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Abstract. This paper investigates the macroscopic conse-
quences of nonlinear solitary vortex structures in magnetized
space plasmas by developing theoretical model of plasma tur-
bulence. Strongly localized vortex patterns contain trapped
particles and, propagating in a medium, excite substantial
density fluctuations and thus, intensify the energy, heat and
mass transport processes, i.e., such vortices can form strong
vortex turbulence. Turbulence is represented as an ensem-
ble of strongly localized (and therefore weakly interacting)
vortices. Vortices with various amplitudes are randomly dis-
tributed in space (due to collisions). For their description, a
statistical approach is applied. It is supposed that a station-
ary turbulent state is formed by balancing competing effects:
spontaneous development of vortices due to nonlinear twist-
ing of the perturbations’ fronts, cascading of perturbations
into short scales (direct spectral cascade) and collisional or
collisionless damping of the perturbations in the short-wave
domain. In the inertial range, direct spectral cascade occurs
through merging structures via collisions. It is shown that in
the magneto-active plasmas, strong turbulence is generally
anisotropic Turbulent modes mainly develop in the direction
perpendicular to the local magnetic field. It is found that it
is the compressibility of the local medium which primarily
determines the character of the turbulent spectra: the strong
vortex turbulence forms a power spectrum in wave number
space. For example, a new spectrum of turbulent fluctuations
in k−8/3 is derived which agrees with available experimental
data. Within the framework of the developed model particle
diffusion processes are also investigated. It is found that the
interaction of structures with each other and particles causes
anomalous diffusion in the medium. The effective coefficient
of diffusion has a square root dependence on the stationary
level of noise.
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1 Introduction

In a dispersive medium, especially in space, astrophysical
and laboratory plasmas, the various localized wave struc-
tures could often generated and developed to the nonlinear
stage (Horton, 1990; Chmyrev et al., 1991; Petviashvili and
Pokhotelov, 1992; Tu and Marsch, 1997; Sudkvist et al.,
2005; Alexandrova et al., 2006; Aburjania, 2006). Investi-
gation of nonlinear interaction of wave structures with each
other and with the medium is very important. Nonlinear in-
teraction of wave structures can be described as interaction
of localized structures or as a separate wave harmonics. In
certain conditions, this interaction leads to the chaotization
of phases both of the structures and waves. As a result of
chaotic dynamics of the wave structures, the macroscopic
motions usually occur in a turbulent regime.

In a real non-uniform magnetized plasma medium, the
presence of spatial gradients (equilibrium density, temper-
ature, etc.) transverse to the magnetic field leads to diamag-
netic drift currents (Horton, 1990). The collective motion of
particles arising due to the diamagnetic currents in such sys-
tems stimulates the development of low-frequency drift in-
stabilities. Actually, results of the experimental observations
of the spectra of low-frequency fluctuations in the magneto-
sphere (Sahraoui et al., 2003, 2004, 2006; Mangeney et al.,
2006; Alexandrova et al.,, 2006; Narita et al., 2007), iono-
sphere (Lysak, 1990; Chaston et al., 1999; Stasiewicz et al.,
2000; Abel et al., 2006) and experimental plasma devices
(Browley and Mazzucato, 1985; Brower et al., 1987; Weis-
sen et al., 1988; Gekelman, 1999), show that the observed
fluctuations with the significant amplitude are produced due
to the development of drift-Alfv́en instability. One of the in-
dications of the instability evolution in magnetized plasma is
the shaping of the ordered wavy structures or vortexes, whose
collective activity can finally lead to the formation of the tur-
bulent state (Horton, 1990; Tu and Marsch, 1997; Aburjania,
2006; Alexandrova et al., 2006).
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Following its own logic of development, in the sixties of
the last century, the plasma turbulence theory was based on
the weak turbulence model when only the weak interaction
between modes due to nonlinearity was taken into account.
Within the framework of this model, it was possible to ad-
dress a wide range of questions and explain a number of
important nonlinear phenomena (Kadomtsev, 1967; Horton,
1985; Galeev and Sagdeev, 1996). The weak turbulence the-
ory was developed by expansion of the basic equations for
plasma with respect to a small parameter – the ratio of the
fluctuations’ energy to full energy of plasma.

Unfortunately, in many interesting cases, the area of ap-
plicability of the weak turbulence theory in inhomogeneous
magnetized plasma is limited because of the strong coupling
of modes, and thus development of a strong turbulence the-
ory becomes necessary. In particular, anomalous diffusion
of plasma is related to the strong turbulence in the mag-
netic field. Therefore, in the 1970s, the primary attention
in plasma turbulence theory gradually shifted to the strongly
nonlinear waves and strong turbulent states (Litvak, 1983;
Goldman, 1984; Shapiro and Shevchenko, 1985; Petviashvili
et al., 1987; Biskamp, 2003).

According to the existing understanding, in each specific
situation the strong turbulence represents to some extent a
mixture of interacting waves and organized nonlinear struc-
tures (vortices). Depending on the interaction between free
(weakly turbulent) waves and structures, the strong turbu-
lence can be either mainly of wave type, or structural (vor-
tical, granular) type (Diamond and Carreras, 1987). Here-
with, these structures absorb free energy of plasma more ef-
fectively than the linear waves (Dupree, 1972; Waltz, 1985;
Sagdeev et al., 1986). So the strongly localized vortex struc-
tures containing the trapped particles, propagating in plasma,
can trigger the strong turbulence and increase the transport of
heat and plasma particles.

The canonical representation of turbulence usually assume
the existence of three, interconnected regions of interaction
of wave structures with each other and the medium. The
first is a seed or generation region where the development
of large-scale wave structures is initiated. The second is
an inertial region where the perturbation energy is cascad-
ing from long to short scales. As a rule, the energy trans-
fer process (across different scales) is nonlinear. The third
region is the damping one, where the energy dissipation of
small scale structures, and accordingly, heating of medium,
occurs. This process can be considered as a mechanism of
transition to the stationary turbulence. In the generation re-
gion, the stationary spectrum is formed by a balance of the
influx of perturbation energy (for example, due to due to the
excitation of some instability) and its outflux due to nonlin-
ear cascade. along the spectrum. . In the damping region, the
process occurs via the balance of energy influx due to spec-
tral pumping and outfluxes of energy due to dissipation. But
in an inertial region, balance for a given mode occurs because
of nonlinear energy cascade. In this region the fluctuation

spectrum depends neither on instability , nor on the damping
types (Frost and Moulden, 1977; Biskamp, 2003). Experi-
mental investigations of turbulent motions, in particular, of
temporal (in frequency domain) and especially, of spatial (in
wave number domain) turbulent spectra in space plasma gave
up to now only limited results, although sometimes very in-
teresting but without establishment of cause-effect coupling
between them, and without the proper theoretical foundation.

In recent years, in these experimental investigations, An
essential step was made recently (2000) with the launch of
four “CLUSTER” satellites (Sahraoui et al., 2003), separated
from each other by the distances approximately from 100 km
to 2000 km or more, depending on the period of the mission.
The analysis of some observations and measurements made
by Cluster was published in recent papers (Sahraoui et al.,
2004, 2006; Sudkvist et al., 2005; Mangeney et al., 2006;
Alexandrova et al., 2006; Zimbardo, 2006; Narita, 2007).
In particular, the basic features of low-frequency turbulent
state formation were thoroughly investigated. for the magne-
tosheath, shock wave and the high latitude cusp regions The
existence of a relatively small-scale (of the order of collision-
less electron skin depth), ultra low frequency (ULF) Alfvén-
type wave structures (0.1–10 Hz) was demonstrated for the
first time. The power law frequency spectrum of the energy
of turbulent pulsationsF(f )∼f −7/3 and a new power spec-
trum in a wave number spacek−8/3were found (Sahraoui et
al., 2006; Mangeney et al., 2006; Narita et al., 2007).

