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Abstract. We report on the nonlinear turbulent processes as-
sociated with electromagnetic waves in plasmas. We focus
on low-frequency (in comparison with the electron gyrofre-
quency) nonlinearly interacting electron whistlers and non-
linearly interacting Hall-magnetohydrodynamic (H-MHD)
fluctuations in a magnetized plasma. Nonlinear whistler
mode turbulence study in a magnetized plasma involves in-
compressible electrons and immobile ions. Two-dimensional
turbulent interactions and subsequent energy cascades are
critically influenced by the electron whisters that behave
distinctly for scales smaller and larger than the electron
skin depth. It is found that in whistler mode turbulence
there results a dual cascade primarily due to the forward
spectral migration of energy that coexists with a backward
spectral transfer of mean squared magnetic potential. Fi-
nally, inclusion of the ion dynamics, resulting from a two
fluid description of the H-MHD plasma, leads to several
interesting results that are typically observed in the solar
wind plasma. Particularly in the solar wind, the high-time-
resolution databases identify a spectral break at the end of
the MHD inertial range spectrum that corresponds to a high-
frequency regime. In the latter, turbulent cascades cannot be
explained by the usual MHD model and a finite frequency
effect (in comparison with the ion gyrofrequency) arising
from the ion inertia is essentially included to discern the dy-
namics of the smaller length scales (in comparison with the
ion skin depth). This leads to a nonlinear H-MHD model,
which is presented in this paper. With the help of our 3-D
H-MHD code, we find that the characteristic turbulent in-
teractions in the high-frequency regime evolve typically on
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kinetic-Alfvén time-scales. The turbulent fluctuation asso-
ciated with kinetic-Alfv́en interactions are compressive and
anisotropic and possess equipartition of the kinetic and mag-
netic energies.

1 Introduction

Many laboratory and space plasmas contain multi-scale elec-
tromagnetic fluctuations. The latter include the electron
whistlers and H-MHD fluctuations in a uniform magneto-
plasma. While the wavelengths of the electron whistlers
could be comparable with the electron skin depth, the H-
MHD fluctuations could have differential wavelengths when
compared with the ion skin depth and the ion-sound gyrora-
dius. In whistler mode turbulence, the electrons are incom-
pressible and the ions form the neutralizing background in
the plasma. On the other hand, in the H-MHD turbulence the
compressibility of the electrons and ions cannot be ignored.

In uniform magnetized plasmas, one can have different
types of electromagnetic waves. The latter include the
low-frequency (in comparison with the electron gyrofre-
quency) electron whistlers as well as linearly coupled fast
and slow magnetosonic and kinetic-Alfvén waves. The elec-
tron whistlers are described by the electron magnetohydro-
dynamics (EMHD) equations (Kingsep et al., 1990), and the
role of whistlers in the EMHD turbulence is an unresolved is-
sue (Shaikh et al., 2000a,b; Shaikh, 2004, 2008, 2009; Shaikh
and Zank, 2003, 2005). Notably, EMHD in two dimensions
exhibits dual cascade phenomena (Biskamp et al., 1996)
similar to those of 2-D Navier-Stokes (Kraichnan, 1965;
Frisch, 1995) and MHD dynamics (Fyfe and Montgomery,
1977; Biskamp and Bremer, 1994). However, because of
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the complexity of nonlinear interactions in EMHD turbu-
lence, mode coupling interactions are relatively more com-
plex to comprehend. Like 2-D Navier-Stokes (Kraichnan,
1965; Frisch, 1995) and MHD (Fyfe and Montgomery, 1977;
Biskamp and Bremer, 1994) systems, 2-D EMHD also ex-
hibits dual cascade processes (Biskamp et al., 1996). The
dual cascade phenomena, i.e. both the forward and inverse
cascades, is however difficult to resolve numerically in a sin-
gle energy spectrum because of a lack of spectral resolution
in the inertial ranges. Therefore there exists considerably
less numerical work on this issue as compared to various
two-dimensional (decaying) turbulence systems. Numerical
simulations of inverse cascade phenomenon, within the con-
text of magnetohydrodynamics (MHD) turbulence, have pre-
viously been performed at a modest resolution of up to 10242

Fourier modes (Biskamp and Bremer, 1994).
The dynamics of linearly coupled magnetic field-aligned

Alfv én wave and obliquely propagating fast and slow mag-
netosonic waves and kinetic Alfvén waves are governed by
the H-MHD equations. The solar wind plasma wave spectra
corresponding to whistlers or high-frequency (in comparison
with the ion gyrofrequency) kinetic-Alfv́en wave possess a
spectral break, the origin of which is not yet fully understood
(Denskat et al., 1983; Goldstein et al., 1994; Leamon et al.,
1998; Goldstein et al., 1996; Bale et al., 2005; Servidio et al.,
2008). There are, however, some preliminary results avail-
able in the literatureShaikh and Shukla(2008, 2009).

