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Abstract. Amplitude bounds imposed by the conservation
of mass, momentum and energy for strongly nonlinear
waves in stratified fluid are considered. We discuss the
theoretical scheme which allows to determine broadening
limits for solitary waves in the terms of a given upstream
density profile. Attention is focused on the continuously
stratified flows having multiple broadening limits. The role
of the mean density profile and the influence of fine-scale
stratification are analyzed.

1 Introduction

The topic includes fundamental aspects of the wave
propagation. In the present paper, we discuss the limitations
for a steady internal waves caused by the integrals of
the motion. According to Amick and Turner (1986),
two different limit cases are possible for extreme solitary
waves. In the first case, one deals with broad waves having
flat plateau-shaped crests and almost parallel midsection
flow. In the second case, the overhanging occurs for
mushroom-shaped wave profiles possessing vertical tangents
on steep fronts. The overhanging waves have been calculated
numerically for exact fully nonlinear Euler equations by
Holyer (1979), Saffman and Yuen (1982), Meiron and
Saffman (1983), and Rusås and Grue (2002). Funakoshi
and Oikawa (1986), Turner and Vanden-Broeck (1988) and
Evans and Ford (1996) have confirmed also numerically the
existence of plateau-shaped solitary waves in a two-layer
fluid. These waves have the fronts being similar to the
smooth bores when the midsection flow becomes a horizontal
flow conjugated with far upstream. The pair of 1D
stratified flows are conjugated if they possess the same mass,
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momentum and (or) energy fluxes. Benjamin (1966, 1971)
formulated and investigated the problem on conjugate flows
in order to find matching conditions for a non-uniform up-
and down-stream over topography. Here we consider internal
solitary waves travelling over flat bottom. It is known in
this case that the wave amplitude of extreme interfacial
solitary wave does not exceed the critical value which may
be found a priori as the amplitude of dissipationless bore.
Weakly nonlinear theory of long waves describes this effect
in the framework of extended KdV equation with a cubic
nonlinearity (see the survey by Helfrich and Melville, 2006).

It should be noted that both limit forms of solitary waves
can attend simultaneously. Grimshaw and Pullin (1986),
Turner and Vanden-Broeck (1986) calculated the families
of permanent waves having multiple returns from the
broadening to the overhanging by the variation of control
parameters. Moreover, Dias and Vanden-Broeck (2003)
computed directly interfacial smooth bore of large amplitude
having overhanging front. However, Rusås and Grue (2002)
demonstrated numerically that the elevation of overhanging
waves are considerably smaller than those predicted by the
conjugate flow theory.

Overturning of extreme waves motivates one to consider
theoretical schemes for a description of fluid motion prior
to the breaking and much later after it. Breaking of
strongly nonlinear internal waves can occur not only at
the steep fronts but also near the middle of broad wave
crests, as it was demonstrated experimentally by Grue et
al. (2000). Using the matched expansion technique, Derzho
and Grimshaw (1997) considered solitary waves with a
recirculation zone formed over flat crests after the attainment
of limit amplitude. The middle flow at the center of this wave
can be modelled by conjugate flow theory with trapped core
(Lamb and Wilkie, 2004). Recently, Scotti and Pineda (2005)
observed internal waves which have attached vortex cores
propagating over the slope of continental shelf.
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In the present paper, we consider regular solitary waves
being close to the wave of limit amplitude. Maltseva (2003)
discussed the form of a table-top solitary wave with
amplitude which exceed the first limit value. Such a wave can
appear only in the case when the wave amplitude has several
critical values. This effect can occur when the midsection
conjugate flow is not unique for a given upstream current.
Non-uniqueness of conjugate flows was found numerically
by Lamb and Wan (1998) for stratification with two
pycnoclines and studied analytically by Makarenko (1999)
for the density profile close to a linear or exponential
one. Here we consider the case of a general continuous
stratification in more details in order to characterize the role
of vertical structure of the fluid density in the context of
extreme wave forms.

