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Abstract. A computational model is presented which will
help guide and interpret an upcoming series of experiments
on nonlinear compressional waves in marine sediments. The
model includes propagation physics of nonlinear acoustics
augmented with granular Hertzian stress of order 3/2 in the
strain rate. The model is a variant of the time domain
NPE (McDonald and Kuperman, 1987) supplemented with a
causal algorithm for frequency-linear attenuation. When at-
tenuation is absent, the model equations are used to construct
analytic solutions for nonlinear plane waves. The results im-
ply that Hertzian stress causes a unique nonlinear behavior
near zero stress. A fluid, in contrast, exhibits nonlinear be-
havior under high stress. A numerical experiment with nom-
inal values for attenuation coefficient implies that in a wa-
ter saturated Hertzian chain, the nonlinearity near zero stress
may be experimentally observable.

1 Introduction

Explosions in the ocean produce shock waves which may
transmit nonlinear compressional and shear waves to the
seafloor. The propagation of nonlinear compressional waves
in the seafloor is of interest because of their effect upon small
buried structures such as mines and cables. Shear waves are
of less concern to buried structures in the seafloor because
(a) they arrive later than compressional waves and (b) their
magnitude is limited by media failures. The temporal sepa-
ration of first arrivals from compressional and shear waves
also allows great theoretical simplification in the study of
the compressional first arrival. This paper presents a nonlin-
ear compressional wave model for the seafloor and illustrates
with analytic solution and numerical simulation some novel
behavior which might be realized in a saturated granular
medium. The results presented here will help guide a planned

Correspondence to:B. E. McDonald
(mcdonald@ccs.nrl.navy.mil)

series of experiments using nonlinear sources, and the exper-
iments will be used to calibrate and verify the model.

The seafloor as a propagation medium is made up of fluid
and granular components. The bulk modulus of the medium
is comparable to or greater than that of water, and thus ex-
plosive waveforms are quickly reduced to weak nonlinearity
as defined by either overdensity or strain rate. The fluid has a
stress- strain relation amenable to series expansion for small
strain rate, while the granular stress-strain relation involves
fractional powers 3/2, 5/2 in the strain rate (Makse et. al,
2004).

Compressional waves with small but finite nonlinearity
(e.g. overdensity) are described by the equations of nonlinear
acoustics (Beyer, 1997), according to which nonlinearities
develop at a rate proportional to the nonlinearity coefficient
β defined as

β ≡ 1 +
ρ

2c2

∂2p

∂ρ2

∣∣∣0 , (1)

whereρ is density,c is compressional wave speed,p is pres-
sure (or more generally normal stress) and subscript 0 refers
to evaluation in the ambient state. Values forβ in air and
water (both fluid media) are approximately 1.2 and 3.5, re-
spectively. In granular or consolated solids, however, the val-
ues are much higher (Ostrovsky, 1991): 800 for marble, and
102

− 103 for dry clay sediments. Recent theoretical results
(Donskoy et al., 1997) agree with values such as these for
granular media.

Very little experimental work has been published on non-
linear compressional waves in saturated marine sediment
since the 1970’s. Early work (Bjorno, 1977; Hovem, 1979)
reported only modest values for the nonlinearity coefficient,
finding values in the range approximately 5.7 to 7.0 (in the
notation of the cited works,β=1+B/2A). The experimental
method used was to measure the linear sound speed of the
medium as a function of applied pressure. The shortfall of
this method is that measurements are taken with linear waves
in a quiescent medium. The modest values found are consis-
tent with expressions for a quiescent mixture of quartz and
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152 B. E. McDonald: Nonlinear compressional waves in sediment

water in the absence of intergranular stresses and flows. In
the case of a finite amplitude wave, however, one may ex-
pect shock formation, granular stresses, and highly contorted
intergranular flow of finite amplitude.

Experiments with lattices of glass beads have confirmed
an effective medium description in agreement with Hertz-
Mindlin theory in which stress is related to the 3/2 power
of strain (Vilicky and Caroli, 2002). In particular, the com-
pressional wave speed increases as the 1/6 power of ambient
pressure after the beads are sufficiently compacted. In ma-
rine sediments, a compressional wave will increase granular
stresses if the bulk modulus of the grain material (e.g. quartz
for sand) is higher than that of the fluid between the grains.
This is especially true if the fluid contains bubbles and is thus
more compressible.

