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Abstract. The evolution along the tank of unidirectional
nonlinear wave groups with narrow spectrum is studied both
experimentally and numerically. Measurements of the in-
stantaneous surface elevation within the tank are carried out
using digital processing of video-recorded sequences of im-
ages of the contact line movement at the tank side wall.
The accuracy of the video-derived results is verified by mea-
surements performed by conventional resistance-type wave
gauges. An experimental procedure is developed that enables
processing of large volumes of video images and thus allows
capturing the spatial structure of the instantaneous wave field
along the whole tank. The experimentally obtained data are
compared quantitatively with the solutions of the Modified
Nonlinear Schr̈odinger (MNLS, or Dysthe) equation written
in either temporal or spatial form. The adopted approach al-
lows studying evolution along the tank of wave frequency
spectra, as well as the temporal variation of the wave num-
ber spectra. It is demonstrated that accounting for the 2nd
order bound (locked) waves is essential for getting a quali-
tative and quantitative agreement between the measured and
the computed spectra. The relation between the frequency
and the wave number spectra is discussed.

1 Introduction

Rapid advancement in both theoretical and experimental
studies of water waves that occurred in recent decades were
prompted by the discovery by Benjamin and Feir (1967) of
the sideband instability of weakly nonlinear Stokes waves.
Important theoretical model for studying the instability and
the long time behavior of the nonlinear water waves was de-
veloped by Zakharov (1968). The Zakharov integral equation
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describes near-resonant interactions between waves at the
lowest possible order and was originally derived for infinitely
deep water. Zakharov also showed that under the assump-
tion of narrow wave spectrum, Nonlinear Schrödinger (NLS)
equation can be deduced for unidirectional waves from the
Zakharov equation. The NLS equation, accurate to the 3rd
order in the wave steepnessε, therefore describes resonant
interactions pertaining to a weakly nonlinear wave train with
a narrow band of frequencies and wave lengths, and gov-
erns the slow modulation of the wave group envelope. Later
the NLS equation for water gravity waves in water of finite
depth was derived by using the multiple scales method by
Hasimoto and Ono (1972), and by applying the averaged La-
grangian formulation by Yuen and Lake (1975). In the study
of Lake et al. (1977) an agreement was obtained between the
experimentally found growth rates of the unstable sidebands
and the theoretical predictions based on the NLS equations.

Shemer et al. (1998) performed quantitative comparison
of the numerical simulations based on the NLS equation
with experiments in a laboratory wave flume. They demon-
strated that while the NLS equation is adequate for qualita-
tive description of the global properties of the envelope evo-
lution of unidirectional nonlinear wave groups, such as fo-
cusing observed for water waves in sufficiently deep water,
it is incapable of capturing more subtle features, for example
the emerging front-tail asymmetry observed in experiments.
Due to nonlinear interactions, considerable widening of the
initially narrow spectrum can occur, violating the spectrum
width assumptions of the NLS equation. More advanced
models are therefore required for an accurate description of
nonlinear wave group evolution. The Modified Nonlinear
Schr̈odinger (MNLS) equation derived by Dysthe (1979) is
a higher (4th) order extension of the NLS equation, where
the higher order terms account for finite spectrum width, see
Stiassnie (1984). Further modification of the NLS equation
appropriate for wider wave spectra was presented by Trulsen
and Dysthe (1996) and Trulsen et al. (2000). Kit and She-
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mer (2002) have demonstrated that this modification can be
easily derived by expanding the dispersion term in the Za-
kharov equation into the Taylor series. The effect of each one
of the additional (as compared to the NLS equation) terms in
the Dysthe model was studied in Shemer et al. (2002). They
demonstrated that for steep waves all these terms are essen-
tial and contribute significantly to the accuracy of the solu-
tion.

The theoretical models mentioned above were derived to
describe the evolution of the wave field in time. Complete
information on the wave field along the tank at a prescribed
instant constitutes the initial condition required for the so-
lution of the problem. In laboratory experiments, however,
waves are generated by a wavemaker usually placed at one
end of the experimental facility. The experimental data are
commonly accumulated using sensors placed at fixed loca-
tions within the tank. Hence, to perform quantitative com-
parison of model predictions with results gained in those ex-
periments, the governing equations have to be modified to
a spatial form, to describe the evolution of the temporally
varying wave field along the experimental facility. Such a
modification of the Dysthe model was carried out by Lo and
Mei (1985) who obtained a version of the equation that de-
scribes the spatial evolution of the group envelope. Numer-
ical computations based on the Dysthe model for unidirec-
tional wave groups propagating in a long wave tank indeed
provided good agreement with experiments and exhibit the
front-tail asymmetry, Shemer et al. (2002). The spatial ver-
sion of the Dysthe equation was also derived by Kit and She-
mer (2002) from the spatial form of the Zakharov equation
(Shemer et al., 2001, 2007) that is free of any restrictions on
the spectrum width.

In the present work, the evolution along the tank of
narrow-spectra unidirectional nonlinear wave groups excited
by a wavemaker is studied using digital processing of video-
recorded sequences of images of the contact line movement
at the tank side wall. The technique allows accurate mea-
surements of both the spatial variation of the instantaneous
surface elevation along the whole tank, and of the tempo-
ral variation of the surface elevation at any prescribed loca-
tion within the tank. The comparison of the experimentally
obtained data thus can be carried out with the solutions of
the model equations presented in the temporal or the spatial
form. The Dysthe MNLS equation describes evolution of the
complex nonlinear wave group envelope and constitutes an
appropriate theoretical model for studying such wave groups.
The advantages and disadvantages of the spatial and tempo-
ral forms of the model equation are discussed. The Dysthe
equation in both temporal and spatial forms is solved numer-
ically, and the results of both versions are compared quanti-
tatively with the experimental data.