In this paper, we present a survey of the spectral properties
of the low-frequency multi-scale electromagnetic turbulence
in plasmas. In Sect. 2, we begin by describing the whistler
wave model based on two dimensional electron magnetohy-
drodynamic equations. Linear properties of whistler waves
are described in this section. Section 3 contains nonlin-
ear simulation results describing the wave spectra in small
and large scale (in comparison with the electron skin depth)
regimes. Section 4 describes the Hall- MHD counter part.
The summary and conclusions are contained in Sect. 5.

2 The whistler mode turbulence

In an incompressible electron-MHD (E-MHD) plasma, col-
lective oscillation of electrons exhibit electron whistlers.
The electron Whistlers are widely observed in many space
and laboratory plasmas. For instance, they are believed to
be generated in the Earth’s ionospheric region by lightning
discharges and proceed in the direction of Earth’s dipole
magnetic field (Helliwell, 1965). They have also been re-
cently detected in the Earth’s radiation belt by the STEREO
S/WAVES instrument (Cattell et al., 2008). Moreover, there
are observations of Venus’ ionosphere that reveal strong, cir-
cularly polarized, electromagnetic waves with frequencies
near 100 Hz. The waves appear as bursts of radiation lasting
0.25 to 0.5 s, and have the expected properties of whistler-
mode signals generated by lightning discharges in Venus’

clouds (Russell et al., 2007). These waves are also reported
near the Earth’s magnetopause (Stenberg et al., 2007) and the
Cluster spacecraft encountered them during the process of
magnetic reconnection in the Earth’s magnetotail region (Wei
et al., 2007). Upstream of collisionless shock, whistler waves
are found to play a crucial role in heating the plasma ions (Sc-
holer and Burgess, 2007). Their excitation and propagation
are not only limited to the Earth’s nearby ionosphere, but they
are also found to be excited near the ionosphere of other plan-
ets such as in the radiation belts of Jupiter and Saturn (Be-
spalov, 2006). Whistlers are believed to be a promising can-
didate in transporting fields and currents in plasma opening
switch (POS) devices (Mason et al., 1993), which operate on
fast electron time scales. Similarly, electron whistlers have
been known to drive the phenomenon of magnetic field line
reconnection (Bulanov et al., 1992) in astrophysical plasmas
(Zhou et al., 1996). Whistlers have also been investigated in
several laboratory experiments (Stenzel, 1997, 1975; Sten-
zel and Urrutia, 1990; Stenzel et al., 1993), where they have
been found to exhibit a variety of interesting features, such
as an anisotropic propagation of the phase front, strong dis-
persion characteristics, interaction with plasma particles, etc.
A few experimental features have also been confirmed by
recent three-dimensional simulations (Eliasson and Shukla,
2007), where it has been reported that the polarity and the
amplitude of the toroidal magnetic field, in agreement with
the laboratory experiments, determine the propagation direc-
tion and speed of the whistlers. These are only a few ex-
amples amongst a large body of work devoted to the study
of the whistlers. Despite the large amount of effort gone into
understanding the existence and the propagation of whistlers,
their linear dynamics is still debated, specially in the context
of complex nonlinear processes. For example, the role of
whistlers in the high- frequency turbulence and anisotropic
spectral cascades has been debated recently (Shaikh et al.,
2000a,b; Shaikh and Zank, 2003, 2005; Shaikh, 2004). In
the following, we present a summary of the spectra of the
whistler turbulence.

The electron whistler mode dynamics is essentially gov-
erned by the EMHD equations. The EMHD phenomena
typically occur on the electron time scale (Kingsep et al.,
1990), while the ions do not participate in the whistler
mode dynamics (Shukla, 1978). Thus, the basic frequency
regimes involved areωci�ω�ωce (whereωci, ωce are, re-
spectively, the ion and electron gyrofrequencies, andω is
the characteristic whistler frequency), and the length scales
arec/ωpi<`<c/ωpe, whereωpi, ωpe are the ion and elec-
tron plasma frequencies, respectively. In whistlers, electrons
carry currents, since immobile ions merely provide a neu-
tralizing background to a quasi-neutral EMHD plasma. The
electron momentum equation is

men
d

dt
Ve = −enE −

ne

c
Ve × B − ∇P − µmenVe, (1)
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E = −∇φ −
1

c

∂A

∂t
, (2)

∇ × B =
4π

c
J +

1

c

∂E

∂t
, (3)

∂n

∂t
+ ∇ · (nVe) = 0, (4)

where

d

dt
=
∂

∂t
+ Ve · ∇.

The remaining equations areB=∇×A, J=−enVe,∇·B=0.
Hereme, n, Ve are the electron mass, density and fluid ve-
locity respectively.E,B respectively represent electric and
magnetic fields andφ, A are electrostatic and electromag-
netic potentials. The remaining variables and constants are,
the pressureP , the collisional dissipationµ, the current due
to electrons flowJ , and the velocity of lightc. The displace-
ment current in Amṕere’s law Eq. (3) is ignored, and the den-
sity is considered as constant throughout the analysis. The
electron continuity equation can, therefore, be represented by
a divergence-less electron fluid velocity∇·Ve=0. The elec-
tron fluid velocity can then be associated with the rotational
magnetic field through

Ve = −
c

4πne
∇ × B.