We propose an effective medium model for saturated sed-
iments, with fluid stresses of first and second order in the
strain rate, and Hertzian intergranular stresses of order 3/2
and 5/2 (Makse et. al, 2004). The 3/2 order term reflects the
stress-strain relation for elastic grains in contact (Landau and
Lifschitz, 1959), while the 5/2 order term allows increasing
number of contacts per grain with increasing stress. Wave
attenuation due to shear and intergranular flow will be added
separately.

Coefficients for the effective medium model will be deter-
mined in upcoming laboratory and field experiments (Mc-
Donald, 2008). Some surprising features of the Hertzian
stress- strain relation to be illustrated below are (1) the most
evident nonlinearity (shock formation) occurs preferentially
near low stress points; and (2) continuous profiles can gen-
erate shock discontinuities instantaneously (as opposed to
shock formation after a steepening period). It is not at all
clear if these features can be seen in real sediments due to
high attenuation and increasing grain contacts with increased
stress.

The presence of a 3/2 order Hertzian stress term in an ef-
fective medium description of saturated sediment poses two
interesting challenges to the theory of nonlinear acoustics:
(1) the lowest order nonlinearity is no longer quadratic and
(2) the Taylors’ series expansion of the effective equation of
state to second order fails at zero stress.

2 An effective medium model

We propose the following theoretical model, which is a vari-
ant of the nonlinear progressive wave equation (NPE), a
paraxial approximation to the Euler equations of fluid dy-
namics developed for investigating weak shock propagation
in refractive fluid media (McDonald and Kuperman, 1987):

Dtρ
′
= −

1

2c0
∂x

[
p(ρ′) + c2

0(ρ
′2/ρ0 − ρ′)

]
−

c0

2

∫ x

∞

∇
2
⊥
ρ′dx, (2)

where prime denotes deviation from ambient value (sub-
script zero),x is the primary wave propagation direction,

and∇
2
⊥
≡∂2

y+∂2
z is the Laplacian transverse tox. The oper-

atorDt≡∂t+c0∂x is the time derivative in a wave-following
frame moving at speedc0 in thex direction. This model is
appropriate for media which support acoustic waves in the
ambient state. For this reason it applies to saturated sedi-
ment, but not to dry unconsolidated granular media which do
not support acoustic waves at zero stress. Thex−integration
path in (2) begins in the quiescent medium ahead of the wave
whereρ′ and its derivatives are zero. Error terms in (2) are
O(ρ′3, ρ′2θ2), whereθ is the wavenormal angle with respect
to x. For this reason it is sufficient to use an adiabatic equa-
tion of statep(ρ′) since weak shock heating is cubic in shock
amplitude.

The effective medium equation of statep(ρ′) is taken to
be of the form

p(ρ′) = p0 + ρ0c
2
0

((
ρ′

ρ0

)
+ (β0 − 1)

(
ρ′

ρ0

)2
)

+

+K3/2max
(
0,

ρ′

ρ0

)3/2
+ K5/2max

(
0,

ρ′

ρ0

)5/2
.

(3)

The linear and quadratic terms in (3) are fluid stresses, and
the fractional orders are granular stresses. Constantsρ0, c0,
andβ0 are the bulk values for density, sound speed and non-
linearity coefficient for the water/grain mixture in the ab-
sence of grain contact, and are determined by elementary
methods with knowledge of porosity of the mixture and den-
sity of the grain material. For spherical grains, theK con-
stants are determined from expressions (Makse et. al, 2004)
involving the porosity of the mixture, number of contacts per
grain, grain radius and elastic moduli of the grain material.
For sediments, however, the grain geometries and contact
numbers vary, so that an experimental determination is re-
quired. The max function in (3) reflects that granular contacts
can transmit only positive stress, not tension. When using (3)
in the time domain model (2), the fractional order terms are
evaluated as such numerically, in contrast to standard non-
linear acoustics of fluids where the entire equation of state is
expressed in power series.

Attenuation due to intergranular flow and shear between
grains is observed to scale very nearly linearly with fre-
quency (Buckingham, 2000), in contrast to laminar viscos-
ity, which scales with frequency squared. It is empirically
observed that the attenuation in sediments is of order 1 dB
per wavelength. One might consider attempting to evalu-
ate frequency-linear attenuation by Fourier transforming the
wave profile, multiplying each component by its wavenum-
ber times a constant proportional to the attenution coeffi-
cient, and inverse transforming. This would, however, vio-
late causality. To see this, consider a pointx in the medium
during the passage of a wave propagating to the right. Fourier
transforms sum over the entire spatial domain, including the
wave which has not yet reachedx. Causality requires that the
point x be affected only by the portion of the wave that has
already passed over it. The algorithm to be presented below
may be represented as a convolution with a one-sided kernel,
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with no contribution from the wave to the left of the point
x. (One could in principle use fast Fourier transform meth-
ods to evaluate the one-sided convolution more rapidly than
a straightforward numerical sum.)

