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Abstract. It is well established that third-order nonlinearity
produces a strong deviation from Gaussian statistics in wa-
ter of infinite depth, provided the wave field is long crested,
narrow banded and sufficiently steep. A reduction of third-
order effects is however expected when the wave energy is
distributed on a wide range of directions. In water of arbi-
trary depth, on the other hand, third-order effects tend to be
suppressed by finite depth effects if waves are long crested.
Numerical simulations of the truncated potential Euler equa-
tions are here used to address the combined effect of direc-
tionality and finite depth on the statistical properties of sur-
face gravity waves; only relative water depthkh greater than
0.8 are here considered. Results show that random direc-
tional wave fields in intermediate water depths,kh=O(1),
weakly deviate from Gaussian statistics independently of the
degree of directional spreading of the wave energy.

1 Introduction

The statistical description of the surface elevation and, in par-
ticular, the probability of occurrence for extreme waves is
an important input for the design and operation of marine
and coastal structures. Because waves are on average only
weakly nonlinear, solutions of the water wave problem can
be written as a power series, where the small parameter of
the expansion is the wave steepness (ε); in the case of ar-
bitrary water depth, a general expression for the nonlinear
parameter can be found in Whitham (1974). At the lowest
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order of approximation, the water wave problem is linear and
random wave fields can be approximated as a superposition
of sinusoidal waves with random amplitudes and phases (lin-
ear wave theory). In this case, according to the central limit
theorem, the surface elevations is Normally (Gaussian) dis-
tributed.

In the ocean, however, waves tend to behave differently
as crests are higher and troughs are shallower than lin-
ear theory predicts. In this respect, it is a common prac-
tice to approximate the surface elevation by including the
second-order bound contribution for each free wave mode,
i.e. second-order wave theory (Hasselmann, 1962; Longuet-
Higgins, 1963). A number of probability density functions
describing second-order waves have been derived by several
authors (see, e.g., Tayfun, 1980; Forristall, 2000; Prevosto
et al., 2000; Tayfun and Fedele, 2007, among others).

Despite the fact that the second-order approximation
agrees with field measurements reasonably well (see, for ex-
ample, Forristall, 2000; Toffoli et al., 2007), it does not in-
clude effects related to the dynamics of free waves. At third-
order in wave steepness, though, there is a substantial change
in the description of water waves. Whereas bound modes are
still present, resonant and non-resonant interactions between
free waves are also possible. In this respect, a number of nu-
merical and theoretical works (see, e.g., Janssen, 2003; Ono-
rato et al., 2001, 2005, 2006; Mori and Yasuda, 2002; Mori
and Janssen, 2006; Mori et al., 2007; Toffoli et al., 2008b)
have shown that deep water third-order nonlinearity can lead
to focusing of wave energy with the consequent formation of
extreme events, provided waves are long crested (i.e. unidi-
rectional), narrow banded and sufficiently steep. In a random
wave field, this results in a strong deviation from Gaussian
and second-order statistics. However, the effect related to
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132 A. Toffoli et al.: Third-order nonlinearity in water of finite depth

deep water third-order nonlinearity is substantially reduced
when non-collinear wave components (short crested or di-
rectional wave fields) are considered (Onorato et al., 2002).
In particular, experimental and numerical studies revealed
that short crested waves deviate from Gaussian statistics only
due to bound wave contributions despite third-order nonlin-
ear evolution (see, e.g., Socquet-Juglard et al., 2005; Gram-
stad and Trulsen, 2007; Waseda, 2006; Toffoli et al., 2008a).

In water of finite depth, waves induce currents conse-
quently reducing the energy available for nonlinear focus-
ing. For sufficiently small relative water depths (kh<1.36,
wherek is the wavenumber andh is the water depth), in par-
ticular, the third-order effect does not lead to wave focusing
at least for long crested waves (Benjamin, 1967; Mori and
Yasuda, 2002; Janssen and Onorato, 2007; Whitham, 1974).
Nevertheless, unlike in deep water, nonlinear focusing can
be triggered by transverse (three dimensional) perturbations
(see, for example, Davey and Stewartson, 1974; Francius and
Kharif, 2006). For shallow water waves (kh<0.8), Toffoli
et al. (2008c) have shown that the occurrence of extreme
events in random wave fields may depend on the properties of
the directional distribution. At present, however, it is not yet
clear whether transverse perturbations may significantly con-
tribute to the statistical description of directional wave fields
in the transition region from deep to shallow water condi-
tions (arbitrary water depth), where a number of engineering
activities usually takes place.