The paper is devoted to the development of a theoretical
model of the stationary strong vortex turbulence in space
plasma, and in particular, to the self-consistent model ca-
pable to explain the experimentally observed frequency and
spatial spectra of turbulent pulsations (Sahraoui et al., 2003,
2004, 2006; Mangeney et al., 2006; Alexandrova et al., 2006;
Narita, 2007). The paper is organized as follows. In Sect. 2
we obtain the initial nonlinear equations describing the dy-
namics of the formation of the skin size solitary drift-Alfvén
vortex structures in magnetized space plasma. Analytical so-
lution of these dynamic equations is derived and basic char-
acteristics of ULF linear and stationary nonlinear Alfvén vor-
tex structures are revealed. Features of vortex turbulence
generation for ULF electromagnetic drift-Alfvén modes are
discussed in Sect. 3. Spectra of electromagnetic vortex fluc-
tuations are found in Sects. 3.1 and 3.2. The corresponding
coefficient of anomalous diffusion which depends both on
the amplitude and dispersive characteristics of a considered
mode is determined in Sect. 4. At last, in Sect. 5 the basic
results of the work are discussed and summarised.

2 The initial equations and dynamics of nonlinear vor-
tex structure formation

We assume that the equilibrium state of magnetospheric
plasma is characterized by single charged ions and quasine-
dutral particle densities, which are inhomogeneous along
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the x-axis (∇nj0||x, j=e, i). Temperatures of electrons
Te and ions Ti (∇Te, ∇Ti=0; Te≥Ti) are assumed to
be homogeneous. Inhomogeneity of equilibrium density
(n0(x)=ne0(x)=ni0(x)) is supported by external sources
(for example, an external electric field, volumetric forces,
etc.). An equilibrium magnetic fieldB0 is considered to be
homogeneous and directed along the z-axis (B0||z).

From the point of view of strong turbulence, one of the
most important types of waves in magnetized space (Lysak,
1990; Chaston et al., 1999; Stasiewicz et al., 2000; Sahraoui
et al., 2003, 2004, 2006; Mangeney et al., 2006; Abel et
al., 2006; Alexandrova et al., 2006; Narita et al., 2007) as
well as in laboratory (Browley and Mazzucato, 1985; Brower
et al., 1987; Weissen et al., 1988; Gekelman, 1999) plas-
mas are non-potential drift-Alfv́en waves. These waves have
comparatively low-frequencies (in comparison with ion cy-
clotron frequencyωci=eB0/mic�ω, where –e is an elec-
tron charge,m – ion mass,c light speed,ω – frequency of
perturbations). Transverse wavelengths of these perturba-
tionsλ⊥ are of the order of collisionless electron skin depth
sizeλs , λ⊥=2π/k⊥∼λs=c/ωpe, wherek⊥ is a transversal
wave numbers of perturbations andωpe=(4πe2n0/me)

1/2 is
the plasma frequency (Kadomtsev and Pogutse, 1984; Waltz,
1985; Gekelman, 1999; Chaston et al., 1999; Mangeney et
al., 2006).

Let us consider the nonlinear propagation of low-
frequency small scale (λ⊥∼λs=c/ωpe) Alfv én perturbations
in such inhomogeneous magnetized plasma. We express the
perturbed electricE and magneticB fields through the elec-
trostatic potentialϕ and the z-component of the vector po-
tential A:

E = −∇ϕϕ −
1

c

∂A

∂t
ez, (1)

B⊥ = ∇Az × ez, (2)

whereB⊥ is the transverse component of the perturbed mag-
netic field, ez – unit vector along z-axis. Due to the pres-
ence of inhomogeneous plasma density∂n0/∂x 6=0, elec-
trons and ions participate in diamagnetic drift with velocities
VDj=ey(cTj/qjB0)∂n0/∂x (whereey is unit vector along
an axisy, j=e, i; qe=−e, qi=e, e – elementary charge)
and Alfvén waves become coupled to a drift modes. Waves
are assumed to be quasineutral. The dynamics of nonlinear
electromagnetic Alfv́en type structures in such plasma is de-
scribed by the system of the equations presented in the paper
by Aburjania (1988). In this paper, the vortex structures with
finite Larmor radius of ions are studied through the evolu-
tionary equations, which are valid also for smaller-scale per-
turbations (λ⊥∼λs<ρi , whereρi=(Ti/miω

2
ci)

1/2 is the Lar-
mor radius of ions). Below we will be interested in wave pro-
cesses with characteristic scales of the order of the electron
skin length. Thus, one could use the Boltzman distribution
for the description of ions and the dynamic equations from

the 1988 Aburjania paper, describing drift-Alfvén structures,
can be reduced to the following form:

∂A

∂t
+ V∗e

∂A

∂y
+ c (1 + τ) ∇||ϕ − λ2

s

d0

dt
1⊥A = 0, (3)

d0

dt
ϕ + V∗i

∂ϕ

∂y
−

V 2
T e

cτ
λ2

s∇||1⊥A = 0. (4)

Here V∗e,i=∓cTe,iæn/ (eB0), æn=∂ ln n0 (x) /∂x,
VT e=(Te/me)

1/2 – electron thermal velocity,τ=Te/Ti ,
1⊥=∂2/∂x2

+∂2/∂y2;

d0

dt
=

∂

∂t
+

c

B0
[∇ϕ, ∇]z , (5)

∇|| =
∂

∂z
−

1

B0
[∇A, ∇]z . (6)

In order to obtain Eqs. (3) and (4), ion parallel motion was
neglected and it was assumed that the parallel currentjz is
carried only by electrons,jz=−c1⊥A/4π .

Equations (3) and (4) conserve the integral of energy,E:

E=
1

2

∫ [
(∇A)2

+λ2
s (1A)2

+λ−2
s

(
c

VT e

)2

τ (1+τ) ϕ2

]
dr.(7)

Thus, the system of Eqs. (3–7) describes the nonlinear dy-
namics of drift-Alfvén waves having spatial scales of the or-
der of the skin size. The system of Eqs. (3–7) will be applied
as a theoretical foundation for understanding of spacecraft
observations of electromagnetic ULF Alfvén type waves in
the magnetosheath (Sahraoui et al., 2006; Alexandrova et
al., 2006; Mangeney et al., 2006) and the bow shock regions
(Narita et al., 2007).

2.1 Spectra of linear waves

After the linearization of Eqs. (3) and (4), we obtain the fol-
lowing dispersion relation:

(ω − ωi)
[
ω(1 + k2λ2

s )−ωe

]
= k2

⊥
ρ2

i k2
zV

2
A(1 + τ), (8)

Here ωe,i=kyVe,i are ion and electron drift frequencies,
k⊥=(k2

x+k2
y)

1/2, kz, are perpendular and parallel (with re-
spect to the external magnetic fieldB0) wave numbers of per-
turbations,VA=B0/

√
4πn0mi is Alfv én speed. Equation (8)

describes mutual coupling of kinetic Alfvén waves with drift
waves in inhomogeneous space plasma. After neglecting the
drift effects (ω�ωe,i) Eq. (8) reduces to the dispersion rela-
tion for the kinetic Alfv́en waves:

ω2
= ω2

k/(1 + k2
⊥
λ2

s ), (9)

where ω2
k=(1+τ)(kzVAk⊥ρi)

2. In an electrostatic limit
(kz→0), the dispersion Eq. (8) describes ion and electron
drift waves:

ω1 = ωi, ω2 = ωe/(1 + k2
⊥
λ2

s ). (10)
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In homogeneous plasma, in the case ofk=kz=0 the solution
ω=0 follows from Eq. (8), which corresponds to a convective
zonal flow or a zonal magnetic field.