By taking the curl of Eq. (1) and, after slight rearrange-
ment of the terms, we obtain a generalized electron momen-
tum equation in the following form.

∂P

∂t
− Ve × (∇ × P)+ ∇ξ = −µmeVe (5)

where

P = meVe −
eA

c
andξ =

1

2
meVe · Ve +

P

n
− eφ.

The curl of Eq. (5) leads to a three-dimensional equation
of EMHD describing the evolution of the whistler wave mag-
netic field,

∂

∂t
�B + Ve · ∇�B −�B · ∇Ve = µd2

e∇
2B. (6)

where�B=B−d2
e∇

2B, de=c/ωpe, the electron skin depth,
is an intrinsic length-scale in the EMHD plasma. The three-
dimensional EMHD equations can be transformed into two
dimensions by regarding variation in theẑ-direction as ig-
norable i.e.∂/∂z=0, and separating the total magnetic field
B into two scalar variables, such thatB=ẑ×∇ψ+bẑ. Here
ψ andb respectively present perpendicular and parallel com-
ponents of the wave magnetic field. The corresponding equa-
tions of these components can be written in a normalized
form as follows,

∂

∂t
�ψ + ẑ× ∇b · ∇�ψ − B0

∂

∂y
b = 0, (7)

∂

∂t
�B−d2

e ẑ×∇b·∇∇
2b+ẑ×∇ψ ·∇∇

2ψ+B0
∂

∂y
∇

2ψ=0, (8)

where�ψ=ψ−d2
e∇

2ψ,�B=b−d2
e∇

2b The length and time
scales are normalized respectively byde andωce, whereas
magnetic field is normalized by a typical meanB0. The lin-
earization of Eqs. (7) and (8) about a constant magnetic field
B0 yields the dispersion relation for the whistlers, the normal
mode of oscillation in the EMHD frequency regime, and is
given by

ωk = ωc0
d2
e kyk

1 + d2
e k

2
,

whereωc0=eB0/mc and k2
=k2

x+k
2
y . From the set of the

EMHD Eqs. (7) and (8), there exists an intrinsic length scale
de, the electron inertial skin depth, which divides the entire
spectrum into two regions; namely short scale (kde>1) and
long scale (kde<1) regimes. In the regimekde<1, the lin-
ear frequency of whistlers isωk∼kyk and the waves are dis-
persive. Conversely, dispersion is weak in the other regime
kde>1 sinceωk∼ky/k and hence the whistler wave packets
interact more like the eddies of hydrodynamical fluids.

3 Energy spectra in whistler turbulence

By virtue of de, there exists two inertial ranges that corre-
spond to smallerkde>1 and largerkde<1 length-scales in
the EMHD turbulence. Correspondingly, forward cascade
turbulent spectra in these regimes exhibitk−5/3 andk−7/3 re-
spectively as shown in Fig. (1). The whistler spectrumk−7/3

is produced essentially by fluctuations in electron fluid while
ions are at rest. The observed spectra in our simulations de-
picted as in Fig. (1) can be explained on the basis of Kol-
mogorov phenomenology as follows.

The regimekde>1 in EMHD turbulence corresponds es-
sentially to a hydrodynamic regime because the energy spec-
trum is dominated by the shorter length-scale turbulent ed-
dies that give rise to a characteristic spectrum of an in-
compressible hydrodynamic fluid. The group velocity of
whistlers, in this regime, is small and hence it is expected
that the whistler effect cannot be present. Forkde>1, the
first term in the magnetic potential can be dropped and thus

A ∼ (∇2ψ)2.

Similarly the dominating terms in the energy are

E ∼ (∇b)2 + (∇2ψ)2.

This implies

E ∼ (∇b)2 ∼ (∇2ψ)2.

Thus forkde>1,E∼A. In this case both magnetic potential
and the energy cascades turn out to be identical leading to
the same spectral index, i.e.k−5/3, in both direct and inverse
cascade regimes. This is shown in Fig. (1) (left panel).
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Fig. 1. (left) Driven 2D whistler wave turbulence with the forcing band identified by the kf modes. The spectral resolution is 51202.
Notice that no spectral break exists across the forcing modes, which agrees with the Kolmogorov theory. Across the kf modes, the forward
cascade of energy (k > kf ) and the inverse cascade of mean magnetic potential (k < kf ) yield identical spectral indices and are close
to Ek ∼ k−5/3. We plot the compensated energy spectrum k5/3Ek ∼ ε2/3 ∼ Const to show inertial range modes along a straight
line that is indicative of constant energy dissipation rates in steady state driven dissipative turbulence. (right) The inverse and forward
cascade regimes are identified in 2D driven whistler wave turbulence. The compensated energy spectrum in the inverse cascade regime
k7/3Einv ∼ ε2/3k7/3k−1 ∼ ε2/3k4/3, whereas the forward cascade is given by k7/3Efwd ∼ Const. The approximate error in the spectral
slope is about ±0.072. The spectral break, separating a forward and an inverse cascade regimes, corresponds to a hump above the forcing
modes kf that results from a direct excitation of the Fourier modes in driven whistler wave turbulence.