Here we use numerical simulations of the random sea sur-
face to address the combined effect of finite depth and di-
rectionality on the evolution of third-order nonlinear wave
fields; both spectral and statistical properties will be dis-
cussed. The simulations were performed by integrating
numerically the truncated potential Euler equations with a
higher order spectral method (see Dommermuth and Yue,
1987; West et al., 1987). A wide range of wave fields with
different relative water depth and directional spreading were
considered. We mention that, although several methods exist
to simulate the truncated potential Euler equations, the se-
lected approach has the advantage to allow a large number of
random simulations within a reasonable computational time.
Moreover, it does not have any constrains on the spectral
bandwidth but its limitation is related to the order of non-
linearity implemented in the numerical method.

The present paper is organized as follows. In Sect. 2, we
first present a description of the numerical model and the ini-
tial conditions for the simulations. In Sect. 3, the evolution of
the spectral shape is analyzed and discussed. In Sect. 4, we
present a description of the evolution of the statistical proper-
ties of the free surface elevation; in particular, the probability
density function and its high order moments (skewness and
kurtosis) are discussed. Concluding remarks are presented in
the last section.

2 Numerical experiments

2.1 The model

For the modeling of the dynamics of free surface waves, we
adopt the assumption of an irrotational, inviscid and incom-
pressible fluid flow. In this case there exists a velocity po-
tential φ(x,y,z,t)which satisfies the Laplace’s equation ev-
erywhere in the fluid. We restrict ourselves to the case of
domains with constant water depth. At the bottom (z= − h)
the boundary condition is such that the vertical velocity is
zero (φz|h=0). At the free surface (z=η(x,y,t)), the kine-
matic and dynamic boundary conditions are satisfied for the
free surface elevation and the velocity potential at the free
surfaceψ(x,y,t)=φ(x,y,η(x,y,t),t). Using the free surface vari-
ables these boundary conditions are as follows (Zakharov,
1968):

ψt + gη +
1

2

(
ψ2
x + psi2y

)
−

1

2
W2

(
1 + η2

x + η2
y

)
= 0, (1)

ηt + ψxηx + ψyηy −W
(
1 + η2

x + η2
y

)
= 0, (2)

where the subscripts denote partial derivatives, and
W(x,y,t)=φz|η represents the vertical velocity evaluated at the
free surface.

The time evolution of the surface elevation can be calcu-
lated directly from Eqs. (1 and 2). Here, we use a higher
order spectral method (HOSM), which was independently
proposed by Dommermuth and Yue (1987) and West et al.
(1987). A comparison of these two approaches (Clamond
et al., 2006) has shown that the formulation proposed by
Dommermuth and Yue (1987) is less consistent than the one
proposed by West et al. (1987). The latter, therefore, was
applied for the present study.

HOSM is a pseudo-spectral method, which uses a series
expansion in the wave steepnessε of the velocity potential of
the form:

φ(x, y, z, t) =

M∑
m=1

φ(m)(x, y, z, t), (3)

where eachφ(m) is a quantity of orderO(εm). In the above
expansionM is the order of approximation in nonlinearity.
A Taylor expansion aroundz=0 is then performed for each
φ(m) term and combined with the above expansion for the
potential. After collecting all terms at each order in wave
steepness we obtain a system of the form (see, e.g. West et al.,
1987):

φ(1)(x, y, z = 0, t) = ψ(x, y, t); (4)

φ(m)(x, y, z = 0, t) = −

m−1∑
k=1

ηk

k!

∂k

∂zk
φ(m−k)(x, y, z = 0, t)

(for : m = 2,3, ...,M).
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Following West et al. (1987), the vertical velocity at the free
surfaceW(x,y,t) is similarly expanded in series of terms of
orderO(εm):

W(x, y, t) =

M∑
m=1

W (m)(x, y, t), (5)

where the termsW (m) are computed from theφ(m) terms:

W (m)(x, y, t) =

m−1∑
k=0

ηk

k!