2 Governing equations

Basic equations describing a two-dimensional motion of a
heavy inviscid inhomogeneous fluid are as follows

ρ

(
∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y

)
+
∂p

∂x
= 0, (1)

ρ

(
∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y

)
+
∂p

∂y
= −ρg, (2)

∂ρ

∂t
+ U

∂ρ

∂x
+ V

∂ρ

∂y
= 0, (3)

∂U

∂x
+
∂V

∂y
= 0, (4)

whereρ is the fluid density,(U, V ) is the fluid velocity,p
is the pressure andg is the gravity acceleration. The flow
domain is confined between flat bottomy=0 and rigid lid
y=h with the boundary condition

V = 0
∣∣
y=0, y=h. (5)

We consider permanent waves travelling along thex-axes
with constant phase speedc. In the frame moving with the
wave, the flow becomes to be stationary. We introduce the
stream functionψ by means ofU=ψy, V=−ψx , so the
Eq. (3) implies the dependenceρ=ρ(ψ) for a steady flow.
In addition, we involve the Bernoulli equation

1

2
|∇ψ |

2
+

p

ρ(ψ)
+ gy = β(ψ) (6)

in order to eliminate the pressure. Thus, the Eqs. (1)–(2) are
reduced to the Dubreil-Jacotin -Long (DJL) equation

ρ(ψ)∇2ψ + ρ′
ψ (ψ)

(
gy +

1

2
|∇ψ |

2
)

= H ′
ψ (ψ), (7)

whereH(ψ)=ρ(ψ) β(ψ). The dependenceρ andβ on ψ
can be specified by upstream condition for solitary wave

solutions. Namely, we suppose that the flow tends to uniform
flow defined by the stream functionψ∞(y)=cy and known
density profileρ∞(y) asx→−∞. Therefore, we obtain

ρ(ψ) = ρ∞(ψ/c), (8)

H ′
ψ (ψ) = ρ′

ψ (ψ)

(
gψ

c
+

1

2
c2
)
. (9)

In terms of the stream function, boundary condition Eq. (5)
takes the form

ψ = 0
∣∣
y=0, ψ = ch

∣∣
y=h

. (10)

Conjugate flow theory suggested in the context of
broadening effect for solitary waves uses the conservation
of total mass, energy and momentum of fluid layer.
The derivation procedure of the DJL Eq. (7) takes into
account automatically the conservation of mass flux by
fixing dependenceρ(ψ). The same arguments using
fixed Bernoulli functionβ(ψ) provide conservation of total
energy. In contrast, momentum equation gives non-trivial
compatibility conditionF=F∞ whereF is the flow force
integral (horizontal momentum flux),

F =

h∫
0

(p + ρ ψ2
y ) dy. (11)

Basic dimensionless parameters for a continuously
stratified flow are the Boussinesq parameterσ and the inverse
densimetric Froude numberλ,

σ =
N2

0h

πg
, λ =

σgh

πc2
,

whereN0 is the typical value of the Brunt-V̈ais̈alä frequency,
N2(y)=−gρ′

∞(y)/ρ∞(y). We scale the denominator
in familiar expressions for parametersσ and λ by the
multiplier π=3.14... bearing in mind trigonometric modal
functions which appear in the case of linear or exponential
stratification. Non-dimensional form of the DJL equation
uses dimensionless variables

(x, y) =
h

π
(x̄, ȳ), ψ =

ch

π
ψ̄.

Dropping the bar we obtain from Eqs. (7) and (10) the equa-
tions for deviation from uniform flowv(x, y)=ψ(x, y)− y,

∂

∂x

{
ρ(y + v)

∂v

∂x

}
+
∂

∂y

{
ρ(y + v)

∂v

∂y

}
=

= ρ′
ψ (y + v)

{
σ−1λ v +

1

2

(
∂v

∂x

)2

+
1

2

(
∂v

∂y

)2
}
, (12)

v = 0
∣∣
y=0, y=π . (13)

Excluding the pressurep from Eq. (11), we rewrite
the momentum equation in accordance with variational
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formulation given by Benjamin (1984), so the flow force
integral can be presented in dimensionless form as

π∫
0

{
ρ(y + v)

(
∂v

∂x

)2
+ L

}
dy = 0, (14)

whereL is the Lagrangian of the DJL equation,

L = −
1

2
ρ(y + v) |∇v|2 + σ−1λ

ψ∫
y

(
ρ(χ)− ρ(ψ)

)
dχ.