∂n

∂t
+∇ · (nVe) = 0, (4)

where
d

dt
=

∂

∂t
+ Ve · ∇.

The remaining equations are B = ∇×A,J = −enVe,∇ ·
B = 0. Here me, n,Ve are the electron mass, density and
fluid velocity respectively. E,B respectively represent elec-
tric and magnetic fields and φ,A are electrostatic and elec-
tromagnetic potentials. The remaining variables and con-
stants are, the pressure P , the collisional dissipation µ, the
current due to electrons flow J, and the velocity of light c.
The displacement current in Ampére’s law Eq. (3) is ig-
nored, and the density is considered as constant throughout
the analysis. The electron continuity equation can, therefore,
be represented by a divergence-less electron fluid velocity
∇ ·Ve = 0. The electron fluid velocity can then be associ-
ated with the rotational magnetic field through

Ve = − c

4πne
∇×B.

By taking the curl of Eq. (1) and, after slight rearrange-
ment of the terms, we obtain a generalized electron momen-
tum equation in the following form.

∂P
∂t
−Ve × (∇×P) +∇ξ = −µmeVe (5)

where

P = meVe − eA
c

and ξ =
1
2
meVe ·Ve +

P

n
− eφ.

The curl of Eq. (5) leads to a three-dimensional equation
of EMHD describing the evolution of the whistler wave mag-
netic field,

∂

∂t
ΩB + Ve · ∇ΩB −ΩB · ∇Ve = µd2

e∇2B. (6)

where ΩB = B − d2
e∇2B, de = c/ωpe, the electron skin

depth, is an intrinsic length-scale in the EMHD plasma. The
three-dimensional EMHD equations can be transformed into
two dimensions by regarding variation in the ẑ-direction as
ignorable i.e. ∂/∂z = 0, and separating the total magnetic
field B into two scalar variables, such that B = ẑ×∇ψ+bẑ.
Here ψ and b respectively present perpendicular and parallel
components of the wave magnetic field. The corresponding
equations of these components can be written in a normalized
form as follows,

∂

∂t
Ωψ + ẑ ×∇b · ∇Ωψ −B0

∂

∂y
b = 0, (7)

∂

∂t
ΩB−d2

eẑ ×∇b·∇∇2b+ẑ ×∇ψ·∇∇2ψ+B0
∂

∂y
∇2ψ = 0,(8)

where Ωψ = ψ − d2
e∇2ψ,ΩB = b − d2

e∇2b The length
and time scales are normalized respectively by de and ωce,
whereas magnetic field is normalized by a typical mean B0.
The linearization of Eqs. (7) & (8) about a constant magnetic
field B0 yields the dispersion relation for the whistlers, the

Fig. 1. (left) Driven 2-D whistler wave turbulence with the forcing band identified by thekf modes. The spectral resolution is 51202. Notice
that no spectral break exists across the forcing modes, which agrees with the Kolmogorov theory. Across thekf modes, the forward cascade

of energy (k>kf ) and the inverse cascade of mean magnetic potential (k<kf ) yield identical spectral indices and are close toEk∼k
−5/3. We

plot the compensated energy spectrumk5/3Ek∼ε
2/3

∼Const to show inertial range modes along a straight line that is indicative of constant
energy dissipation rates in steady state driven dissipative turbulence. (right) The inverse and forward cascade regimes are identified in 2-
D driven whistler wave turbulence. The compensated energy spectrum in the inverse cascade regimek7/3Einv∼ε2/3k7/3k−1

∼ε2/3k4/3,
whereas the forward cascade is given byk7/3Efwd∼Const. The approximate error in the spectral slope is about±0.072. The spectral break,
separating a forward and an inverse cascade regimes, corresponds to a hump above the forcing modeskf that results from a direct excitation
of the Fourier modes in driven whistler wave turbulence.

In EMHD the eddy velocity (v) in thex−y plane is char-
acterized bŷz×∇b. Thus the typical velocity with a scale
size` can be represented byv'b`/`. The eddy scrambling
time is then given by

τ ∼
`

v
∼
`2

b`
.

In the limit of kde<1, the mean square magnetic potential is,

A ∼ ψ2
∼ b2

``
2.

The second similarity follows from the assumption of an
equipartition of energy in the axial and poloidal components
of magnetic field. This assumption has been invoked in some
earlier works too, and would be exact if the EMHD tur-
bulence comprised of randomly interacting whistler waves
only. To determine the scaling behaviour of the spectrum in
the magnetic potential cascade regime (i.e. fork<kf , kf rep-
resenting the forcing scales), the rate ofA transfer is given
by the relation,

ε =
A

τ
= b3

`,

and the mean square magnetic potential per unit wave num-
ber is

Ak = b2
``

3.

The locality of the spectral cascade in the wavenumber space
yieldsAk=εαkβ . On equating the powers ofb` and`, we

obtainα=2/3 andβ=−3. In kde<1 regime, the expression
for the energy can be approximated asE∼b2

∼(∇ψ)2. This
further implies thatE=A/`2 and

Ek ∼ k−1.