The frequency and spatial characteristics of drift-Alfvén
waves (Eqs. 8–10) correlate well with the frequencies
(0.1–10 Hz) and the characteristic lengths (kρi>0.5−3.5,
λ∼λs=c/ωpe<75 km) of electromagnetic Alfv́en type
waves obtained in spacecraft observations (Sahraoui et al.,
2006; Mangeney et al., 2006; Narita et al., 2007).

It should be noted that the growth of linear Alfvén pertur-
bations is possible for relatively long wavelengths , for ex-
ample, due to dissipation instability caused by an increase
of the effective medium viscosity during the scattering of
high-frequency waves on plasma particles (Mikhailovskii
and Pokhotelov, 1975). or due to the low-frequency modula-
tion instability caused by the beating of two external high fre-
quency electromagnetic waves (Aburjania, 2007). Another
possible mechanism could be related with the temperature-
anisotropic (mirror) instability (Sahraoui et al., 2006).

2.2 Self-organization of nonlinear solitary vortices

In the course of development of the above mentioned insta-
bilities at the linear stage, the amplitude of the disturbances
grows exponentially with time. With an increase of ampli-
tude, the nonlinear effects become important, causing the
twisting of wave perturbation fronts. In a dispersive media
like the magnetosphere and ionosphere (see expressions 8–
10), the nonlinear increase of a wave twisting can be com-
pensated by its dispersive spreading. Then, in the medium,
the stationary solitary nonlinear waves-vortices, propagating
without changes of its form can be created (Horton, 1990;
Petviashvili and Pokhotelov, 1992; Aburjania, 2006).

Let us show the validity of this concept by an example of
an analytical solution of the nonlinear dynamic Eqs. (3), (4)
in the stationary regime. For this purpose, we shall substi-
tute into these equations auto-model variablesη=y−ut+αz.
Hereu is the speed of the vortex motion velocity along the
y-axis,α∼kz/k∼l⊥/l|| – characterizes the vortex inclination
angle to the z-axis, wherek∼l−1

⊥
, kz∼l−1

||
the characteris-

tic vortex “wave numbers” are found,l⊥ is vortex charac-
teristic transversal linear scale (transversal according to the
equinoctial magnetic fieldB0direction), andl|| is vortex char-
acteristic linear scale along the equinoctial magnetic field
direction. We shall search the stationary solution of sys-
tem (3), (4) in the form ofA=A(r, η), ϕ=ϕ(r, η). Follow-
ing (Mikhailovskii et al., 1987; Aburjania, 1988), we pass
to a polar system of coordinatesr, θ (wherer=(x2

+η2)1/2,
tgθ=x/η) and we’ll divide a two-dimensional planer, θ into
internalr<r0 and externalr≥r0areas. For such disturbances
a nonlinear system of Eqs. (3), (4) can be reduced to a
Helmholtz type equation for innerr<r0 and outerr≥r0 areas
of the circle via vector integration method. Further, the ob-
tained solutions are matched continuously on the boundary
r=r0. Thus, stationary regular and strongly localized solu-

tion of the system (3), (4) finally will have the form:

A(r, θ) =
VT e

c
ϕ(r, θ)

= −αB0r0

[
ν2

γ 2

J1(γ r)

J1(γ r0)
−

(
1 +

ν2

γ 2

)
r

r0

]
cosθ,

r < r0, (11)

A(r, θ) =
VT e

c
ϕ(r, θ) = αB0r0

K1(νr)

K1(νr0)
cosθ, r > r0. (12)

Here Jn, Kn are then-th order Bessel and McDonald’s
functions respectively,γ is an eigenvalue specified by the
boundary-value problem generated by matching the first and
second derivatives with respect tor of solution (11), (12) at
the boundaryr=r0:

γ J1 (γ r0) K2 (νr0) + νK1 (νr0) J2 (γ r0) = 0, (13)

andν is given by:

ν2
=

V∗i − αVT e

αVT eλ2
s

τ > 0. (14)

The solution (11–14) represents non symmetric Larichev-
Reznik type cyclone-anticyclone double vortices (Larichev
and Reznik, 1976). The vortex structures have a definite
speedu=αVT e along the y-axis, unlike the vortex from the
work by Larichev-Reznik (1976), where the velocity repre-
sents a free parameter. From the condition of existence of the
localized solutionν2>0 (Eq. 14) it follows thatα<V∗i/VT e,
i.e. the structure is strongly elongated along an external mag-
netic fieldB0. With the choice of parameters specified above,
A, ϕ,1⊥A, 1⊥ϕϕ appear continuous. The field of nonlin-
ear structures consists of a cyclone-anticyclone type vortex
pair of equal intensity, moving with velocityu=αVT e along
the y-axis and its front makes an angle with an external mag-
netic field of the orderα�1. At large distances, the potential
of the vortex structure decreases following the dependence
r−1/2 exp(−νr) (see the solution 12), i.e., it is strongly local-
ized in space. Thus, for space plasma conditions, the drift-
Alfv én perturbations can self-localize and self-organize in
the form of solitary strongly localized nonlinear vortex struc-
tures of the electron skin depth size.

Particle oscillation (rotation) velocity in the vortex struc-
tures (11–14)VE=(c/B2

0)(E×B0) is comparable or exceeds
the velocityu=αVT e of its motion. It also exceeds a phase
velocity of the linear wavesV∗e,i . Therefore, the vor-
tices contain a group of trapped particles moving together
with the structures. Considering that the perturbed plasma
density ñ is related to the potential of structure accord-
ing to an expressioñn/n0≈eϕ/Ti , from a previous condi-
tion it follows ñ/n0∼eϕ/Ti∼ecA/TiVT e∼(k⊥Ln)

−1 (where
Ln=(∂ ln n0/∂x)−1 – the characteristic size of medium inho-
mogeneity). According to Kadomtsev (1967); Horton (1985,
1990); Aburjania (2006), the collective processes satisfy-
ing this condition are strongly turbulent. So, the vortical
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structures considered by us are the consequence of strongly
nonlinear, strongly turbulent processes. These properties
correlate well with the results of numerical (Sutirin, 1994;
Mikhailovskaia, 1986), laboratory (Nezlin and Snezhkin,
1993; Pecseli et al., 1984) and space (Chmyrev et al., 1991;
Sudkvist et al., 2005; Alexandrova et al., 2006) experi-
ments. The given experiments show that the vortex struc-
tures of moderate amplitudes at these interactions are basi-
cally steady, keep their form at their repeated collision and
poorly modify their parameters. Therefore, the above anal-
ysis is valid in a time interval, during which the integrity of
nonlinear structures remains.

This is so, assuming that the solution found by us is stable
enough. Structures transfer the trapped particles which move
on the closed stream lines. Therefore, at the interaction (col-
lision) of vortex structures, stream line reconnection occurs
and the trapped particles will pass from one vortex to an-
other, causing increased transfer of particles and heat across
an external magnetic field. Herewith, the considered vortex
structures can form a strong vortex (structural) turbulence of
space plasma.

3 Model of strong structural (vortical) turbulence

The turbulent state described by the system of dynamic
Eqs. (3) and (4) consists of small amplitude modes with a
wide continuum wave number spectrum (weakly turbulent
part) and also the ensemble of the vortex structures consid-
ered in Sect. 2.2. Herewith, each vortex, moving with veloc-
ity u gives a certain contribution to the frequency spectrum
ω=ku of fluctuations of plasma density and electromagnetic
fields. As the velocity of vortex depends on amplitude,
the frequency spectrum of a vortex set with various ampli-
tudes can be wider than the corresponding spectrum of small
amplitude waves poorly correlating with each other. Ex-
perimental observation in the magnetosphere (Lysak, 1990;
Chaston et al., 1999; Stasiewicz et al., 2000; Sahraoui et
al., 2003, 2004, 2006; Mangeney et al., 2006; Zimbardo,
2006; Abel et al., 2006; Narita et al., 2007) and in various
plasma devices (Browley and Mazzucato, 1985; Brower et
al., 1987; Weissen et al., 1988; Gekelman, 1999) have shown
that the width of fluctuation spectrum very signifancly ex-
ceeds the one predicted by the theory of weak turbulence
(Horton, 1985, 1990). Therefore, it is possible to assume,
that the basic state of fluctuations spectrum in magnetized
plasma is given by solitary waves and vortex solitons. As
for the weak turbulent part of a spectrum, its role will be as-
sumed negligibly small and can be added up, if necessary, to
the soliton part of turbulence (we will partially consider its
influence manifested in a stochastization of a vortex struc-
ture’s spectrum).