A causality preserving algorithm for frequency-linear at-
tenuation is the following, which is added as a separate step
to Eq. (2):

D+
t ρ′(x, y, z, t) =

ln 10

20π2
αc0∂x

∫
∞

0

ρ′(x + ξ, y, z, t)

δ + ξ
dξ , (4)

whereα is the attenuation coefficient expressed in dB per
wavelength. The integration variableξ is a spatial coor-
dinate which scans forward over the entire profile of the
wave which has already passed overx. The coefficient
ln 10/(20π2)=.01166 is determined by substituting trial si-
nusoids into (4) and comparing the result with the exponen-
tial integral functionE1 in the limit of small argument. The
constantδ is a minimum scale size smaller than any wave-
length of interest (Eq. 4 results in dB per wavelength values
within 10% ofα for wavenumbersk such thatkδ≤.06). The
causal nature of (4) is reflected in the one sided integral, so
that a point in the medium is affected by only the portion of
the wave that has already passed over it.

2.1 Nonlinear plane waves

In three dimensions, Eq. (2) (absent attenuation) admits sim-
ilarity solutionsρ′(r , t)=ρ′(r/t), a property inherited from
the Euler equations. At large propagation distances, these
waves approach nonlinear plane waves which are stable to
arbitrary three dimensional perturbation (McDonald, 2006).
In one dimension, Eq. (2) yields insight into the effects
of Hertzian nonlinearity via similarity solutions and/or so-
lutions obtained through the method of characteristics. The
one dimensional version of (2) is

ρ′
t = −f (ρ′)∂xρ

′ (5)

where subscriptt denotes the moving frame time derivative
Dt , and

f (ρ′) =
1

2c0

(
∂p

∂ρ′
+ c2

0(2ρ′/ρ0 − 1)

)
(6)

f is the signal propagation speed in excess ofc0 to the same
order accuracy as (2). If an equation of statep(ρ′) is known,
thenf (ρ′) is known and a similarity solutionρ′(x/t) may
be obtained (McDonald, 2006) by solvingf (ρ′)=x/t . More
generally, the complete evolution from an initial condition in
(5) may be found by the method of characteristics:

ρ′(x, t) = g
(
x − tf (ρ′)

)
, where g(x) = ρ′(x, 0). (7)

Taking thex derivative of (7) and bringing∂xρ
′ to the left

side gives

∂xρ
′(x, t) =

ρ′
x(xr , 0)

1 + tρ′
x(xr , 0)

(
∂2p

∂ρ′2 +
2c2

0
ρ0

)
/2c0

(8)

where ρ′
x(xr , 0) refers to ∂xρ

′ evaluated at t=0,
xr=x−tf (ρ′(x, t)). Note from (6) that f (0)=0, so
continuous zeros (as opposed to shock jumps with zero on
one side of the shock) ofρ′ remain fixed in the moving
frame. Consider a continuous zero which occurs atx=xz

and t=0. Then (6), (8), and (1) give the wave slope at the
zero at later times as

ρ′
x(xz, t) =

ρ′
x(xz, 0)

1 + c0tβρ′
x(xz, 0)/ρ0

. (9)

Equation (9) makes the remarkable statement that ifβ di-
verges at a continuous zero, the wave slope is immediately
forced to zero or infinity (i.e. shock formation occurs) de-
pending on the sign of the wave slope. This is to be con-
trasted with the case for finiteβ, where shock formation time
is t−1

s =−c0βρ′
x(xz, 0)/ρ0 whenρ′

x(xz, 0)<0.
What conditions could lead to divergentβ? Con-

sider adding Hertzian stress to fluid normal stress
p=pf +E′(ρ′/ρ0)

3/2, wherepf is fluid pressure andE′ is
proportional to the Young’s modulus of the grain material.
Thenβ from (1) contains a term proportional to(ρ′/ρ0)

−1/2,
which diverges in the ambient stateρ′=0. This is one rea-
son for the extremely high values ofβ for granular materials
cited earlier.