3 Interfacial waves in a two-fluid system

In parallel with continuous stratification, we consider first
two-layered irrotational flows with the interfacey=η(x)
between the fluids having the constant densitiesρ2 in the
upper layer andρ1>ρ2 in the lower layer. For a steady fully
nonlinear waves, we obtain instead of Eq. (7) the Laplace
equation

∇
2ψ = 0 (15)

for 0<y<η(x) andη(x)<y<h. The piece-wise uniform flow
havingη(x)=h1 and the stream function

ψ∞(y) =

{
c1y, (0< y < h1),

c1h1 + c2(y − h1), (h1 < y < h)

will be used as the limit flow at infinity:ψ→ψ∞ (x→−∞).
Herecj (j=1,2) is the wave speed with respect to thej th
layer. The stream function should satisfy the conditions at
the rigid walls

ψ = 0
∣∣
y=0, ψ = c1h1 + c2h2

∣∣
y=h

(16)

where h=h1+h2 is the total fluid depth. The boundary
conditions at the interfacey=η(x) are

ψ = c1h1, [ψ] = 0,[
ρ(ψ2

x + ψ2
y + 2gy − 2β)

]
= 0, (17)

whereβ is the Bernoulli constant, and square brackets denote
the discontinuity jump. The two-layer flow force integral
reduces to the form

F = ρ1

η∫
0

(ψ2
y − ψ2

x ) dy + ρ2

h∫
η

(ψ2
y − ψ2

x ) dy−

−(ρ1 − ρ2)gη
2
− 2(ρ1β1 − ρ2β2)η,

whereβj is the Bernoulli constant of thej th layer. Far
upstream condition for solitary waves gives

F = ρ1c
2
1h1 + ρ2c

2
2h2 + g(ρ1 − ρ2)h

2
1 + 2(ρ1β1 − ρ2β2)h1,

2β1 = c2
1 + 2gh1, 2β2 = c2

2 + 2gh1.

Basic dimensionless constants for a two-fluid system are
the densimetric Froude numbers

F 2
j =

ρj c
2
j

(ρ1 − ρ2)gh
(j = 1,2)

and the layer thickness ratior=h2/h1. Linearized
Eqs. (15)–(17) lead to the dispersion relation for a small
sinusoidal waves with the wave-number~,

F 2
1 ~ coth~ + F 2

2 ~ cothr~ = (1 + r)−1. (18)

This relation determines real wave-numbers if and only if the
inequality

F 2
1 + r−1F 2

2 6 (1 + r)−1 (19)

is valid.
Steady non-linear long waves are described by the

first-order ordinary differential equation obtained by
Ovsyannikov (Ovsyannikov et al., 1985, Chpt. 1, §10,
Eq. 10.6), by Miyata (1985), and also considered by Choi
and Camassa (1999).

1

3

[
ρ1h

2
1c

2
1(h− η)+ ρ2h

2
2c

2
2η
](dη

dx

)2

=

= −η(H − η)
[
(ρ1 − ρ2)gη

2
− 2(ρ1b1 − ρ2b2)η + F

]
+

+ρ1h
2
1c

2
1(h− η)+ ρ2h

2
2c

2
2η.

Using the dimensionless displacementA(x) of interface
introduced byη(x)=h1(1+A(x)), we rewrite this ODE as
follows(
dA

dx

)2

= 3A2 P(A)

Q(A)
, (20)

where

P(A) =

= F 2
1 (r − A)+ F 2

2 (1 + A)− (1 + r)−1(r − A)(1 + A),

Q(A) = F 2
1 (r − A)+ r2F 2

2 (1 + A).

Solitary wave regimes are obtained depending on the
multiplicity of the roots aj (F1, F2, r) (j=1,2) of the
numeratorP(A) on the right-hand side of Eq. (20). This
polynomial P should be positive for−1<A<r, and the
positivity is valid if and only if the Froude numbersFj and
the layer thickness ratior satisfy the inequality

F 2
1 + r−1F 2

2 > (1 + r)−1. (21)

The same inequality defines exterior domain with respect to
the parametric set of small amplitude sinusoidal waves (see
shadowed ellipse on Fig.1).
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Fig. 1. Bore diagram for a two-layer fluid.