Because of the strong localization of vortex structures in
space, they do not produce the long-range interaction and
consequently they are distributed randomly, similar to the

molecules of a gas. Herewith, the random position and the
phase of vortex structures are caused by collisions with each
other. Such considerations allow constructing the model of
strong plasma turbulence in the form of an ensemble of the
vortex structures, with vortices of various amplitudes ran-
domly distributed in space and consequently to apply a sta-
tistical approach for their description.

Thus, we shall consider that the strong turbulence of
plasma represents an ensemble of weakly interacting vortex
structures (the basic state), each of which is characterized
by an equal distribution of energy of the system betweenN

identical vortices (N is the parameter of a state). Herewith,
each vortex represents a separate degree of freedom of the
system. Then, a quasi stationary turbulent state can be ex-
panded at each given moment over the basic state of the en-
semble.

3.1 Probability of main conditions

Let us assume that the basic state of plasma turbulence corre-
sponds to an ensemble of two-dimensional drift-Alfvén vor-
tices of the electron skin size: each active area of the plasma
medium with a sizeL×L is covered byN randomly dis-
tributed vortices of identical amplitude. We will notice that
in a real turbulent state, the different kinds of vortices are
mixed up, but both numerical (Mikhailovskaia, 1986; Su-
tirin, 1994), laboratory experiments (Pecseli et al., 1984; Ne-
zlin and Snezhkin, 1993), and space observations (Chmyrev
et al., 1991; Sudkvist et. al., 2005; Alexandrova et al., 2006)
have shown that the vortices with essentially different ampli-
tudes pass through each other without much interaction. So,
we can assume that only the number of the vortices with the
same scale is essential in a plasma, and the system of the ba-
sic states is complete. At different amplitudes, the vortices
also differ by width, in this case one vortex represents for an-
other simply the quasi classic hole; therefore their merging is
hardly possible, though energy transfer is admitted.

Considering that the formation of nonlinear structures in
plasma is caused by a balance of competing effects – dis-
persion and nonlinearity, for convenience of the analysis, we
will introduce the following hierarchy for the order of mag-
nitude of wave quantities:

ϕ ∼ A ∼ O (ε) , ∂/∂y ∼ ∂/∂x ∼ O
(
ε1/2

)
;

∂/∂t ∼ α∂/∂y ∼ ∂/∂z ∼ O
(
αε1/2

)
;

∂/∂t ∼ u∂/∂y ∼ uε1/2
∼ O

(
αε1/2

)
→ u ∼ α;

(15)

hereε is the small parameter describing the amplitude of the
structure and is not dependent on the other small parameter
α∼l⊥/l||.

In order to avoid misunderstanding, here we mention that
as far as the small parametersε and α are dimensionless
quantities, a designationa∼b in Eq. (15) and further for-
mulas, too, means thata andb are quantities of comparable
order of magnitude despite of their dimension.
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A turbulence model should include the source of turbulent
fluctuations, the mechanism of their attenuation and an iner-
tial interval in which there is a noise transfer across scales
to the domain of values of the parameters to where the dis-
sipation becomes essential. Here we choose a simple model:
the vortices are spontaneously born in a rather long-wave
area(ρi>λ⊥∼λs) with characteristic timeτn

∼=ν−1
n and de-

cay due to collisional dissipation or Landau dampings in time
τd

∼=ν−1
d . The vortex birth rate (νn) is balanced by their de-

struction rate (νdP (N)) in a stationary condition. From here
we define the probability of a stateP (N):

P (N) = νn/νd . (16)

The rate of spontaneous birth of the vortices is defined by the
time of nonlinear corrugation of a wave frontνn∼αε3/2. But
the dissipation rate isνd

∼=kyV∗i∼ε1/2 for Landau damping
and isn’t in documentνd=const – for collisional dissipation.
Then

P (N) ∼ εδ, (17)

whereδ=1 for Landau damping andδ=3/2 – for collisional
dissipation. The relation between the small parameterε and
the parameter of the stateN is determined in Sect. 4 (see
Eq. 28).

In the inertial range (on which a transfer of the turbulent
fluctuations from excitation scales to dissipation scales oc-
curs), the energy-containing structures are merging during
their collisions. In case of merging, the increase of am-
plitudes of the structures occurs; and, it leads to the de-
crease of their transversal scale (see numerical experiments
in Mikhailovskaia, 1986; Sutirin, 1994, and laboratory-space
experiments in Pecseli et al., 1984; Nezlin and Snezhkin,
1993; Verkhoglyadova et al., 2003; Sudkvist et al., 2005;
Alexandrova et al. 2006), i.e., there takes place a transfer
of fluctuations energy into short scales.

In fact, in spacecraft observations (Sahraoui et al., 2006;
Alexandrova et al., 2006; Zimbardo, 2006; Narita et al.,
2007), for example, the frequency spectrum of turbulent fluc-
tuations (dependence of ensemble average magnetic energy〈
|Bk|

2〉 on perturbation frequenciesf ) of ULF electromag-
netic waves having a form

〈
|Bk|

2〉
∼f −7/3 is found. It obvi-

ously specifies the existence of an inertial area in the medium
where the structures of different scales are present and energy
transfer toward smaller scales occurs. Herewith, the spatial
scale of perturbation decreases as frequency increases.

3.2 Spatial spectra of stationary turbulence

The generation of stationary spectra occurs as the result of
the balance between the energy transfer and damping effects
of the turbulent noise. We shall derive the spectra of station-
ary structural turbulence of two-dimensional perturbations.

It is known that the strong turbulence theory is tradition-
ally built according to the theories of Richardson (1922),
Kolmogorov (1941), which are based firstly on isotropy and

homogeneity of the turbulent state and secondly on a forced
averaging (Kingsep et al, 1990). This theory does not include
any proper solution of the initial nonlinear dynamical equa-
tions, in spite of its obvious importance. Moreover, the char-
acteristic scales and amplitudes of the vortices, representing
the structural elements of the strong turbulence, are entered
in these works without investigating a question – do these
initial nonlinear equations allow the existence of the struc-
tures with such scales, amplitudes and velocities? Contrary
to the works (Richardson, 1922; Kolmogorov, 1941; Irosh-
nikov, 1963; Kraichnan, 1965), in our model the turbulence
is assumed to be anisotropic and from the very beginning
(see Sect. 2.2) we build a solution of the initial dynamical
equations in the form of stationary strongly localized two-
dimensional vortices with fully definite scales, amplitudes
and velocities. Further, on the basis of these vortices, as
on the turbulent carriers of perturbations, the model of the
strong turbulence will be built. But, as well as in the above
mentioned classical papers, we also suppose that the energy
densityW of turbulent motion is constant for the different
spectral ranges – so the energy of the large scale pulsations
is transferred to the small scale ones so that energy dissipa-
tion does not actually happen in this region.