∂k+1

∂zk+1
φ(m−k)(x, y, z = 0, t). (6)

For the case of a rectangular domain in space with dimen-
sionsLx andLy in x andy, assuming periodicity in both
directions for the wave field, we can use the following ex-
pression based on a double Fourier series for eachφ(m) term
in finite water depth (see, e.g. Whitham, 1974):

φ(m)(x, y, z, t) = (7)∑
k,l

c
(m)
k,l (t)

cosh
[
kk,l (z+ h)

]
cosh

(
kk,lh

) exp
(
ikk,l × x

)
,

with wavenumbers kk,l=|kk,l | and kk,l=(kx, ky) =(
2πk
Lx
, 2πl
Ly

)
. The time-dependent modal coefficientsc(m)k,l (t)

of the potentialsφ(m) can be computed from Eq. (4) by us-
ing two-dimensional (fast) Fourier transform when the free
surface elevation and the free surface velocity potentials are
given as input.

Here, we considered a third-order expansion (i.e.M=3) so
that three and four waves interaction is included (see Tanaka,
2001a,b). After evaluating the vertical velocity at the free
surface at orderM, the free surface velocity potentialψ(x,y,t)
and the surface elevationη(x,y,t) can be integrated in time
from Eqs. (1 and 2). The time integration is performed by
means of a four-stage fourth-order Runge-Kutta method with
a constant time step. All aliasing errors generated in the
nonlinear terms are removed (see West et al., 1987; Tanaka,
2001b, for details).

A concise review of HOSM can be found in Tanaka
(2001a), while application of this method to study the oc-
currence of extreme waves can be found in e.g. Mori and
Yasuda (2002), Ducrozet et al. (2007), Toffoli et al. (2008a)
and Toffoli et al. (2008b). Note that other numerical meth-
ods have also been proposed by Annenkov and Shrira (2001),
Clamond and Grue (2001), and Zakharov et al. (2002).
A comparative analysis between the performance of the
HOSM and other numerical approaches can be found in
Clamond et al. (2006).

2.2 Initial conditions and simulations

In order to prepare the initial wave field, it is nec-
essary to generate a directional, frequency spectrum
E(ω, ϑ)=S(ω)D(ϑ), whereS(ω) is the frequency spectrum
andD(ϑ) is the directional function, and then to transform

it into the associated wavenumber spectrumE(kx ,ky) (de-
tails on the transformation from(ω, ϑ) to (kx ,ky) coordinates
can be found in e.g. Holthuijsen, 2007). As it is frequently
used for many practical applications, the JONSWAP spec-
trum (see, e.g., Komen et al., 1994) was used to expressS(ω),
while a frequency-independent cosN (ϑ) function was then
applied to model the directional function. The spectrum in
wavenumber coordinates (kx, ky) can be written as follows:

E(kk,l) =
α

2

1

|kk,l |4
exp

[
−

5

4

(
kp

|kk,l |

)2
]
× (8)

γ
exp

[
−

(√
|kk,l |/kp−1

)2
/
(
2σ2

)]
cosN (ϑ)

1(N)
,

where |kk,l |=
√
k2
x + k2

y , kp=2π/Lp and

ϑ=arctan(ky/kx); the parameterσ is equal to 0.07 if
k6kp and 0.09 ifk>kp; 1(N) is the normalizing factor
of the directional distribution function. For the present
study, for convenience, we described the wave field with
a dominant wavelengthλp=156 m (this corresponds to a
peak periodTp=10 s in water of infinite depth), Phillips
parameterα=0.014 and peak enhancement factorγ=3.
Such a configuration corresponds to a significant wave
heightHs=6.36 m and wave steepnesskpa=0.13, wherekp
is the wavenumber associated to the dominant wavelength
anda is half the significant wave height.

In order to consider different degrees of the directional
spreading, different values of the spreading coefficientN

were used, ranging from fairly long crested (largeN ) to fairly
short crested (smallN ) waves. The following values were
selected:N=840, 200, 90, 48 and 24 (see Fig. 1, where
the values of the angleϑ are reported in degree for conve-
nience). Note that we only considered cases with different
directional spreading, while the wave steepnesskpa was kept
unchanged, i.e.,kp anda were constant. Hereafter, the coef-
ficientN will be used to identify the wave fields.