The bore solution of Eq. (20) corresponds to the double root
y=a which appears for the Froude numbers

|F1| =
1 + a

1 + r
, |F2| =

r − a

1 + r
. (22)

Solitary-wave solutions of Eq. (20) exist for (F1, F2)

belonging to the supercritical domain Eq. (21) under the
restriction |F1|+|F2|<1. The forms of a nonlinear waves
can be obtained in explicit form if we replace approximately
the denominatorQ(A) of Eq. (20) by the constant value
q∗=Q(0). Then the solitary wave is given by the formula

A(x) = a
1 − tanh2 kx

1 − θ2 tanh2 kx
, k =

a
√

3/q∗

2θ
,

with a=a1 andθ2
=a1/a2<1, and the bore is given by

A(x) =
a

2

(
1 + tanhkx

)
, k =

a
√

3/q∗

2
.

The Froude numbers Eq. (22) also define all piece-wise
constant flows which can be conjugated with another parallel
flow. This fact follows immediately from the exact mass,
momentum and energy relations. Existence of bore-like
solution of Euler equations near a modified (cubic) KdV limit
was proved rigorously in the paper by Makarenko (1992) for
the Froude numbers Eq. (22) with sufficiently smalla. Thus,
the approximate Eq. (20) provides simple way to determine
exact broadening limits for solitary waves in a two-layer
fluid.

Functional equations for a three-layer conjugate flows are
more complicated, these equation do not result an explicit
analytical solution. However, Lamb (2000) and Rusås
and Grue (2002) found numerically the non-uniqueness of
critical amplitude for this case. Lamb and Wan (1998) found

also numerically three branches of a fixed mode conjugate
flows for a smooth density profile with two pycnoclines.
In this paper, we discuss an interesting analogy between a
continuous stratification (with smooth density profileρ∞(y))
and both two-layer and three-layer cases.

4 Continuous stratification

Similarly to the case of a two-fluid system, we can reveal
broad solitary waves using the parameters of limiting
conjugate flow. It is supposed that all streamlines pass
from −∞ to +∞ without formation of a recirculation
zone. Therefore we obtain nonlinear eigenvalue problem for
one-dimensional DJL equation

d2ψ

dy2
+
ρ′
ψ (ψ)

ρ(ψ)

{
gy −

gψ

c
+

1

2

(
dψ

dy

)2

−
1

2
c2

}
= 0, (23)

ψ = 0
∣∣
y=0, ψ = ch

∣∣
y=h

, (24)

where the wave velocityc is a spectral parameter. The
function ψ(y) to be found should differ from the primary
solution ψ(y)=cy. An additional scalar relation to
Eqs. (23)–(24) appears due to the conservation of the
momentum flux Eq. (11). Thus we have

h∫
0

Ldy = 0, (25)

where L is the Lagrangian of the one-dimensional DJL
equation,

L=−
1

2
ρ(ψ)

{(
dψ

dy

)2

−c2

}
+g

ψ∫
cy

(
ρ(χ)−ρ(ψ)

)
dχ.

Now we are looking for the flow conjugated with a weakly
stratified constant current having the dimensionless density

ρ(y)=1−σρ∗(y)−σ
2ρ1(y, σ ), (26)

where the coefficientρ∗ presents background density, and
higher order term characterizes fine-scale stratification.
There are few typical cases for a mean density stratification
such as a linear or exponential dependence on depth, and also
piece-wise constant density modelling homogeneous fluid
layers with or without pycnoclines. Most real background
profiles combine these simplest one. In contrast, fine vertical
structure of the fluid density discovered for sea water by
Kalle (1953) seems to be diverse, chaotic and variable.
Figure 2 shows an example of the exponential-like mean
profile and fine temperature stratification observed for ocean
water by Fedorov (1978).

Equations (23)–(25) written for dimensionless deviation
v(y)=ψ(y)−y from primary flow, take the form
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d

dy

{
ρ(y + v)

dv

dy

}
=

= ρ′
ψ (y + v)

{
σ−1λv +

1

2

(
dv

dy

)2
}
, (27)

v = 0
∣∣
y=0, y=π , (28)

π∫
0

{
−

1

2
ρ(y + v(y))

(
dv

dy

)2

+

+ σ−1λ

y+v(y)∫
y

(
ρ(ψ)− ρ(y + v(y))

)
dψ

}
dy = 0. (29)

Since we assume the parameterσ to be small, we involve
linearized Eqs. (27)–(28) written at the Boussinesq limit
σ=0,

d2φ

dy2
+ λρ′

∗(y)φ = 0, (30)

φ = 0
∣∣
y=0, y=π . (31)