3.2.1 Anisotropy

A very important theory of anisotropic magnetohydrody-
namic (MHD) turbulence was proposed by Goldreich and
Sridhar (1995). They supposed, that MHD turbulence is
strongly anisotropic due to the external magnetic field so that
the turbulent transport structures (in our case – the vortices)
are elongated in its direction (like the vortices found by us in
Sect. 2.2; see the paragraph following Eq. 14). Correspond-
ingly, they supposed that the energy transfer time to small
scales within the systemτtr is of the order of the nonlinear
time or eddy turnover timeτNL. The Goldreich-Sridhar pic-
ture, however, does not fully agree with numerical simula-
tions (Muller et al., 2003; Ng et al., 2003). From these works
it is clear that it is not necessary that these two times to be
equal, as was supposed by Goldreich-Sridhar. The equality
of the ratioχ=τtr/τNL to unity seems to be very restric-
tive and does not correspond to some of the results stemming
from direct numerical simulations whereχ can be smaller
than unity, as observed by Ng et al. (2003) and Muller et
al. (2003). We as well as other authors (for example, Galtier
et al., 2005; Bolddyrev, 2005), supposeχ to be a constant
for all scales but not necessarily equal to unity (the critical
balance condition). Solar wind (Matthaeus et al., 1995) and
magnetosheath data (Mangeney et al., 2006), whereχ seems
to be smaller than unity, support the validity of our assump-
tions.

As it was mentioned above, in agreement with the
Kolmogorov-Iroshnikov-Kraichnan and further MHD theo-
ries (Schekochihin et al., 2007), we assume that the cascade
of Alfv énic turbulence energy is local in space and the flux
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of energy through the transversal (with respect to the back-
ground magnetic fieldB0 direction) scalel⊥ in the inertial
range is scale-independent:(

Bl⊥

B0

)2 V 2
A

τtr

∼ WB = const, (18)

whereWB is the unit volume energy flux, the subscriptl⊥
indicates fluctuations associated with the perpendicular scale
l⊥, andτtr is the energy transfer time for the beginning of
the cascade processes. It is now assumed that the turbulence
is strong, i.e. that the Alfv́enic linear propagation terms are
comparable to the nonlinear terms in the dynamical Eqs. (3–
6):

∂

∂z
∼

Bl⊥ · ∇

|B0|
⇒

Bl⊥

B0
∼

l⊥

l||
. (19)

This is the critical-balance condition, applied scale by
scale. Assuming that the cascade time is comparable to
the inverse frequency of kinetic Alfvén waves (see Eq. 9)
τtr=τA∼ω−1

k ∼l||l⊥/VAρi∼χτNL and introducing “the wave
vector analogs” of orthogonal and transversal linear sizes of
the vortices –k⊥=2π/l⊥, k||=2π/l||, then from Eqs. (18),
(19) we’ll have:

k|| ∼

(
WB

V 3
Aρi

)1/3

k
1/3
⊥

. (20)

If we explicitly use the fact that the rates of energy transfer
per unit volumeWB do not depend on the scale, we finally
obtain

k|| ∼
k

1/3
⊥

B
2/3
0

. (21)

This relation shows that the considered turbulence is in-
trinsically anisotropic. These scaling have been confirmed
by numerical simulation of electron MHD (EMHD) turbu-
lence (Cho and Lazarian, 2004; see also Schekochihin, et
al., 2007). It is obvious that turbulence develops more
freely in background magnetic field direction. The size of
the anisotropy and the strength of the expressed orthogo-
nal spreading of turbulence change in accordance with the
strength of the magnetic field induction. So, the magnetic
field induces the anisotropies of compressible MHD turbu-
lence. Anisotropy increase with the scale decrease was pre-
dicted for Alfvénic motion by Goldreich and Sidhar (1995)
and confirmed numerically for compressible MHD in Cho
and Lazarian (2003). This conclusion fully confirms the
Cluster observations and measurements of the turbulent pro-
cesses in the solar wind, magnetosheath and foreshock re-
gions (Sahraoui et al., 2006; Mangeney et al., 2006; Alexan-
drova et al., 2006; Narita et al., 2007). From Eqs. (20)
and (21) it is obvious that a weakly anisotropic state,l||∼l⊥,
forms in conditions of not very strong mean magnetic field
B0, whenV 3

A∼WB/ρi .

3.2.2 Compressibility

In order to obtain the system of Eqs. (3), (4) for the descrip-
tion of nonlinear dynamics, we took into account that the
linear scale of wave structures is less than or equal to ion
Larmur radius (l⊥∼λs∼ρi). For such perturbations in inho-
mogeneous plasma, the ions are mainly distributed accord-
ing to Boltsman’s Lawni∼n0 exp(−eϕ/Ti). Therefore, tak-
ing into account the condition of quasi neutrality and expres-
sions (2), (11) and (12), we understand that the considered
medium experiences density fluctuations, i.e., the medium
are compressible. Consequently, the density of perturbed
charged particlesρ=min can be expressed by the formula
ρ∼min0eϕ/Ti∼min0ecA/TiVT e (see second paragraph af-
ter Eq. 14). The energy density must be used in a compress-
ible medium to describe the abovementioned cascade of en-
ergy, i.e., energy per unit volume (as it was made in the previ-
ous item) (Fleck, 1996; Kowal and Lazarian, 2007; Alexan-
drova, 2008), instead of the unit mass energy in order to take
into account the medium fluctuations.

In the strong turbulent medium, as we mentioned above,
in the turbulent cascade, energy transfers from compara-
bly large-scale nonlinear structures to smaller scale vor-
tices. As the scale of vortex structures decreases, the val-
ues of nonlinear terms become significant in the dynamic
Eqs. (3), (4) (see the last terms therein). Consequently, the
time-scale of nonlinear interactionτNL (i.e. turnover time)
can be estimated by balancing the first and last terms of
Eq. (4). At the same time, if we take into account that the
plasma density fluctuationsρl⊥ are related to an electrostatic
potential ϕl⊥ via Boltzmann relationϕl⊥∼(Ti/emin0)ρl⊥ ,
and the magnetic field perturbation –Bl⊥∼A/l⊥ and
taking also into account the fact that in such strongly
nonlinear turbulence state –∂1⊥A/∂z≤ [∇A, ∇]z 1A/B,
B∼B0∼

[
∇A, ez

]
∼k⊥A∼A/l⊥ (see Schekochihin, et al.

2007), from Eq. (4) we get:

τNL ∼ l2
⊥

ρl⊥

Bl⊥

. (22)

From this equality, it is clear that as the energy cascades to
the small scale modes, i.e. asl⊥→0, alsoτNL→0. This
means that in the inertial region during the development
of the turbulent cascade processes, the timeτNL becomes
smaller in comparison with other characteristic time-scales.
Thus, it is clear that, in the inertial region in the case of well
developed turbulence using energy balance Eq. (18) (which
is valid for ensembles of all scale structures)τtr must be re-
placed byτNL according to Eq. (22):

WB ∼

(
Bl⊥

B0

)2 V 2
A

l2
⊥

Bl⊥

ρl⊥

∼
B3

l⊥

l2
⊥
ρl⊥

= const. (23)

In cascade-hierarchic turbulent spectra formation, in order to
take into account the medium compressibility, we have to
use the approach taken by Weizsacker (1951), which was
concerned with hierarchic cloud stair formation (see also
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Fleck, 1996; Kowal and Lazarian, 2007). According to this
approach, each large cloud consists of a certain number of
smaller clouds, which contain even smaller clouds. In our
problem, the strongly localized vortices are assumed to be
under the clouds. So, according to this model, the mass den-
sity of the vorticesρ at two successive levels of the hierarchy
is related to the their corresponding scale sizel by the fol-
lowing equation

ρν

ρν−1
=

(
lν

lν−1

)−3µ

, (24)

whereρν is the average density inside a vortex at levelν, lν
is the mean size of that vortex,µ is constant and a measure of
the degree of compression at each levelν (largerν meaning
larger length scale), and ranges fromµ=0 for no compres-
sion up to|µ| =1 for isotropic compression (3|µ| is the num-
ber of dimensions in which the compression takes place).
Thus, using this density scaling,ρl⊥∼(l⊥)−3µ from an ex-
pression to a constant spectrum energy transfer rate (Eq. 23)
we have

Bl⊥ ∼ l
2/3−µ
⊥

. (25)

Thus a medium compressibility (µ 6=0) significantly influ-
ences the spatial spectra of the turbulence.