In order to consider finite water depth effects, the evolu-
tion of each directional wave field was then simulated at dif-
ferent water depths. The following relative depths were used:
kph=20, 2.5, 1.8, 1.36, 1 and 0.8. Note that, for each depth,
the peak period can be calculated from the dominant wave-
length by using the linear dispersion relation. It is important
to mention that the adopted model does not describe effects
related to bottom topography (a uniform water depth is in
fact assumed) and wave breaking. Because bottom topogra-
phy and breaking dissipation may have a significant effect on
the temporal evolution of shallow water waves (see, e.g., Her-
bers et al., 2007; Toffoli et al., 2008c), cases withkph<0.8
were not considered in this study.

From the wavenumber spectrum,E(kk,l), an initial two–
dimensional surfaceη(x, y, t=0) was computed using the
inverse Fourier transform with the random amplitude and
phase approximation. The random phases were assumed
to be uniformly distributed over the interval (0, 2π ), while
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Fig. 1. Frequency-independent directional distributions used as in-
put for the simulations.
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Fig. 2. Example of temporal evolution of the spectral peak: case
N=90. The spectra have been scaled so that the spectral standard
deviation is 1.

the random amplitudes were Rayleigh distributed (the ini-
tial wave field is therefore Gaussian). The velocity poten-
tial ψ(x,y,t=0) was obtained from the input surface using
linear theory (see Eq. 7). The wave field was contained in
a square domain of 1920 m with spatial mesh of 256×256
nodes. With this resolution, the spatial domain contains
about 12 dominant waves; each wave was thus discretized
with about 21 grid points.

Theoretical and numerical studies (Janssen, 2003;
Socquet-Juglard et al., 2005) have shown that deviations
from the Gaussian statistics due to third-order nonlinearity
occur on a short timescale, typically on the order of 30–
40 wave periods. In the present study, the total duration
of the simulation was set equal to 60Tp (here Tp is the
peak period in water of infinite depth). A small time step,
1t=Tp/200=0.05 s, was used to minimize the energy leak-
age; we mention that the selected time step was much smaller
than the period of the shortest waves considered in this study.
The accuracy of the computation was checked by monitoring

the variation of the total energy (see, e.g., Tanaka, 2001a).
Despite the fact that the energy content showed a decreasing
trend throughout the temporal evolution, its variation is neg-
ligible as the relative error in total energy does not exceed
0.4% over the simulation time (cf. Toffoli et al., 2008a).

The model output consists in the surface elevation,η(x,y,t),
which was archived every six wave periods. For each simu-
lated condition, we performed 100 repetitions with the same
input spectrum but different random amplitudes and random
phases in order to have enough samples to achieve statisti-
cally significant results. The stability of the statistical mo-
ments is discussed in e.g. Toffoli et al. (2008a).

3 Spectral evolution

Due to nonlinear wave-wave interaction, a part of the spec-
tral energy is transferred between wave components. There-
fore, the input spectrum does not retain its initial shape as
the wave field evolves in time. More specifically, a frac-
tion of the energy is moved from high to low wavenumbers,
generating the downshift of the spectral peak (Hasselmann,
1962). In arbitrary water depth, however, the wave-induced
currents have a notable impact on the energy transfer around
the spectral peak. This was observed by Janssen and Ono-
rato (2007), who performed Monte Carlo simulations based
on the Zakharov equations of long crested wave fields in wa-
ter of arbitrary depth. Their results showed that the spectral
downshift did not occur forkph=1.36, where no significant
spectral changes were observed at all, while an upshift took
place for shallower depths.