A similar analysis in the other regime ofk>kf where energy
cascade is local in wave number space leads to an energy
spectrum with the index of−7/3 such that

Ek ∼ k−7/3.

The compensated spectra of Fig. (1) (right panel) are consis-
tent with above description.

In the following section, we shall include the ion dynamics
that correspond to turbulence scales in whichkdi>1, where
di is ion skin depth. This regime of the magnetofluid dy-
namics is referred to as the Hall MHD, and it stems from the
combined motion of the electron and ion fluids amidst pre-
dominant density fluctuations that evolves on Kinetic-Alfvén
wave (KAW) time (and length) scales.

4 The high-frequency kinetic-Alfvén inertial regime

The high-frequency kinetic-Alfv́en regime of the plasma re-
sults in the solar wind turbulence when plasma wave fluctu-
ations comprise a multitude of time and space scales that are
shorter than the ion gyroperiod (2π/�ci) and comparable (or
longer) to (than) the ion thermal gyroradius/ion-sound gyro-
radius or shorter than the ion skin depth, respectively. These
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electromagnetic fluctuations cannot be described by the usual
magnetohydrodynamic (MHD) model (Denskat et al., 1983;
Goldstein et al., 1994; Leamon et al., 1998; Goldstein et al.,
1996; Shaikh and Shukla, 2008, 2009) which involve the
characteristic time scale much longer than the ion gyrope-
riod. Typically, reconnection of magnetic field lines near the
solar corona (Bhattacharjee, 2004), Earth’s magnetosphere
and in many laboratory plasma devices (Bhattacharjee et al.,
2001) are other avenues where collisionless or kinetic pro-
cesses call for inclusion of the finite Larmor radius and finite
frequency effects in the standard MHD model. In particu-
lar, in the context of the solar wind plasma, higher time res-
olution databases identify a spectral break near the end of
the MHD inertial range spectrum that corresponds to a high-
frequency (>�ci) regime where turbulent cascades arenot
explainable by Alfv́enic cascades. This refers to a secondary
inertial range where turbulent cascades follow ak−7/3 (where
k is a typical wavenumber) spectrum in which the charac-
teristic fluctuations evolve typically on kinetic-Alfvén time
scales (Howes et al., 2008; Matthaeus et al., 2008). The onset
of the second or the kinetic-Alfv́en inertial range still eludes
our understanding of solar wind fluctuations (Leamon et al.,
1998; Shaikh and Shukla, 2008, 2009). The mechanism lead-
ing to the spectral break has been thought to be either medi-
ated by the kinetic- Alfv́en waves (KAWs), or damping of
ion-cyclotron waves, or dispersive processes, or other im-
plicit nonlinear interactions associated with kinetic effects in
solar wind plasmas (Denskat et al., 1983; Goldstein et al.,
1994, 1996; Leamon et al., 1998; Shaikh and Shukla, 2008,
2009). Motivated by these issues, we have developed three
dimensional, time dependent, compressible, non-adiabatic,
driven and fully parallelized Hall-magnetohydrodynamic (H-
MHD) simulations (Shaikh and Shukla, 2008, 2009) to inves-
tigate turbulent spectral cascades in collisionless space plas-
mas.

In the high-frequency regime,ω>�ci , the inertialess elec-
trons contribute to the electric field which is dominated es-
sentially by the Hall term corresponding toJ×B force. The
latter, upon substituting in the ion momentum equation, mod-
ifies the ion momentum, the magnetic field and total en-
ergy in a manner to introduce a high-frequency (ω>�ci) and
small scale (k⊥ρL>1, whereρL is ion thermal gyroradius)
plasma motions. The characteristic length scales (k−1) as-
sociated with the plasma motions are smaller than the ion
gyroradius (ρL). The quasi-neutral solar wind plasma den-
sity (ρ), velocity (U ), magnetic field (B) and total pressure
(P=Pe+Pi) fluctuations can then be cast into a set of the
Hall-MHD equations, given by

∂ρ

∂t
+ ∇ · (ρU) = 0, (9)

ρ

(
∂

∂t
+ U · ∇

)
U = −∇P +

1

c
J × B (10)

∂B

∂t
= ∇ ×

(
U × B − di

J × B

ρ

)
+ η∇2B, (11)

∂e

∂t
+∇·

(
1

2
ρU2U+

γ

γ−1

P

ρ
ρU+

c

4π
E×B

)
=0 (12)

where

e =
1

2
ρU2

+
P

(γ − 1)
+
B2

8π

is the total energy of the plasma that contains both the
electron and ion motions. All the dynamical variables
are functions of three space and a time, i.e.(x, y, z, t),
co-ordinates. Equations (9) to (12) are normalized by
typical length`0 and time t0=`0/v0 scales in our simu-
lations, wherev0=B0/(4πρ0)

1/2 is Alfv én velocity such
that ∇̄=`0∇, ∂/∂t̄=t0∂/∂t, Ū=U/v0, B̄=B/v0(4πρ0)