3.2.3 Turbulent spectrum

The relation (25) obtained above allows the determination of
the energy spectraE(k⊥) of the strong vortex turbulence as
a function of the to transversal “wave vector”k⊥ similar to
the work (Alexandrova, 2008). For this purpose let us use
the formula of perturbation’s energy (Eq. 7), from which for
transversal cascades it follows (after averaging in longitudi-
nal direction), thatE(k)k⊥∼B2

k⊥
. Substituting the expres-

sion forB from Eq. (25) in Fourier space into the latter, we
finally obtain:

E(k⊥) ∼
B2

l⊥

k⊥

∼ k
−7/3+2µ
⊥

. (26)

In the incompressible plasma limit (µ=0), this phenomenol-
ogy predicts a spectrumk−7/3. Such a spectrum has been
observed both in direct numerical simulations of an incom-
pressible EMHD turbulent system (Biskamp et al., 1996,
1999) and in the EMHD limit of the incompressible Hall
MHD shell heuristic model (Galtier and Buchlin, 2007).
In the case of isotropic compressions toward smaller scales
(µ=1), which can take place in the interstellar medium, the
spectrum isE(k)∼k−1/3. If the isotropic compression is go-
ing on toward large scales (µ=−1), the spectrum will be
E(k)∼k−13/3, which was confirmed by the numerical cal-
culations for the conditions of the solar wind (Galtier and
Buchlin, 2007) (see also Alexandrova, 2008). Recently, new
energy spectra of turbulenceE(k)∼k−8/3 were found by the
Cluster mission in the magnetosheath (Sahraoui et al., 2003,

2004, 2006), in the foreshock-region (Narita et al., 2007),
and in the solar wind (Howes et al., 2008) correspond to a
value of plasma compressibility degreeµ=−1/6. Generally,
the value ofµ for a certain medium has to be determined by
appropriate observations and measurements or on the basis
of corresponding exact numerical modelling.

4 Anomalous diffusion of plasma particles due
to vortices

In experimental magnetically confined plasma devices,
anomalously large thermal conductivity and diffusion of par-
ticles are observed (Liewer, 1985; Huld et al., 1988). This
effect is caused by the development of strong turbulence.
Herewith, the obtained values of the turbulent diffusion co-
efficient lay between the values of the classical diffusion co-
efficientDc=ρ2

e /τei∼nB−2
0 T

−1/2
e (whereρe is the electron

Larmor radius,τei – time of electron scattering on ions) and
of the Bohm diffusion coefficientDB=cTe/ (16eB0). The
reason for such an anomalously large transfer (in compari-
son with the classic one) in plasma can be the regular vor-
tex structures considered above. Really the vortex structures
contain the trapped particles and, diffusing in plasma, inter-
acting with each other and the plasma particles can lead to
a rather strong increase in transversal diffusion and thermal
conductivity of plasma. The vortex diffusion coefficient can
be estimated by the following expressionDν=l2

⊥
/τν (where

l⊥ is the transversal scale of a vortex,τv – characteristic time
of interaction of the vortices). Thus it is quite probable, that
Dv�Dc. Let us consider this question in more detail.

Let W be the average density of perturbation energy. In
a state of stationary turbulence there is a constant stream
of energy from large-scale fluctuations to small-scale ones,
and, in general, the average energy densityW , is not a
constant along the spectral range. However, if the charac-
teristic time of energy density variationt0is large enough,
t0�(kyαVT e)

−1, then, as follows from the dynamic Eqs. (3),
(4), it is possible to assume that in the time intervals inter-
esting for usW=const, and to assume that the perturbation
energy is equally distributed over all degrees of freedom (on
the existing structures). So designating the energy of each
vortex throughEv (see Eq. 7), we have:

WL2
= NEv = Nε2I,

Ev =
1
2

∫ [
(∇Av)

2
+ λ2

s (1Av)
2
+ τ (1 + τ)

ω2
pe

V 2
T e

ϕ2
v

]
dxdη = ε2I.

. (27)

HereAv (x, η), ϕv (x, η) are the stationary solutions of the
form (11–12);I – a constant quantity of the order of one.
From the relation (27) we get the expression for theε small
parameter:

ε ∼ W1/2LN−1/2. (28)
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The characteristic scale of the vortex structures is given by

l ∼ λs ∼ ε−1/2
∼ W−1/4L−1/2N1/4. (29)

The maximum number of the vortices is defined by the con-
dition of dense packing

Nmax ∼ L2/l2 ∼ W1/3L2. (30)

The minimum number is found from a condition
ε (Nmin) <1. So,

Nmin ∼ WL2. (31)

Thus, by means of Eqs. (27), (28), (29), we have estimates for
a characteristic number of vorticesN0, effective wave num-
berk0 and amplitudeϕ0 of the structures:

k0 ∼ N1/2, ϕ0 ∼ N ∼ k2
0, N0 ∼ WL2k−4

0 . (32)

Knowing the energy density of the vorticesW , it is possible
to study the influence of vortex structures on the processes
of heat and plasma transport in magnetized plasmas. We
shall define the diffusion coefficient of the test particles of
plasma at their interaction with an ensemble of vortex struc-
tures. With this purpose we shall introduce the characteristic
temporal scales of the processes causing diffusion of the test
particles: the frequency of collision between test particles
andN vortices(νc), the frequency of pair collisions between
the vortices(νv), and the time of interaction between parti-
cles and a vortex (τi∼l⊥/u). For a definition of collision fre-
quencies of the vortices (quasi particles) with each other and
test particles, the corresponding expression for the classical
pair collisions was used,vz=zσnvvrel (whereσ is the sec-
tion of scattering,nv – density of quasi particles,vrel – speed
of relative motion,vrel∼u). Taking into account that the vor-
tex structures are two-dimensional, we define the vortex gas
density asnv=N/L2; assuming the section of scatteringσ

to be of the order of the vortex scale (σ∼l⊥) (Horton, 1985,
1990), we find an expression forνv andνc

νc (N) = σnvu ∼ αW−1/4L−5/2N5/4, (33)

νv (N) =

Nmax∫
Nmin

|V (N) − V (N1)| σ (N1) nv (N1) P (N1) dN1

∼ αW2/3LN−1/2. (34)

Here V is the vortex structure velocity, equal to
V ∼u(1+ε(N)). This value of the velocity is defined from
the formulas (14) and (15) appropriate for the vortex (Eq. 12)
characteristic scale.

The nonlinear interaction between the vortices leads to de-
correlation of the particles and the field, therefore diffusion
of the test particles is not purely quasi linear. The test parti-
cles decouple from the vortices during the effective correla-
tion timeτc:

τc ∼ ν−1
c / (νvτi) ∼ α−1W−1/6L2N−1. (35)

The correlation length is approximated by the transversal
scale of a vortexlc∼l⊥. By means of the Eq. (35) we can
define the contribution of a single vortex to the diffusion co-
efficient:

DN =
l2c

τc

∼ αW−1/3L−3N3/2. (36)

Knowing the expression (17) for the probability P(N), the
total diffusion coefficient can be obtained simply as:

Dv =

Nmax∫
Nmin

DN (N) P (N) dN ∼= αW1/6. (37)

The value of the diffusion coefficient (37) does not depend
on the dissipation form and has an identical order for all
0<δ<2. For conditions of a moderate noise levelW , dif-
fusion of plasma particles becomes anomalous and the dif-
fusion coefficient has the same order, as for the nonlinear
convective cells (Weiland, 1977). We point out that accord-
ing to Eq. (32) the expressionsW∼=Nϕ2

0∼ϕ3
0 andDv∼α

√
ϕ0

should be valid. The specificity of a vortex in the diffusion
coefficient is attributed to the parameterα related with the
displacement speed of structureu, α=u/VT e (i.e. the initial
condition of a structure formation or a primary diffusion co-
efficient), and also the sizeϕ0 defining rotation velocity of
the trapped particles in a vortexV0=kcϕ0/B0. The value ob-
tained for the effective diffusion coefficient of the structural
turbulence (i.e. having the root dependence on the fluctuation
amplitude) will be well correlated with the results of earlier
theoretical works (Isichenko et al., 1989; Rosenbluth et al.,
1987) (though these works also considered other models) and
experimental observations (Liewer, 1985; Huld et al., 1988).