This problem determines normal modes with the eigen-
function {φn}

∞

n=1 corresponding to simple eigenvaluesλn
(n=1,2,3, ...). Using these eigenfunctions as the orthogonal
basis, we are looking for 1-mode conjugate flow

v(y) = bφ1(y)+ bw(y; σ, λ, b). (32)

Hereb is amplitude parameter, andw is the higher-order term
being orthogonal toφ1. Substituting Eq. (32) into Eq. (27),
we obtain

d2w

dy2
+ λ1ρ

′
∗(y)w = G(w), (33)

w = 0
∣∣
y=0, y=π , (34)

where the nonlinearityG(w) collects all terms from Eq. (27)
beyond of linear part separated at the left-hand side of
Eq. (33). This nonlinearity should satisfy the compatibility
condition which has the form
π∫

0

φ1(y)

{
d

dy

(
ρ(9(y))

d

dy

(
φ1(y)+ w(y)

))
−

−ρ′
ψ (9(y))

(
σ−1λ

(
φ1(y)+ w(y)

)
+

+
b

2

(
dφ1(y)

dy
+
dw(y)

dy

)2
)}

dy = 0, (35)

where 9(y)=y+bφ1(y)+bw(y; σ, λ, b). In fact, the
Eq. (35) defines scalar relation forλ, σ, b such that Eq. (32)

Fig. 2. Temperature stratification: mean profiles and fine-scale
structure.

is a solution of Eqs. (27)–(28). Another scalar equation
follows immediately from the flow force integral Eq. (29)
after substitution Eq. (32),

π∫
0

{
−

1

2
ρ(9(y))

(
dφ1(y)

dy
+
dw(y)

dy

)2

+

+
λ

σb2

9(y)∫
y

(
ρ(ψ)− ρ(9(y))

)
dψ

}
dy = 0. (36)

Trivial solution Eq. (32) with b=0 and arbitraryσ, λ has been
removed from Eqs. (35)–(36) by dividing with appropriate
power of amplitudeb. Note that last term of Eq. (36) is of
finite order asσ→0 andb→0 while

π∫
0

9(y)∫
y

(
ρ(ψ)− ρ(9(y))

)
dψ dy =

=
1

2
σb2

π∫
0

dρ∗(y)

dy

(
φ1(y)+ w0(y)

)2
dy +O(σb3) (37)

with a leading-order termw0(y)=w(y; σ, λ,0) (Ap-
pendix A). Therefore the system Eqs. (35), (36) can be
presented as

F0(λ, σ )+ bF1(λ, σ )+O(b2) = 0, (38)

L0(λ, σ )+ bL1(λ, σ )+O(b2) = 0. (39)

As σ is physical parameter one may control, we seek for a
solutionλ=λ(σ), b=b(σ ) satisfying the conditionsλ(0)=λ1
and b(0)=0. It is important that the Eqs. (38)–(39) still
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Fig. 3. Large amplitude internal solitary wave (from Duda et al.,
2004; see also Helfrich and Melville, 2006). The dashed line is
the profile of a KdV solitary wave calculated using the background
stratification.

have the solution with amplitudeb(σ )=0, vanishing by
special choiceλ(σ). To demonstrate it, we setb=0 into
Eqs. (38)–(39). By this way, we find

F0(λ, σ ) =

π∫
0

φ1(y)

{
d

dy

(
ρ(y)

d

dy

(
φ1(y)+ w0(y)

))
−

− σ−1λ
dρ(y)

dy

(
φ1(y)+ w0(y)

)}
dy. (40)

Similarly, integrate the Eq. (36) by parts, we obtain at leading
order inb

L0(λ, σ ) =

=
1

2

π∫
0

(
φ1(y)+ w0(y)

){
d

dy

(
ρ(y)

d

dy

(
φ1(y)+ w0(y)

))
−

− σ−1λ
dρ(y)

dy

(
φ1(y)+ w0(y)

)}
dy. (41)

At the same time, Eqs. (33)–(34) taken withb=0 have the
form

d

dy

(
ρ(y)

d8

dy

)
= σ−1λ

dρ(y)

dy
8, (42)

8 = 0

∣∣∣∣
y=0, y=π

, (43)

where is denoted8(y)=φ1(y)+w0(y). The Sturm-Liouville
problem Eqs. (42)–(43) is a regular perturbation of
Eqs. (30)–(30) by small parameterσ . This perturbed
problem determines normal modes for a density profile
Eq. (26) without Boussinesq approximation. Let{λ̃n(σ )}