1/2,
P̄=P/ρ0v

2
0, ρ̄=ρ/ρ0. The parametersµ andη correspond

respectively to ion-electron viscous drag term and magnetic
field diffusivity. While the viscous drag modifies the
dissipation in plasma momentum in a nonlinear manner,
the magnetic diffusion damps the small scale magnetic
field fluctuations linearly. The magnetic field is mea-
sured in the unit of Alfv́en velocity. The dimensionless
parameter in magnetic field Eq. (11) i.e. ion skin depth
d̄i=di/`0, di=C/ωpi is associated with the Hall term. This
means the ion inertial scale length (di) is a natural or an
intrinsic length scale present in the Hall MHD model which
accounts for finite Larmour radius effects corresponding to
high frequency oscillations inkdi>1 regime. Clearly, the
Hall force dominates the magnetoplasma dynamics when
1/ρ(J×B)>U×B term in Eq. (11) which in turn introduces
time scales corresponding to the high frequency plasma
fluctuations in kdi>1 regime. Furthermore, our model
includes a full energy equation (Eq.12) unlike an adiabatic
relation between the pressure and density. The use of energy
equation enables us to study a self-consistent evolution of
turbulent heating resulting from nonlinear energy cascades
in the solar wind plasma.

In the linear regime, the Hall-MHD equations (without the
energy equation) admit a dispersion relation,

(ω2
− k2

zV
2
A)Dm(ω, k) = ω2(ω2

− k2V 2
s )k

2
zk

2V 4
A/ω

2
ci,

which exhibits coupling among the fast and slow magne-
tosonic waves given by the solutions of

Dm(ω, k) = ω4
− ω2k2(V 2

A + V 2
s )+ k2

zk
2V 2
AV

2
s = 0,

where ω is the frequency,k(=k⊥+kzẑ is the wave vec-
tor, the subscripts⊥ andz represent the components across
and along the external magnetic fieldsB0ẑ, and VA and
Vs are the Alfv́en and effective sound speeds, respectively.
The warm HMHD plasma thus supports a great variety of
waves (e.g. magnetic field-aligned non-dispersive Alfvén
waves, obliquely propagating fast and slow magnetohydro-
dynamic waves, obliquely propagating dispersive kinetic
Alfv én waves and whistlers) having different wavelengths
(comparable to the ion skin depth associated with the Hall
drift, the ion sound gyroradius associated with the electron
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electron pressure and the perpendicular ion inertia/ion polar-
ization drift). Interestingly, in the ω < Ωci regime, which is
predominantly known to be an Alfvénic regime, Howes et al.
(2008) noted the possibility of occurance of highly oliquely
propagating KAWs (with ω ¿ Ωci) thereby questioning the
role of damping of ion cyclotron waves in the onset of spec-
tral breakpoint. While our simulations described in Fig. (2)
may contain the KAWs corresponding to ω ¿ Ωci, their spe-
cific contribution in the spectral cascades depicted in Fig. (2)
and Fig. (3) is not identifiable. We therefore leave this study
to a future investigation.

The nonlinear spectral cascades in the KAW regime lead to
a secondary inertial range in the vicinity of modes kdi ' 1
in that the solar wind magnetic, velocity and field fluctua-
tions follow turbulent spectra close to k−7/3. This is shown
in Fig. (2). The characteristic turbulent spectra in the KAW
regime is steeper than that of MHD inertial range which fol-
lows a k−α where α is 5/3 or 3/2. The onset of the sec-
ondary inertial range is constantly debated because of the
presence of multiple processes in the KAW regime that in-
clude, for instance, the dispersion, damping of ion cyclotron
waves, turbulent dissipation or due to fast or slow magne-
tosonic perturbations and etc. In the context of our simula-
tions, the observed k−7/3 in the solar wind turbulent plasma
can be understood from the energy cascades affected by the
Hall forces. The latter are one of the potential candidates that
may be responsible for a k−7/3 spectrum in the KAW inertial
range regime.

To understand the observed k−7/3 spectrum in the KAW
inertial range regime in solar wind plasma and in our sim-
ulations, we invoke Kolmogorov and Kraichnan like phe-
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Hall MHD plasma. The time scale associated with Hall
MHD is τH smaller than that of MHD τMHD. The non-
linear cascades in the MHD turbulence are governed typi-
cally by τMHD ∼ (kuk)−1, where uk is the velocity field
in the k-space. By contrast, the spectral transfer of the
turbulent energy in the solar wind (Hall MHD) plasma is
τH ∼ (k2Bk)−1. The energy transfer rates in the KAW
regime are therefore ε ∼ u2

k/τH. On substituting the turbu-
lent equipartition relation between the the velocity and mag-
netic fields B2

k ∼ u2
k, the energy transfer rates turn out to be

ε ∼ k2B3
k. The use of the turbulent equipartition is jus-

tified from the observations and it is also seen in our 3D
simulations [see Fig. (5)]. Applying the Kolmogorov’s phe-
nomenology Kolmogorov (1951); Kraichnan (1965) that the
energy cascades in the inertial range are local and that they
depend on the Fourier modes and the energy dissipation rate,
we obtain k−1B2