2.2 Instantaneous shock formation

To illustrate the consequences of divergent nonlinearity coef-
ficientβ, consider the following model problem which yields
a convenient analytic solution:

ut = −
2

3

(
u3/2

)
x

= −u1/2ux , (10)

wherex, t andu are dimensionless. Equation (10) is a di-
mensionless surrogate for Eq. (5) to lowest order where am-
bient density and sound speed are normalized to unity. In
(10) u plays the role of the density perturbation, andu3/2

plays the role of overpressure. Then (1) shows thatβ di-
verges asu→0. For an initial condition with positive slope
at a continuous zero we takeu(x, 0)=max(x, 0). Then (10)
has solution

u(x ≥ 0, t) = x +
t2

2

[
1 −

√
1 + 4x/t2

]
(11)

as illustrated in Fig. 1a. One finds from (11) thatux(0, t)=0
for anyt>0, so that the profile is flattened instantaneously at
x=0.

For an initial condition with negative slope at a continu-
ous zero we takeu(x, 0)=max(−x, 0). The analytic solu-
tion with a continuous zero arising from this initial condition
becomes double valued for anyt>0:

u(x, t) = −x +
t2

2

[
1 ±

√
1 − 4x/t2

]
(12)

The physically relevant solution for this initial condition is
found by resolving the double value into a shock using the
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Fig. 1. (a) Analytic solution (11) to Eq. (10) for ascending ini-
tial condition illustrating instantaneous flattening atx=0. Curves
are plotted at equal time increments.(b) Analytic solution (14) for
descending initial condition and resulting instantaneous shock for-
mation.

equal area rule, or equivalently by imposing the Rankine
Hugoniot condition for the shock location:

dxs

dt
= [

2

3
u3/2

]/[u] (13)

where the bracket indicates the discontinuity across the shock
and subscript s denotes evaluation just behind the shock. The
result isxs=2t2/9, with jump us=4t2/9. Thus the single
valued solution is

u(x < xs, t) = −x +
t2

2

[
1 +

√
1 − 4x/t2

]
(14)

andu=0 for x>xs . This solution is illustrated in Fig. 1b, and
shows that a discontinuity begins to grow from zero immedi-
ately fort>0, increasing quadratically with time.

The approach toward linear behavior as wave amplitude
approaches zero is illustrated by replacingu→εu in (10)
with ε→0. Then the timescale for development of initially
infinitessimal shocks increases asε−1/2, and becomes infi-
nite. Thus, linear behavior is retained as the shocks remain
infinitessimal in amplitude for any finite time.

In a series of experiments to be carried out during 2009–
2011 (McDonald, 2008), we will look for evidence of be-
haviors illustrated in Fig. 1. The series will include labo-
ratory experiments with a focused spark source similar to a
lithotripter (Bailey et al., 1998), a focused laser, and a field
experiment with an air gun. It is quite possible that condi-
tions for instantaneous shock formation may not be realized
if the fluid between the grains is not sufficiently compressed,
if the grains increase contact numbers during compression,
or if the effect is suppressed by attenuation.

2.3 Addition of frequency-linear attenuation

We will illustrate the effect of attenuation on a Hertzian
medium by a numerical experiment combining Eqs. (4) and
(5). The resulting equation,

ρ′
t = −f (ρ′)∂xρ

′
+ α

ln 10

20π2
c0∂x

∫
∞

0

ρ′(x + ξ, t)

δ + ξ
dξ, (15)

will be cast in nondimensional form for comparison with
the analytic solution (14) with appropriate initial conditions.
Since we are interested in modeling the first arriving and
strongest wave, we will consider fluid and grain motions
corresponding to the fast wave of Biot theory (Buckingham,
2000). In this mode, fluid and grains move nearly in phase
(as opposed to the highly damped slow wave where they are
out of phase).

To approximate an upper limit on granular stress we con-
sider a Hertzian chain of equal sized spheres, with water be-
tween the spheres. When two identical elastic spheres are
forced together, the stress- strain relation is (Landau and Lif-
schitz, 1959)

F =

√
2

3

E

1 − σ 2
h3/2R1/2, (16)

whereF is the normal force between the two spheres,h is the
decrement in sphere center separation,R is the sphere radius,
E is the grain material Young’s modulus, andσ is Poisson’s
ratio. Such a Hertzian chain might be realized in the labora-
tory by placing spheres in a water filled pipe whose radius is
slightly larger thanR. The normal stress averaged over a test
plane perpendicular to the chain axis will be the fluid pres-
sure plus the granular force (16) divided by the chain’s cross
sectionπR2.