∞

n=1
be perturbed eigenvalues. Since all these eigenvalues are
simple, we havẽλ1(0)=λ1 whereλ1 is the lowest eigenvalue

-20 0 20

0

�

Fig. 4. Broad solitary wave given by the solution of Eq. (48)
(b=0.9; 3 is the quadratic polynomial with a single minimum at
b0=0.9025.)

for the limiting problem Eqs. (30)–(30). Now it is easy to
see from Eqs. (40)–(41) that both of coefficientsF0(λ, σ )

andL0(λ, σ ) vanish byλ=λ̃1(σ ). Hence we conclude that
the system Eq. (38)–(39) has a special solution

b(σ ) = 0, λ(σ ) = λ̃1(σ ) (44)

This solution do not defines any non-trivial branch of
conjugate flows, but it helps to specify the density profiles
Eq. (26) which can admit this one. Let us rewrite the system
Eqs. (38), (39) in the form

Aq = f (q; σ), q = (b, λ− λ1), (45)

where the nonlinearityf is of the orderO(|q|2), andA is
2×2 matrix having the determinant (see Appendix B)

detA =

(
L1
∂F0

∂λ
− F1

∂L0

∂λ

) ∣∣∣∣
λ=λ1, σ=0

=

=
λ1

6

π∫
0

ρ′
∗(y)φ

2
1(y) dy ×

π∫
0

ρ′′
∗ (y)φ

3
1(y) dy. (46)

Thus, if detA 6=0 then the system Eqs. (35), (36)
has only unique solutionλ=λ(σ), b=b(σ ) such that
λ(0)=λ1, b(0)=0, and this solution is already found in
Eq. (44). Therefore we can formulate the following
condition.

Condition A. The relation det A=0 is necessary to
existence of 1-mode conjugate flows near the primary
constant current having the density profile Eq. (26) with
smallσ .

5 Linear density background

The Condition A is obviously fulfilled for linear density
ρ=1−σy, as well as for an exponential stratification
ρ= exp(−σy). In this case, the Eq. (27) becomes linear
within the weak stratification limitσ=0. Therefore the
fine-scale density term of Eq. (26) is important by modelling
nonlinear effects. The problem Eqs. (30)–(31) with ρ∗(y)=y

has the eigenfunctions and the eigenvalues

φn(y) = sin ny, λn = n2 (n = 1,2,3, ...).
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Fig. 5. The broad solitary waves with additional elevation in the midsection (b=−0.596502, σ=1/20).

Now we transform the system of implicit scalar Eqs. (38)–
(38) for finite b and small vectorq=(σ, λ−λn) to the more
convenient form

A(b)q = f (q, b). (47)

HereA is the Wronski matrix

A(b) =

(
s(b) m(b)

s′(b) m′(b)

)
with the elements

m(b) =
1

2
b2,

s(b) =
2

π

π∫
0

y+b siny∫
y

(
ρ0(y + b siny)− ρ0(ψ)

)
dψ dy+

+
π

4
b2

+
2

3π
b3

depending on the fine-scale stratification term
ρ0(y)=ρ1(y,0). In the paper by Makarenko (1999),
the sufficient existence condition was obtained for a
conjugate flows of finite amplitude|b|<1. The bifurcation
from primary flow occurs for the amplitudeb being close to
the roots of the Wronskian

1(b) = −m2(b)
d

db

(
s(b)

m(b)

)
.

Condition B. Let b0 6=0 (|b0|<1) be the simple root of
the determinant1(b). Then for smallσ>0 there exists
the unique branch of conjugate flows such that(b(σ ), λ(σ ))

tends to(b0, 1) asσ→0.
The branchλ(σ) of 1-mode conjugate flow corresponding

to the rootb=b0 has the form

λ(σ) = 1 −
2s(b0)

b2
0

σ +O(σ 2).

So, the branches of conjugate flows are generated by the
extreme points of the function

31(b) =
2s(b)

b2
.

�
1

-0.2

-1.0 -0.02

-0.01

0.0

Fig. 6. The function31 for solitary wave shown in Fig.5. Minima
are at the pointsb0=−1/3, b1=−19/20.