k ∼ (B3
kk

2)αkβ . Equating the indices of
the common bases, we get α = 2/3 and β = −7/3. This
results in an energy spectrum Ek ∝ k−7/3 that is consistent
with our 3D simulations [see Fig. (2)] and the observations.
On the other hand, the use of τMHD in estimating the energy
dissipation rates retrieves the inertial range MHD spectrum.
This indicates that the Hall effects may be responsible for
the spectral steepening in the solar wind plasma fluctuations
in the kdi > 1 regime. It is worth noted that our simula-
tions in kdi < 1 exhibit MHD like k−5/3 omnidirectional
Kolmogorov-like Kolmogorov (1951) spectrum as shown in
Fig. (3).
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contain the KAWs corresponding toω��ci , their specific
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Fig. (3) is not identifiable. We therefore leave this study to a
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in that the solar wind magnetic, velocity and field fluctua-
tions follow turbulent spectra close tok−7/3. This is shown
in Fig. (2). The characteristic turbulent spectra in the KAW
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lows a k−α whereα is 5/3 or 3/2. The onset of the sec-
ondary inertial range is constantly debated because of the
presence of multiple processes in the KAW regime that in-
clude, for instance, the dispersion, damping of ion cyclotron
waves, turbulent dissipation or due to fast or slow magne-
tosonic perturbations and etc. In the context of our simula-
tions, the observedk−7/3 in the solar wind turbulent plasma
can be understood from the energy cascades affected by the
Hall forces. The latter are one of the potential candidates that
may be responsible for ak−7/3 spectrum in the KAW inertial
range regime.

To understand the observedk−7/3 spectrum in the KAW
inertial range regime in solar wind plasma and in our sim-
ulations, we invoke Kolmogorov and Kraichnan like phe-
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MHD plasma. The time scale associated with Hall MHD
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Hall MHD plasma. The time scale associated with Hall
MHD is τH smaller than that of MHD τMHD. The non-
linear cascades in the MHD turbulence are governed typi-
cally by τMHD ∼ (kuk)−1, where uk is the velocity field
in the k-space. By contrast, the spectral transfer of the
turbulent energy in the solar wind (Hall MHD) plasma is
τH ∼ (k2Bk)−1. The energy transfer rates in the KAW
regime are therefore ε ∼ u2

k/τH. On substituting the turbu-
lent equipartition relation between the the velocity and mag-
netic fields B2
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k, the energy transfer rates turn out to be
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k. The use of the turbulent equipartition is jus-

tified from the observations and it is also seen in our 3D
simulations [see Fig. (5)]. Applying the Kolmogorov’s phe-
nomenology Kolmogorov (1951); Kraichnan (1965) that the
energy cascades in the inertial range are local and that they
depend on the Fourier modes and the energy dissipation rate,
we obtain k−1B2

k ∼ (B3
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2)αkβ . Equating the indices of
the common bases, we get α = 2/3 and β = −7/3. This
results in an energy spectrum Ek ∝ k−7/3 that is consistent
with our 3D simulations [see Fig. (2)] and the observations.
On the other hand, the use of τMHD in estimating the energy
dissipation rates retrieves the inertial range MHD spectrum.
This indicates that the Hall effects may be responsible for
the spectral steepening in the solar wind plasma fluctuations
in the kdi > 1 regime. It is worth noted that our simula-
tions in kdi < 1 exhibit MHD like k−5/3 omnidirectional
Kolmogorov-like Kolmogorov (1951) spectrum as shown in
Fig. (3).

Fig. 3. Inertial range turbulent spectra inkdi<1 regime. Shown
are the magnetic and velocity field fluctuations along with that of
the density fluctuation. These fluctuations closely follow ak−5/3

omnidirectional spectrum in the Alfvénic regime. Simulation pa-
rameters are the same as in Fig. (2), exceptdi=0.05.

cades in the MHD turbulence are governed typically by
τMHD∼(kuk)

−1, where uk is the velocity field in thek-
space. By contrast, the spectral transfer of the turbulent en-
ergy in the solar wind (Hall MHD) plasma isτH∼(k2Bk)

−1.
The energy transfer rates in the KAW regime are therefore
ε∼u2

k/τH. On substituting the turbulent equipartition relation
between the the velocity and magnetic fieldsB2

k∼u
2
k, the en-

ergy transfer rates turn out to beε∼k2B3
k . The use of the tur-

bulent equipartition is justified from the observations and it
is also seen in our 3-D simulations (see Fig. 5). Applying the
Kolmogorov’s phenomenology (Kolmogorov, 1941; Kraich-
nan, 1965) that the energy cascades in the inertial range are
local and that they depend on the Fourier modes and the en-
ergy dissipation rate, we obtaink−1B2

k∼(B
3
k k

2)αkβ . Equat-
ing the indices of the common bases, we getα=2/3 and
β=−7/3. This results in an energy spectrumEk ∝ k−7/3

that is consistent with our 3-D simulations (see Fig.2) and
the observations. On the other hand, the use ofτMHD in
estimating the energy dissipation rates retrieves the inertial
range MHD spectrum. This indicates that the Hall effects
may be responsible for the spectral steepening in the solar
wind plasma fluctuations in thekdi>1 regime. It is worth
noted that our simulations inkdi<1 exhibit MHD like k−5/3

omnidirectional Kolmogorov-like (Kolmogorov, 1941) spec-
trum as shown in Fig. (3).