In order to verify whether the simulations of the truncated
potential Euler equations recover the results in Janssen and
Onorato (2007), the wavenumber spectrum was extracted
from the output surfaces as an inverse Fourier transform;
an ensemble average over the 100 random repetitions was
performed too. In Fig. 2, we present the temporal evolu-
tion of the energy spectrum for wave fields withN=90 (the
spectra are here plotted as the integral over theky coordi-
nate); similar results were obtained with other directional
spreadings. The spectrum was scaled so that the spectral
standard deviation is 1; the wavenumbers were normalized
with the initial peak wavenumber denoted askp(initial). For
deep water conditions,kph=20, the downshift of the spec-
tral peak was clearly evident, as the position of the peak was
estimated atkp(final)/kp(initial)=0.93. As the relative water
depth was decreased, though, the downshift became less pro-
nounced and eventually disappeared forkph=1.36 (spectral
peak atkp(final)/kp(initial)=1.01) in agreement with Janssen
and Onorato (2007). Part of the spectral energy was moved
towards lower wavenumbers, nevertheless. For shallower
depths,kph<1.36, the spectral peak slightly migrated to-
wards higher wavenumbers (kp(final)/kp(initial)=1.03). This
weakly pronounced upshift is also consistent with results in
Janssen and Onorato (2007).
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A small fraction of the spectral energy is also transferred
towards high wavenumbers and redistributed over the direc-
tional domain (Longuet-Higgins, 1976). As a consequence,
the spectrum becomes broader (especially in the upper tail)
as the wave field evolves. In order to provide an overall de-
scription of the evolution of the directional spreading, the
directional properties of the energy spectrum were summa-
rized into a mean directional spread factor. The latter was
calculated from the wave spectrum of the output surfaces as
the wavenumber-average of the second-order moment of the
directional distribution expressed in (k, ϑ) coordinates (see,
e.g., Hwang et al., 2000, for details):

σ2(k) =

(∫ π/2
0 ϑ2E(k, ϑ)dϑ∫ π/2

0 E(k, ϑ)dϑ

)1/2

= (9)

(∫ π/2
0 ϑ2D(k, ϑ)dϑ∫ π/2

0 D(k, ϑ)dϑ

)1/2

.

Hereafter, the wavenumber-average of Eq. (9) is referred
to asσ2a and converted from radians to degrees for conve-
nience.

In Fig. 3, as an example, we present the temporal evolu-
tion of the mean directional spread factor at different relative
water depths for wave fields with initial spreading coefficient
N=90. It is evident that the directional spectrum changed its
initial form, broadening the directional spreading. This result
is consistent with numerical simulations of the modified non-
linear Schr̈odinger equation presented in Dysthe et al. (2003).
However, we observed that the variation of the directional
spreading was weakly affected by finite depth effects. As
kph was reduced, in fact, the broadening of the directional
spreading occurred slightly less rapidly than in conditions of
deep water depth.

4 Statistical properties

4.1 Skewness and kurtosis

In the following section, we discuss the combined effect of
directionality and finite depth on the third and the fourth or-
der moments of the probability density function of the free
surface elevation, which are known as the skewness (λ3) and
kurtosis (λ4), respectively. Whereas the first is a measure of
the vertical asymmetry of the wave profile, the second pro-
vides information on the probability of occurrence for ex-
treme waves (see, e.g., Mori and Janssen, 2006). Note that
λ3=0 andλ4=3 in Gaussian random systems (linear waves).
However, some definitions of kurtosis assign value of zero to
the Normal distribution. Such a convention was used in e.g.
Janssen and Onorato (2007), where the kurtosis was calcu-
lated asλ4/3−1.

In Fig. 4, the temporal evolution of the skewness is pre-
sented for different degrees of directional spreading and rel-
ative water depths. As the linear (input) wave field evolves,
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Fig. 3. Example of temporal evolution of the mean directional
spread: caseN=90.

the wave profile becomes more vertically asymmetric with
the sharpening of the wave crests and the flattening of the
wave troughs as a result of the bound wave contribution.
Thus, the skewness increased, departing from the value ex-
pected in Gaussian random systems. Such a deviation oc-
curred almost immediately as it was already visible after six
peak periods. Because the skewness is weakly dependent
upon the dynamics of free waves (see, e.g., Mori and Yasuda,
2002; Mori et al., 2007; Toffoli et al., 2008b), it remained
rather constant for the rest of the temporal evolution.

As expected, substantial variation in the skewness were
observed with the decrease ofkph, as finite depth effects be-
come more pronounced. In Fig. 5, we illustrate the variation
of the maximum value of the skewness over the duration of
the temporal evolution of the wave field. On the whole, the
directional properties of the wave field only had little influ-
ence on the vertical asymmetry, especially forkph>1.36. It
is interesting to note, however, that the coexistence of di-
rectional components increases the effect of the bound wave
contribution forkph<1.36 with a consequent increase of the
skewness in fairly short crested wave fields. Similar results
were also obtained from second-order simulations of the sur-
face elevation (Forristall, 2000; Toffoli et al., 2006).