It’s interesting to compare this analysis with the existing
results and observations in laboratory, interplanetary space,
magnetosphere and ionosphere and to reveal peculiar fea-
tures of the particle and heat transport, in particular to deter-
mine the real values of the diffusion coefficient and to com-
pare them to theoretical values of an effective coefficient of
anomalous vortex diffusion (Eq. 37). Therefore, there is an
obvious strong motivation to continue such observations and
measurements in the future.

5 Discussion of results

In this work, we investigated collective processes in mag-
netized plasma, caused by nonlinear regular structures. It
is shown that in space plasmas, relatively short wavelength
(with length of the order of collision less skin depth) drift
Alfv én type waves could be excited and self-localized into
nonlinear spatially two-dimensional vortex structures. The
vortices are significantly elongated in the direction of the
mean magnetic field (l||�l⊥) which well correlates with
satellite observation data.
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These electromagnetic small-scale vortex structures, car-
rying trapped particles and spreading in plasma, generate the
strong turbulence having granular character. Turbulence is
represented by a gaseous ensemble ofN strongly localized,
weakly interacting identical vortices forming the background
state. Turbulence excites appreciable fluctuations of density,
velocity, magnetic and electric fields and intensifies the trans-
fer processes. Thus, the width of a strong vortical turbulence
spectrum is much larger than the value predicted by the weak
turbulence theory. This theory is in good agreement with ex-
perimental observations.

It is shown that the turbulent processes mentioned in this
paper are characterized by strong anisotropy and this fac-
tor is caused by the influence of the local mean magnetic
field. Particularly, in the magnetosheath for coupling be-
tween transversalk⊥=2π/l⊥ and longitudinalk||=2π/l|| –
the components of the characteristic “wave vectors” of the
vortex turbulence with respect to the local mean magnetic
field – the following relation is obtained:k||∼k

1/3
⊥

/B
2/3
0 .

Because of this, the turbulence develops more effectively
in transverse direction to the local magnetic field. This
anisotropy is essentially as strong as this magnetic field. This
theoretical result is also well correlated with satellite mea-
surements in the magnetosphere and results of appropriate
numerical calculations.

It is established that energy spectra of the strong tur-
bulence in the wave-vector space has a power law form
E(k⊥)∼k

−7/3+2µ
⊥

, where the parameterµ=const,l≥ |µ| ≥0
and characterizes the degree of local compressibility. This
formula clearly describes the turbulent spectrum behaviour
found in numerous experiments and numerical calcula-
tions. Namely, for a recently found turbulent spec-
trum E(k⊥)∼k

−8/3
⊥

from Cluster satellites, the correspond-
ing compressibility degree in the magnetosheath must be
µ=−1/6.

As already noted in Sect. 3.2, it must be mentioned that in
recent theoretical works, different approaches to strong tur-
bulence were proposed. In electron magnetic hydrodynam-
ics (EMHD) and Hall MHD, on the basis of numerical solu-
tions and heuristic analysis of a two and three-dimensional
system of dynamical equations in the papers by (Biskamp
et al., 1996, 1999; Cho and Lazarian, 2003, 2004), the ener-
getic spectra of the turbulent pulsationsk−5/3 andk−7/3 were
obtained for a different range of wave numbers. In the pa-
pers by Galtier et al. (2007); Alexandrova (2008); Howes et
al. (2008) where numerical solutions of the system of equa-
tions for the dynamics of solar wind and magnetosheath were
performed, analogous power spectrak−5/3, k−7/3 andk−11/3

for magnetic fluctuations in the different range of the wave
numbers were obtained. In Galtier et al. (2005) and Boldyrev
(2005), with the help of phenomenology analysis, it was es-
tablished that in magneto hydrodynamics the existence of
strongly anisotropic spectra is allowed, which essentially de-
pends on the horizontalk⊥(wherek⊥=(k2

x+k2
y)

1/2) as well

as on the verticalkz components of the wave vector: for
non-dimensional energyE(k⊥, kz) a correlation was found,
E(k⊥, kz)∼k−m

⊥
k−n
z , where 3m+2n=7. It is highly desirable

to continue this theory and data comparison in future experi-
ments and in more complete numerical models.

It is demonstrated theoretically that strong turbulence in
the plasma media creates significantly strong fluctuations of
density, electric and magnetic fields. At the same time, the
generated collective activity causes a pronounced enhance-
ment of energy, heat and mass transfer processes. Mutual in-
teraction of the nonlinear vortex structures and medium par-
ticles causes anomalous diffusion (in comparison with clas-
sical collisional transport) in plasma. The effective coeffi-
cient of the structural turbulent diffusionDv has a square
root dependence on the characteristic amplitude of the sta-
tionary noiseϕ0, Dv∼

√
ϕ0, and essentially differs from the

results of the quasi linear theories, in whichD∼ϕ2
0.

Further observations and measurements of existing diffu-
sion transfer processes in space plasma are required for the
determination of the real diffusion coefficient and validation
of their agreement with theoretically obtained values. The
analysis of strong vortex turbulence in this work is in agree-
ment with known results of numerical, space and laboratory
experiments. This supports our conjecture that the strong
structural turbulence is responsible for the formation of fre-
quency and spatial spectra of electromagnetic fields and con-
trols the anomalous transfer of particles and heat observed in
magnetized plasma media.

Acknowledgements.This research was supported in part by the
INTAS grant 06-1000017-8934, Russian program for scientific
schools RF NS 472 2008.2 and by the Italian Space Agency,
contract ASI n. I/015/07/0 “Esplorazione del Sistema Solare”, and
by the Italian INAF.

Edited by: V. Shrira
Reviewed by: two anonymous referees

References

Abel, G. A., Freeman, M. P., and Chisham, G.: Spatial struc-
ture of ionospheric convection velocities in regions of open and
closed magnetic field topology, Geophys. Res. Lett., 33, L24103,
doi:10.1029/2006GL027919, 2006.

Aburjania, G. D., Mikhailovskii, A. B., and Lakhin, V. P.: Nonlinear
Regular Structures of Drift Magnetoacoustic Waves, Jo. Plasma
Phys., 38, 373–386, 1987.

Aburjania, G. D.: Electromagnetic drift vortices in a rotating plasma
cylinder, Physica Scripta, 38, 59–63, 1988.

Aburjania, G. D.: Structural turbulence and diffusion of the plasma
in magnetic trap, Plasma Phys. Rep., 16., 70–76, 1990.

Aburjania, G. D.: Self-Organization of the Nonlinear Vortex Struc-
tures and the Vortical Turbulence in the Dispersive Media: Kom-
Kniga, Editorial URSS, Moscow, 2006.

Aburjania, G. D.: Nonlinear generation mechanism for the vertical
electric field in magnetized plasma media, Phys. Plasmas, 14,
1–7, 2007.