The number of these extreme pointsb0 depends on the
fine-scale density coefficientρ0 only. The 1-mode conjugate
flow is supercritical with respect to the phase speed of
infinitesimal waves while the inequality31(b0)<31(0) is
satisfied. The minima give supercritical flows and the
maxima provide subcritical flows. A possible alternate of
subcritical and supercritical conjugate flows was conjectured
first by Benjamin (1971) who used topological principles.

Further we consider first-mode plateau-shape solitary
waves. We use the perturbation method suggested by Benney
and Ko (1978) for large amplitude internal waves with linear
stratification. We put

λ = 1 + σ31(b)+O(σ 2)

in Eq. (12) with amplitude b bounded by |b|<1. In
accordance with the Condition B, the broadening values of
b are given by local maxima of the wave speedc defined by
the formula

c2
=

σgh

π(1 + σ31(b))

with the accuracy up to the orderO(σ 3). Looking for the
power expansion

v(x, y) = v0(ξ, y)+ σ v1(ξ, y) + ...
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-400 0 400

Fig. 7. The 2-level plateau-shape solitary wave with additional elevation in the midsection (b=0.987105, σ=1/20).

�
1

-1.0 -0.6 -0.2

-0.008

-0.0078

Fig. 8. The function31 for solitary wave shown in Fig.7,
minima are at−1/3 and−0.603333, maxima are at−0.423333 and
−0.873333.

with slow independent variableξ=
√
σ x, we obtain from

Eq. (12)–(13) the set of equations

vjyy + vj = fj ,

vj = 0

∣∣∣∣
y=0, y=π

,

wherej=0,1, ... andf0=0. The lowest-order solution has
the formv0=B(x) siny where unknown functionB should
satisfy vanishing condition of secular terms in the expression

f1 = −v0xx + (y + v0) v0yy − ρ′

0(y + v0) v+

+v0y +
1

2
v2

0y −31(b) v0.

Thus we obtain the equation(
dB

dξ

)2

= B2 (31(B)− 31(b)
)
, (48)

which is similar to the Eq. (20) for interfacial solitary
waves in a two-fluid system. Solitary wave solution exists
for the amplitudeb such that3′

1(b)6=0. The inequality
31(B)>31(b) means the supercriticality with respect to the
propagation speed of infinitesimal waves. In accordance with
the Condition B, the broadening limits for a fully nonlinear
Euler equations are given by the minima of the function
31(b).

The Fig.4 presents the broad solitary wave of depression
in the case when the function31 has single minimum at the
point b0, and the amplitudeb is less thanb0. We choose
the values ofb andb0 so that the streamlines become similar
to the temperature contour lines for solitary wave observed
by Duda et al. (2004) (see Fig.3). The Fig. 5 shows
plateau-shape solitary wave having additional elevation at
the flat crest. This elevation seems to be solitary wave
propagating along with conjugate shear flow in the middle
of the plateau. This is the case when the function31(b) (see
Fig. 6) generates four conjugate flows, and two of them are
supercritical. Finally, Figs.7 and 8 illustrate together one
more exotic case when the solitary wave has two-level fronts
and the elevation on the flat top.

6 Conclusions

In this paper, we have obtained the conditions which
provide the existence of multiple broadening limits for
internal solitary waves in a continuously stratified fluid. In
accordance with this conditions, critical amplitude values are
given by local maxima of the phase speed. The examples
show that the wave speed depending on the fine-scale density
can be non-monotone with respect to the wave amplitude, so
the broadening limit can be not unique. The method used
permits to consider large amplitude waves being far away
from equilibrium state. This is because the perturbation
scheme involves small density slope instead of small wave
amplitude.

Appendix A

Power expansion with respect to amplitude for the
flow force integral

Here we show that the integral

I (b) =

9∫
y

(
ρ(ψ)− ρ(9)

)
dψ
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from Eq. (37) is of orderO(b2) asb→0. By differentiating
I (b) we obtain

∂I (b)

∂b
= −b

(
φ1 + w

)
ρ′(9)

∂9

∂b
. (A1)

Since this term is of orderO(b) and alsoI (0)=0, we have
the power expansion

I (b) =
b2

2

∂2I (0)

∂b2
+
b3

6

∂3I (0)

∂b3
+O(b4). (A2)

From Eq. (A1) we obtain

∂2I (b)

∂b2
= −ρ′(9)

(
∂9

∂b

)2

−

− b(φ1 + w)

(
ρ′′(9)

(
∂9

∂b

)2

+ ρ(9)
∂29

∂b2

)
. (A3)

Taking into account that∂9/∂b=φ1+w0 atb=0, we find

I (b) = −
b2

2
ρ′(y)

(
φ1 + w0

)2
+O(b3).