On the other hand, the kurtosis is influenced by the dy-
namics of the free wave components, especially for fairly
long crested conditions. In deep water, this results in strong
deviations from Gaussian statistics, which occur within a
fairly short time scale of a few tens of peak periods (Janssen,
2003). In Fig. 6, the temporal evolution of the kurtosis is
presented for different degrees of directionality and relative
water depths. It is evident that the coexistence of different
directional components notably reduces the effect of third-
order nonlinearity and hence the deviation from Gaussian
statistics in deep water conditions. This result is consistent
with previous experimental and numerical studies (see, e.g.,
Onorato et al., 2002; Socquet-Juglard et al., 2005; Toffoli
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et al., 2008a; Waseda, 2006). As expected, furthermore, the
effect of third-order nonlinearity is also suppressed by finite
depth effects. However, whereas substantial deviation of the
kurtosis from the Gaussian statistics were still observed for
long crested wave fields withkph>1.36, third-order nonlin-
earity had no longer a significant effect forkph61.36, as the
kurtosis weakly deviates from the value of 3 throughout the
considered temporal evolution (the variation of the maximum
kurtosis over the duration of the simulation as a function of
kph is illustrated in Fig. 7). This finding is consistent with
previous investigation of unidirectional wave fields in Mori
and Yasuda (2002) and Janssen and Onorato (2007). Our
simulations, moreover, showed that third-order nonlinear in-
teraction between non-collinear components in water of fi-
nite depth did not produce notable effects on the kurtosis.
Within the mentioned water depth regime, these results are
to some extent consistent with field measurements (see, for

example, Toffoli et al., 2007). However, the kurtosis of the
most short crested wave field, i.e.N=24, was substantially
higher than in fairly long crested conditions forkph=0.8 (see
Fig. 7). For this relative depth, furthermore, the kurtosis of
directional sea states weakly grew throughout the temporal
evolution of the wave fields.

It is interesting to mention that Janssen and Onorato
(2007) found negative values of kurtosis (or kurtosis lower
than 3 with the convention used in the present study) for
kph<1.36; similar results were also obtained in shallow wa-
ter regime using the Korteweg-de Vries equation by Peli-
novsky and Sergeeva (2006). Although our numerical model
recovered similar results for fairly long crested conditions
(for example, see the casekph=0.8 in Fig. 6), the simula-
tions of directional sea states showed that the kurtosis was
higher than the value expected for Gaussian random systems.

4.2 Probability density function of free surface elevation

The skewness and kurtosis provide an indication of the
departure from Gaussian statistics. For the sake of complete-
ness, it is interesting to observe the deviation of the tails of
the probability density function of the free surface elevation
from the Normal distribution. In Figs. 8, 9 and 10, in this
respect, we present some examples of the probability density
function of the simulated surface elevation; only the most
long and short crested wave fields are shown (N=840 and
N=24, respectively). In the case of deep water (kph=20),
the upper tail of the probability density function strongly
deviated from the Normal distribution for long crested wave
fields. We mention, however, that the lower tail of the
distribution (i.e. wave troughs) fitted the Normal distribu-
tion reasonably well. On the other hand, the coexistence
of transverse components reduced this deviation, which
became no more significant than in second-order theory
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Fig. 6. Temporal evolution of the kurtosis:N=840 (o);N=90 (+);N=24 (4).
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Fig. 7. Maximum value of the kurtosis over the duration of the
simulation as a function of the relative water depthkph.

(cf. Socquet-Juglard et al., 2005; Toffoli et al., 2008a).
Whereas the statistical properties of short crested wave
fields remained rather similar as the relative water depth was
reduced, the transition between deep to shallow water waves
had a substantial effect on the statistics of long crested wave
fields. As a result, the deviation of the upper tail of the prob-
ability density function from the Normal distribution was
gradually reduced. Forkph=1.36, in particular, the upper
tails were similar in both long and short crested wave fields.
Note that the wave troughs remained Gaussian distributed
for this relative depth. For lower water depth conditions, e.g.
kph=0.8, the probability of occurrence for extreme waves
notably increased when directional components were taken
into account (see Fig. 10). It is also important to mentions
that the lower tail of the probability density function showed
a substantial deviation from the Normal distribution for this
relative depth, indicating shallower troughs than in Gaussian
sea states.
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Fig. 8. Probability density function of the surface elevation at
kph=20: Normal distribution (dashed line); simulations with
N=840 (o); simulations withN=24 (4).