Nonlin. Processes Geophys., 16, 11–22, 2009 www.nonlin-processes-geophys.net/16/11/2009/



G. D. Aburjania et al.: Model of strong stationary vortex turbulence 21

Alexandrova, O., Mangeney, A., Maksimovich, M., Cornilleau-
Wehrlin, N., Bosqued, J.-M., and Andre, M.: Alfvén vortex
filaments observed in magnetosheath downstream of a quasi-
perpendicular bow shock, J. Geophys. Res., 111, A12208,
doi:10.1029/2006JA011934, 2006.

Alexandrova, O.: Solar wind vs magnetosheath turbulence and
Alfvn vortices, Nonlin. Processes Geophys., 15, 95–108, 2008,
http://www.nonlin-processes-geophys.net/15/95/2008/.

Biskamp, D., Schwarz, E., and Drake, J. F.: Two-dimensional
electron magnetohydrodynamic turbulence, Phys. Rev. Lett., 76,
1264–1267, 1996.

Biskamp, D., Schwarz, E., Zeiler, A., Celani, A., and Drake, J. F.:
Electron magnetohydrodynamic turbulence, Phys. Plasmas., 6,
751–758, 1999.

Biskamp, D.: Magnetohydrodynamic Turbulence, Cambridge Uni-
versity Press, 2003.

Boldyrev, S.: On the spectrum of magnetohydrodynamic turbu-
lence, The Astrophys. J., 626, L37–L40, 2005.

Browley, T. and Mazzucato, E.: Scaling of density fluctuations
PDX, Nucl. Fusion, 25, 507–524, 1985.

Brower, D.L., Peebles, W. A., and Luhmann, N. C.: The spectrum,
spatial distribution and scaling of microturbulence in the Texas
Tokamak, Nucl. Fusion, 27, 2055–2073,1987.

Chaston, C. C., Carlson, C. W., Ergun, R. E., and McFadden, J.
P.: FAST observations of inertial Alfv́en waves in the dayside
aurora, Geophys. Res. Lett., 26, 647–650, 1999.

Chmyrev, V. M., Marchenko, V. A., Pokhotelov, O. A., Stenflo, L.,
Streltsov, A. V., and Steen, A.: Vortex structures in the iono-
sphere and the magnetosphere of the Earth, Planet. Space Sci.
39, 1025–1037, 1991.

Cho, J. and Lazarian, A.: Compresible magnetohydrodynamic Tur-
bulence: mode coupling, scaling relations, anisotropy, viscosity-
damped regime, and astrophysical implication, Mon. Not. As-
tron. Soc., 345, 325–341, 2003.

Cho, J. and Lazarian, A.: The anisotropy of magnetohydrodynamic
turbulence, The Astrophys. J., 615, L41–L44, 2004.

Diamond, P. H. and Carreras, B. A.: On mixing length theory and
saturated turbulence, Comm. on Plasma Phys. Contr. Fus., 10,
271–278, 1987.

Dupree, T. H.: Theory of phase space density granulation on
plasma, Phys. Fluids, 15, 334–344, 1972.

Fleck Jr., R. C.: Scaling relations for the turbulent, non-self-
gravitating, neutral component of the interstellar medium, The
Astrophys. J., 458, 739–741, 1996.

Frost, W. and Moulden, T. H. (Eds.): Handbook of Turbulence,
Plenum Press, New York and London, 1977.

Galeev, A. A. and Sagdeev, R. Z.: Nonlinear Theory of plasma, in:
Reviews of Plasma Physics, 7, edited by: Leontovich, M. A.,
Consultant Bureau, New York, 1976.

Galtier, S., Pouquet, A., and Mangeney, A.: On spectral scal-
ing laws for incompressible anisotropic magnetohydrodynamic
turbulence, Phys. Plasmas, 12, 092310, doi:10.1063/1.2052507,
2005.

Galtier, S. and Buchlin, E.: Multiscale Hall-magnetohydrodynamic
turbulence in the solar wind, The Astrophys. J., 656, 560–566,
2007.

Gekelman, W.: Review of laboratory experiments on Alfvén waves
and their relationship to space observations, J. Geophys. Res,
104, 14417–14435, 1999.

Goldman, M. V.: Strong turbulence of plasma waves, Rev. Mod.
Phys., 56, 709–735, 1984.

Goldreich, P. and Sridhar S.: Toward a theory of interstellar tur-
bulence. II. Strong Alfv́enic turbulence, The Astrophys. J., 438,
763–775, 1995.

Gruzinov, A. B. and Pogutse, O. P.: Description of the plasma tur-
bulence in the strong magnetic field, Dokl. ASSR, 290, 322–325,
1986.

Horton, W.: Drift Turbulence and anomalous transport, in: Basic
Plasma Physics, 2, edited by: Galeev, A. A. and Sudan, R. N.,
North-Holand, Amsterdam, 1985.

Horton, W.: Nonlinear Drift Waves and Transport in Magnetized
Plasma: Institute for Fusion Studies the University of Texas at
Austin, IFSR, Review, Austin, Texas, 1990.

Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W.,
Quataert, E., and Schekochihin, A. A.: A model of turbu-
lence in magnetized plasmas: Implications for the dissipa-
tion range in the solar wind, J. Geophys. Res., 113, A05103,
doi:10.1029/2007.JA012665, 2008.

Huld, T., Lizuka, S., Pecseli, H. L., and Rasmussen, J. J.: Ex-
perimental investigation of flute-type electrostatic turbulence,
Plasma Phys. Contr. Fusion, 30, 1297–1318, 1988.

Isichenko, M. B., Kalda, Y. L., Tatarinova, E. B., Telkovskaia, E.
B., and Yankov, B. B.: Diffusion in a medium with the vortex
motion, JETP, 96, 913–925, 1989.

Iroshnikov, R. S.: The turbulence of a conducting fluid in a strong
magnetic field, Astr. Zh., 40, 742–750, 1963 (English transl. So-
viet Astron., 7, 566–574, 1964).

Kadomtsev, B. B.: Plasma turbulence, in: Reviews of Plasma
Physics, 4, edited by: Leontovich, M. A., Consultant Bureau,
New York, 1967.

Kadomtsev, B. B. and Pogutse, O. P.: Theory of the electron transfer
processes in strongly magnetized field, Pisma v JETP, 39, 225–
228, 1984.

Kingsep, A. S., Chukbar, K. V., and Yan’kov, V. V.: Electron
magnetohydro-dynamics, in: Reviev of Plasma Physics, 16,
edited by: Kadomtsev, B. B., Consultant Bureau, New York,
1990.

Kolmogorov, A. N.: Local structure of turbulence in the noncom-
presible viscous fluid at very high Reynolds number, Dokl. Akad.
Nauk. SSSR, 30, 299–303, 1941.

Kowal, G. and Lazarian, A.: Scaling relations of compressible
MHD turbulence, The Astrophys. J. Lett., 666, L69–L72, 2007.

Kraichnan, R. H.: Inertial range spectrum hydromagnetic turbu-
lence, Phys. Fluids, 8, 1385–1387, 1965.

Larichev, V. D. and Reznik, G. M.: On the two dimensional solitary
Rossby Waves, Dokl. ASSR., 231, 1077–1079, 1976.

Liewer, P. C.: Measurement of microturbulence in tokamaks and
comparison with theories of turbulence and anomalous transport,
Nucl. Fusion, 25, 543–621, 1985.

Litvak, A. G.: Dynamic nonlinear electromagnetic phenomena in
the plasma, in: Reviews of Plasma Physics, 10, edited by: Leon-
tovich, M. A., Consultant Bureau, New York, 1983.

Lysak, R. L.: Electromagnetic coupling of the magnetosphere and
ionosphere, Space Sci. Rev., 52, 33–87, 1990.

Mangeney, A., Lacombe, C., Maksimovic, M., Samsonov, A. A.,
Cornilleau-Wehrlin, N., Harvey, C. C., Bosqued, J.-M., and
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