This formula implies Eq. (37) due to the decomposition
Eq. (26) of the densityρ.

Appendix B Determinant of the compatibility equations
for conjugate flow problem

Here we justify the formula Eq. (46) for the determinant of
linear part of the system Eq. (45). From Eq. (40) we obtain

∂F0(λ1,0)

∂λ
=

=

π∫
0

φ1

(
d2

dy2

∂w0

∂λ
+ λ1ρ

′
∗(y)

∂w0

∂λ
+ ρ′

∗(y)φ1

)
dy =

=

π∫
0

ρ′
∗(y)φ

2
1dy. (B1)

Terms containing∂w0/∂λ vanish after integration by parts
sinceφ1 is an eigenfunction of Eq. (30).

Similarly taking into account thatw0(y; 0, λ1)=0 we find
from Eq. (41)

∂L0(λ1,0)

∂λ
=

1

2

π∫
0

{
φ1

(
d2

dy2

∂w0

∂λ
+ λ1ρ

′
∗(y)

∂w0

∂λ
+ ρ′

∗(y)φ1

)
+

+
∂w0

∂λ

(
d2φ1

dy2
+ λ1ρ

′
∗(y)φ1

)}
dy =

=
1

2

π∫
0

ρ′
∗(y)φ

2
1dy. (B2)

Then, differentiating Eq. (35) with respect tob atσ=0, λ=λ1
we obtain

F1(λ1,0) =
d

db

π∫
0

φ1

(
d2φ1

dy2
+
d2w

dy2
+

+ λ1ρ
′
∗(9)(φ1 + w)

)
dy

∣∣∣∣
b=0

=

=

π∫
0

φ1

{
d2

dy2

∂w

∂b
+ λ1ρ

′
∗(y)

∂w

∂b
+ λ1ρ

′′
∗ (y)φ

2
1

}
dy

∣∣∣∣
b=0

=

= λ1

π∫
0

ρ′′
∗ (y)φ

3
1dy. (B3)

Next, we computeL1(λ1,0). Using the expansion Eq. (A2)
from Eq. (36) we obtain

L1(λ1,0) =
∂

∂b

π∫
0

{
−

1

2
ρ(9)

(
dφ1

dy
+
dw

dy

)2

+

+
λ1

σb2

9∫
y

(
ρ(ψ)− ρ(9)

)
dψ

}
dy

∣∣∣∣∣
σ=0,b=0

=

=

π∫
0

{
−

(
dφ1

dy
+
dw

dy

)
d

dy

∂w

∂b
−

−
λ1

6

∂3

∂b3

9∫
y

(
ρ∗(ψ)− ρ∗(9)

)
dψ

}
dy

∣∣∣∣∣
b=0

. (B4)

Then, taking into account that atb=0, σ=0, λ=λ1

w(y; 0, λ1,0) = 0, 9 = y,

∂9

∂b
= φ1,

∂29

∂b2
= 2

∂w

∂b
,

we obtain from Eq. (A3)

∂3

∂b3

9∫
y

(
ρ∗(ψ)− ρ∗(9)

)
dψ

∣∣∣∣∣
b=0

=

−2ρ′′
∗ (y)φ

3
1 − 6ρ′

∗(y)φ1
∂w

∂b
.
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Hence, using integration by parts we obtain from Eq. (B4)

L1(λ1,0) =

π∫
0

φ1

{
d2

dy2

∂w

∂b
+ λ1ρ

′
∗(y)

∂w

∂b
+

+
λ1

3
ρ′′

∗ (y)φ
2
1

}
dy =

λ1

3

π∫
0

ρ′′
∗ (y)φ

3
1 dy (B5)

Finally, we find from Eqs. (B), (B2), (B3), (B5) that

detA = F1(λ1,0)
∂L0

∂λ
(λ1,0)− L1(λ1,0)

∂F0

∂λ
(λ1,0) =

=
λ1

6

π∫
0

ρ′
∗(y)φ

2
1dy ×

π∫
0

ρ′′
∗ (y)φ

3
1 dy

which coincides with the Eq. (46).
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