5 Conclusions

For random wave fields in water of infinite depth, third-
order nonlinearity is responsible for strong deviations from
Gaussian statistics, provided waves are long crested, nar-
row banded and sufficiently steep. However, third-order ef-
fects tend to be suppressed by directional spreading and finite
depth effects. In order to study the combined influence of
wave directionality and water depth on third-order nonlinear-
ity, a large number of simulations of the random sea surface
was performed with the truncated potential Euler equations,
considering a wide range of directional spreading and rela-
tive water depth. The higher order spectral method proposed
by West et al. (1987) was used to this end; a third-order ex-
pansion was implemented so that the three and four waves
interaction was taken into account.
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Fig. 9. Probability density function of the surface elevation at
kph=1.36: Normal distribution (dashed line); simulations with
N=840 (o); simulations withN=24 (4).

Under deep water conditions, our simulations recovered
the strong deviation from Gaussian statistics in long crested
wave fields as well as the suppression of third-order ef-
fects in directional wave fields. As the water depth is de-
creased, however, the deviation from Gaussian statistics of
long crested, deep water waves was gradually reduced. At
kph=1.36, in particular, third-order effects were observed to
be negligible on wave statistics. It is interesting to men-
tion, nevertheless, that third-order nonlinear dynamics of
free waves produced a weak upshift of the spectral peak for
kph<1.36, instead of the downshift commonly observed in
deep water.

Although transverse perturbation may be expected to lead
to focusing of wave energy in finite water depths, and hence
generate large amplitude waves, our simulations did not
show any substantial variation of the statistical properties of
directional sea states in water of arbitrary depth,kph=O(1),
where only weak deviation from Gaussian statistics were ob-
served. Nevertheless, forkph=0.8, a weak effect of wave di-
rectionality on the upper tail of the probability density func-
tion was observed. At this relative depth, however, it is rather
difficult to reach a firm conclusion on the significance of the
directional properties of shallow water waves, as nonlinearity
higher than third order might be significant in the description
of wave statistics.

It is interesting to mention that deviations from Gaussian
statistics occurred in the upper tail of the probability den-
sity function (i.e. positive elevation), while the lower tail
(negative elevation) fitted the Normal distribution reasonably
well. Significant deviations in the lower tail of the probabil-
ity density function (forp(η)<0.01) were only observed for
kph<1.36.
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Fig. 10. Probability density function of the surface elevation at
kph=0.80: Normal distribution (dashed line); simulations with
N=840 (o); simulations withN=24 (4).

Acknowledgements.This work was carried out in the framework of
the EU project SEAMOCS (contract MRTN–CT–2005–019374).
We thank P. Janssen for valuable discussions.

Edited by: I. Didenkulova
Reviewed by: three anonymous referees

References

Annenkov, S. Y. and Shrira, V. I.: Numerical modeling of water–
wave evolution based on the Zakharov equation, J. Fluid. Mech.,
449, 341–371, 2001.

Benjamin, T. B.: Instability of periodic wave trains in nonlinear
dispersive systems, Proc. Roy. Soc. London, A299, 59–75, 1967.

Clamond, D. and Grue, J.: A fast method for fully nonlinear water–
wave computations, J. Fluid Mech., 447, 337–355, 2001.

Clamond, D., Francius, M., Grue, J., and Kharif, C.: Long time in-
teraction of envelope solitons and freak wave formations, Europ.
J. Mech. B-Fluids, 25, 536–553, 2006.

Davey, A. and Stewartson, K.: On three–dimensional packets of
surface waves, Proc. R. Soc. Lond. A, 338, 101–110, 1974.

Dommermuth, D. G. and Yue, D. K. P.: A high–order spectral
method for the study of nonlinear gravity waves, J. Fluid Mech.,
184, 267–288, 1987.

Ducrozet, G., Bonnefoy, F., Le Touzé, D., and Ferrant, P.: 3-D HOS
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