.
This twofold evolution of the invariants of the model reflects
in the behavior of the current density and vorticity layers.
While the current density evolves according to the laminar
structure related to the mixing of the Lagrangian invariants
T±, the vorticity layers initially show the same structure but
at later times are dominated by the evolution of theω field

and undergo secondary instabilities taking a turbulent behav-
ior. If we consider the relationships between the invariant
fields andU andJ we find that:

J =
T+ + T−

2d2
e

−
ψ

d2
e

+
D

d2
i

, U =
T+ − T−

2dedβ
+ ω. (22)
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From these expressions it is clear that the behaviors ofJ and
U differ due to the presence ofω in the latter. The field
ω is responsible for the formation of two vertical jets that
propagate towards each other and that, upon colliding, form
vortex pairs and eventually undergo a Kelvin-Helmholtz type
of instability. We recall that theω field is related to theZ
field, which is physically responsible for compression of the
magnetic field along thez direction.

6 Conclusions

In conclusion we have investigated the coupling between
magnetic reconnection and Kelvin-Helmholtz instability in
the framework of the two-dimensional four-field model for
collisionless regimes. In particular, we have analyzed the
different regimes that occur depending on the value of theβ

parameter. We find that while, in the lowβ limit, the hydro-
dynamical instability develops on the top of the reconnection
process only in the cold electron regime, increasing the value
of β opens different scenarios.

In particular, whenβ→0 two distinct regimes can be iden-
tified depending on the value of the electron temperature,
which enters the equations through the ion sound Larmor
radius,ρs . Mainly, when electron temperature effects are
taken into account for, the advanced nonlinear phase of the
reconnection process is characterized by a laminar regime in
the vorticity and current density dynamical evolution. On
the contrary, when these effects are neglected andρs→0,
the same fields, after the occurrence of a Kelvin-Helmholtz
like instability, develop a turbulent regime. The main fea-
ture we intend to highlight, in this lowβ limit, is that the
dynamical evolution of the current density and vorticity lay-
ers is coupled, i.e. they evolve according to the same laminar
or turbulent regime. This coupling is explained in terms of
the Lagrangian invariants of the model. These results, al-
ready known in the literature in the framework of the two-
field modelGrasso et al.(2001); Del Sarto et al.(2003), have
been here derived in the more general context of the four-
field model.

This coupling between the behavior of the current density
and the vorticity layers persist also when three-dimensional
effects are considered (Grasso et al., 2007). Here, we illus-
trate these aspects showing new high resolution 3-D simu-
lations solving directly the two-field model equations in the
ρs→0 limit.

When considering finite values of theβ parameter, allow-
ing for compression of the magnetic field along the ignorable
direction, the dynamical evolution of the current density and
vorticity sheets decouple from each other. While the current
density maintains a laminar structure, the vorticity undergoes
secondary instabilities ending up in a turbulent regime. The
richer Lagrangian structure of the model gives account for
this different behavior. Indeed, the vorticity field can be de-
composed into a first component, related to the Lagrangian

invariantsT±, that is responsible for the filamentation on
small scales, and to a second component, corresponding to
the fieldω, that accounts for the jet formation and dynamics.
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