5 Conclusions

In summary, we have presented a survey of the spectral prop-
erties of low-frequency electromagnetic turbulence in uni-
form magnetized plasmas. Specifically, we have focused
on the electron whistlers, and high-frequency kinetic Alfvén
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waves. While for the electron whistlers the motion of ions is
unimportant, the ion dynamics plays an essential role in the
high-frequency KAW turbulence. We have developed codes
to numerically solve the governing nonlinear equations for
the whistler mode and KAW turbulences. Our simulations
for the whistler mode turbulence depict a dual cascade pro-
cess between the energy and mean magnetic potential in con-
sistent with a Kolmogorov phenomenology. Furthermore,
the high-frequency kinetic Alfv́en regime, typically observed
in the solar wind plasma, is studied by means of 3-D simu-
lations. Our 3-D simulation results exhibit that the charac-
teristic turbulent interactions in the high-frequency regime
evolve typically on the Hall time-scales and modify the iner-
tial range spectra that eventually leads to the observed spec-
tral break in the solar wind.
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P. M. E.: Internal structure and spatial dimensions of whistler
wave regions in the magnetopause boundary layer, Ann. Geo-
phys., 25, 2439–2451, 2007,
http://www.ann-geophys.net/25/2439/2007/.

Stenzel, R. L.: Whistler wave propagation in a large magneto-
plasma, Phys. Fluids, 19(6), 857–864, 1976.

Stenzel, R. L.: Self-ducting of large-amplitude whistler waves, Phy.
Rev. Lett., 35(9), 574–577, 1975.

Stenzel, R. L. and Urrutia, J. M.: Force-free electromagnetic pulses
in a laboratory plasma, Phy. Rev. Lett., 65(16), 2011–2014,
1990.

Stenzel, R. L., Urrutia, J. M., and Rousculp, C. L.: Pulsed currents
carried by whistlers, I – Excitation by magnetic antennas, Phys.
Fluids B., 5(2), 325–338, 1993.

Urrutia, J. M., Stenzel, R. L., and Rousculp, C. L.: Pulsed currents
carried by whistlers, II. Excitation by biased electrodes, Phys.
Plasmas, 1(5), 1432–1438, 1994.

Shaikh, D., Das, A., Kaw, P. K., and Diamond, P.: Whistleriza-
tion and anisotropy in two-dimensional electron magnetohydro-
dynamic turbulence, Phys. Plasmas., 7, 571–579, 2000.

Shaikh, D., Das, A., and Kaw, P. K.: Hydrodynamic regime of two-
dimensional electron magnetohydrodynamics, Phys. Plasmas, 7,
1366–1373, 2000.

Shaikh, D. and Zank, G. P.: Anisotropic Turbulence in Two-
dimensional Electron Magnetohydrodynamics, Astrophys. J.,
599, 715–722, 2003.

Shaikh, D.: Generation of Coherent Structures in Elec-
tron Magnetohydrodynamics, Physica Scripta, 69, 216,
doi:10.1238/Physica.Regular.069a00216, 2004.

Shaikh, D.: Theory and Simulations of Whistler Wave Propagation,
J. Plasma Phys., 75, 117, doi:10.1017/S0022377808007198,
2008.

Shaikh, D.: Whistler Wave Cascades in Solar Wind Plasma, Mon.
Not. Royal Astrono. Soc., in press, 2009.

Shaikh, D. and Zank, G. P.: Driven dissipative whistler wave turbu-
lence, Phys. Plasmas, 12, 122310-7, 2005.

Shaikh, D. and Shukla, P. K.: Three Dimensional Simulations
of Compressible Hall MHD Plasmas, AIPC, FRONTIERS IN
MODERN PLASMA PHYSICS: 2008 ICTP International Work-
shop on the Frontiers of Modern Plasma Physics, AIP Confer-
ence Proceedings, 1061, 66–75, 2008.

Shaikh, D. and Shukla, P. K.: 3-D simulations of fluctuation spec-
tra in the Hall-MHD plasma, Phys. Rev. Lett., 102, 045004,
doi:10.1103/PhysRevLett.102.045004, 2009.

Wei, X. H., Cao, J. B., Zhou, G. C., Santol, O., Rôme, H., Dan-
douras, I., Cornilleau-Wehrlin, N., Lucek, E., Carr, C. M., and
Fazakerley, A.: Cluster observations of waves in the whistler
frequency range associated with magnetic reconnection in the
Earth’s magnetotail, J. Geophys. Res., 112(A10), A10225,
doi:10.1029/2006JA011771, 2007.

Zhou, H. B., Popadopolous, K., Sharma A. S., and Chang, C. L.:
Electronmagnetohydrodynamic response of a plasma to an ex-
ternal current pulse, Phys. Plasmas., 3, 1484–1494, 1996.

Nonlin. Processes Geophys., 16, 189–196, 2009 www.nonlin-processes-geophys.net/16/189/2009/

http://www.ann-geophys.net/25/2439/2007/