Consider now unidirectional compaction of the chain by a
compressional wave whose wavelength is much larger than
the grain radius. The grain material (e.g. quartz) has a much
higher bulk modulus than water, so the grains retain nearly
constant volume while being easily deformed (Eq. 16 has
zero derivative at zero strainh). The average strain rate and
compressibility are thus that of the water, and we may take
h'2Rρ′/ρ0, whereρ0 is the density of the water/grain chain
at zero stress,ρ0=(ρw+2ρg)/3, subscriptsw andg refer to
water and grain material, andρ′ is the deviation of average
density fromρ0. As a result of the water filled Hertzian chain
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having the same unidirectional compressibility of water, one
hasρ0c

2
0=ρwc2

w.
From (3) and (16) we construct an equation of state for the

water filled Hertzian chain, retaining only the lowest order
nonlinearity:

p(ρ′) = p0 + ρ0c
2
0
ρ′

ρ0
+ K3/2

(
ρ′

ρ0

)3/2

(17)

where

K3/2 =
4

3π

E

1 − σ 2
(18)

From (6), (15) and (17) we have to lowest order

f (ρ′) =
1

πρ0c0

E

1 − σ 2

(
ρ′

ρ0

)1/2

. (19)

The next step is to nondimensionalize Eq. (15) using (19)
so that the term involvingf (ρ′) coincides with the right side
of Eq. (10). To do this we substitutex=x0x

′ and t=t0t
′,

where the primed variables are dimensionless, andx0, t0 are
dimensional length and time scales to be specified later.

Then we setu(x, t)=bρ′/ρ0, whereb is a dimensionless
constant. The result is (after dropping primes fromx′ andt ′)

ut = −
t0

x0c0

3K3/2
4ρ0

b−1/2u1/2ux

+α
c0t0
x0

ln 10
20π2 ∂x

∫
∞

0
u(x+ξ, t)

δ+ξ
dξ.

(20)

In (20) we have also nondimensionalizedξ andδ by x0. The
scale size inherent to the problem is the grain radius. We are
free to choosex0 to be a large number times the grain radius,
so that an effective medium description may be applicable.
Then a unit interval inx will represent many times the grain
size. The corresponding time scale ist0=x0/c0, so the first
term on the right side of (20) agrees with the RHS of (10)
when

b =

(
3K3/2

4ρ0c
2
0

)2

=

(
1

πρ0c
2
0

E

1 − σ 2

)2

(21)

and (20) becomes

ut = −u1/2ux + α
ln 10

20π2
∂x

∫
∞

0

u(x + ξ, t)

δ + ξ
dξ . (22)

3 Numerical solution

To expedite numerical calculations, we replace the integral in
(22) with a more rapidly converging one obtained as follows.
The integral term in (22) may be written as

∂x

∫
∞

0
u(x+ξ, t)

δ+ξ
dξ =

∫
∞

0
∂xu(x+ξ,t)

δ+ξ
dξ

=
∫

∞

0
∂ξ u(x+ξ,t)

δ+ξ
dξ .

(23)

The last expression may be integrated by parts, and (22) be-
comes

ut = −u1/2ux + α
ln 10

20π2

(∫
∞

0

u(x + ξ, t)

(δ + ξ)2
dξ −

u(x, t)

δ

)
, (24)

where values at infinity are taken to be zero.
To evaluate b in (21) we take ρ0c

2
0=2.25 GPa (the

bulk modulus of water), and moduli values for quartz:
E=95.3 GPa,σ=.0588 (Carmichael, 1982). The result is
b=183.0. In planned experiments using impulsive nonlinear
sources (lithotripter, air gun, and focused laser), we first con-
sider the lithotripter, which is likely to produce the highest
amplitude. Peak pressures in experiments with lithotripters
are of order 40 MPa in pulses of order 1µs duration (Bailey
et al., 1998), so that from (17) we estimateρ′

max/ρ0'.0071,
and the dimensionless valueumax'1.30.

Equation (24) has been integrated numerically with the ini-
tial conditionu(x, 0)=max(−x, 0) on the interval (−5, 5) on
a grid of 501 points of equal spacingδx, and 1121 evenly
spaced time steps. The value ofδ in (24) was 0.2δx. The
method used for the nonlinear term is a monotonicity pre-
serving second order upwind scheme (McDonald and Am-
brosiano, 1984), and an explicit forward difference scheme
for the integral. Figure 2 shows the integration for three
α values (0, 1, 2) dB/wavelength. The points are the shock
jump from the analytic solution (14); theα=0 case illustrates
the shock capturing accuracy of the numerical scheme. Asα

is increased, the solution becomes more attenuated, but still
shows signs of rapid shock formation. The relevant solution
for umax=1.30 is found in the lower third of each panel.

We have not so far specified the time and length scales
t0 and x0. Before doing this, we can state that the sound
speed of water filled Hertzian chain isc0=cw

√
ρw/ρ0 as a

result of the chain’s bulk modulus in unidirectional strain be-
ing that of water for small strain. Takingρg=2650 kg/m3,
ρ0=(ρw+2ρg)/3=2100 kg/m3, and cw=1500 m/s, we have
c0=1035 m/s. If we taket0 to be the 1µsec pulse duration of
the lithotripter experiment cited above (Bailey et al., 1998),
then we findx0=c0t0=1.035 mm. The axial extent of the sim-
ulation of Fig. 2 then becomes 10.35 mm, large enough for an
effective medium description if the grain diameters are less
than 1 mm.

One of the planned experiments will use an airgun, which
produces pulses of durationt0'10 ms. Airguns emit air at an
initial pressure of about 2000 psi'14 MPa. If the pulse is
captured in a pipe to limit spherical spreading loss, and if the
above parameters for the water filled Hertzian chain are used,
one would haveumax=0.567, andx0=10.35 m. Thus the di-
mensionless span of Fig. 2 becomes 103.5 m. While it would
be impractical to construct a Hertzian chain of order 100 m
length, a modest length of 3 m might be practical using fairly
large glass spheres. It would occupy a span of length 0.29 in
Fig. 2. This could be sufficient to observe evidence of rapid
shock formation in the presence of nominal attenuation val-
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Fig. 2. Numerical integration of (24) for increasing values of atten-
uation coefficientα (dB per wavelength). Curves in each panel are
plotted at equal intervals of dimensionless time fromt=0 to t=2.5.
The points plotted show the shock jumpxs=2t2/9, us=4t2/9 in
the analytic solution (14).

ues in a water filled Hertzian chain using an air gun source.
(No data are yet available for our laser source.)

To contrast the behavior illustrated in Fig. 2 with the be-
havior of a fluid subject to quadratic nonlinearity, we note
that to lowest order the signal speed in excess ofc0 in a fluid
is βc0ρ

′/ρ0. Thus we replace (10) with the nondimension-
ized equation

ut = −uux, (25)

whereu=βρ′/ρ0. Equation (24) may be recognized as the
inviscid Burgers equation. The solution arising from (24)
and (7) with initial conditionu(x, 0)=max(−x, 0) is then
u(x, t)=max(−x, 0)/(1−t). The nondimensional shock for-
mation time for comparison with Fig. 2 ists=1. Thus shock
formation is evident in the Hertzian chain example of Fig. 2
before the onset of a shock in an equivalent nondimensional

fluid problem with quadratic nonlinearity. Restoring dimen-
sions to this simple fluid problem, one has

ρ′(x, t)

ρ0
=

max(−x, 0)

c0β(t0 − t)
, (26)

so that ρ′
x(0, t)=ρ′

x(0, 0)/(1+βc0tρ
′
x(0, 0)/ρ0) as stated

earlier.

4 Conclusions

We have proposed an effective medium description and prop-
agation model for nonlinear compressional waves in satu-
rated marine sediments in Eqs. (2–4), which will be cali-
brated against future experiments with finite amplitude non-
linear sources. Analytic and numerical nonlinear plane wave
solutions suggest that when the order 3/2 Hertzian nonlinear-
ity is present, it can result in divergent values of the nonlin-
earity parameterβ at zero stress, with shock discontinuities
forming more rapidly than in a fluid with quadratic nonlin-
earity.

In the absence of attenuation, we have shown in Eq. (8)
that where the nonlinearity coefficient diverges, either (1) the
wave slope at a continuous zero is forced to zero immedi-
ately, or (2) that a shock discontinuity begins immediately,
depending on whether the slope is ascending or descending.
These behaviors have been confirmed in analytic solutions,
Eqs. (10–14).

When attenuation is present, the numerical experiment
shown in Fig. 2 indicates that it might be possible to ob-
serve signs of rapid shock formation in a water filled Hertzian
chain, with attenuation of order one dB per wavelength, as
common to marine sediments.
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