2 Theoretical background

Consider a narrow-banded unidirectional deep-water wave
group with the dominant frequencyω0 and wave number
k0 that are related by the deep-water dispersion relation for
gravity waves:

ω2
0 = k0g (1)

where g is the acceleration due to gravity. Evolution of
the wave group in a wave flume can be represented by
variation in time and space of either the surface elevation
η(x, t), or of the velocity potentialφ at the free surface,
ψ(x, t)=φ(x, z=η, t). For a narrow-banded wave group it
is convenient to express the variation ofη andψ at the lead-
ing order in terms of their complex envelope amplitudes:

η(x, t) = Re[aη(x, t)expi(k0x − ω0t)] (2a)

ψ(x, t) = Re[aψ (x, t)expi(k0x − ω0t)] (2b)

The MNLS coupled system of equations, which describes the
evolution of the complex envelopea(x, t) and of the poten-
tial of the induced mean currentφ (x, z, t)was in fact derived
by Dysthe for the surface velocity potential amplitude,aψ It
was demonstrated by Hogan (1986), see also Kit and She-
mer (2002), that while at the 3rd order the governing equa-
tion for both amplitudes, of the surface elevation,aη, and of
the free surface velocity potential,a9 , are identical, and thus
there is no difference in the NLS equation for either of those
amplitudes, at the 4th order the governing equations differ
somewhat. For quantitative comparison of the model predic-
tions with the experiment that directly provides data on the
surface elevation variation, the equation describing the vari-
ation ofaη is applied in sequel, with the index “η” omitted.
In fixed coordinates, the governing system of equations has
the following form:

∂a
∂t

+
ω0
2k0

∂a
∂x

+ i
ω0
8k2

0

∂2a

∂x2 +
i
2ωk

2 |a|2 a −
1
16
ω0

k3
0

∂3a

∂x3

+
ω0k0

4 a2 ∂a∗

∂x
+

3
2ω0k0 |a|2 ∂a

∂x
+ ik0a

∂φ
∂x z=0 = 0

(3)

∂2φ

∂x2
+
∂2φ

∂z2
= 0 z <= 0. (4)

These equations are subject to the boundary conditions at the
free surface

∂φ

∂z
=
ω0

2

∂ |a|2

∂x
(z = 0) (5)

and at the bottom

∂φ

∂z
= 0(z → −∞) (6)

The first four terms in Eq. (3) constitute the cubic
Schr̈odinger equation for deep water in the fixed frame of
reference. Dysthe’s model is of the 3rd order in the wave
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steepnessε and can be derived from the 3rd order Zakharov
integral equation by adding the narrow-band assumption with
spectral widthO(ε), Stiassnie (1984). Incorporation of the
narrow-band assumption results in the overall 4th order Dys-
the equation.

The sign of the terma2∂a∗/∂x in Eq. (3) is positive, while
in the velocity potential version used in Dysthe (1979) and
Lo and Mei (1985) it is negative. The opposite signs of this
term constitute the only difference between the two versions
of the 4th order envelope evolution equation.

The problem of wave field evolution in a tank admits two
different formulations. In the so-called temporal formula-
tion, the spatial distribution of the complex envelopea(x) is
presumed to be known at a prescribed instantt0, and its vari-
ation in time is obtained by numerical solution of the model
equation. Alternatively, the variation of the complex enve-
lope in time,a(t), can be specified at a prescribed location
x=x0, and the variation ofa(t) along the tank is then studied
in the spatial formulation using the appropriately modified
model equations. It should be stressed that the spatial for-
mulation is routinely applied in the experiment-related stud-
ies (Lo and Mei, 1985; Shemer et al., 2002), since the wave
gauges provide information on the temporal variation of the
surface elevation at fixed locations. The experimental ap-
proach of the present study makes it possible to measure the
variation with time of the instantaneous complex group en-
velope along the tank, as well as the variation of the surface
elevation with time at any location within the tank. Both
temporal and spatial formulations of the Dysthe equation are
therefore employed.

Consider first the temporal model. In analogy to Lo and
Mei (1985), in a coordinate system moving at the group ve-
locity cg=ω0/2k0, the following dimensionless scaled vari-
ables are introduced:

τ=ε2ω0t; ξ=εk0(x−cgt), A=a/a0,8=ω0a
2
0φ;Z=εk0z (7)

In these variables, the equations forA and8 are:

∂A
∂τ

+
i
8
∂2A

∂ξ2 +
i
2 |A|

2A

+ε
(
−

1
16
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∂ξ3 +
1
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3
2 |A|

2 ∂A
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+ iA ∂8
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)
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(8)

∂28

∂ξ2
+
∂28

∂Z2
= 0 (Z < 0), (9)

with 8 satisfying the following boundary conditions:

∂8

∂Z
=

1

2

∂ |A|
2

∂ξ
, Z = 0,

∂8

∂Z
= 0, Z → −∞ (10)

Equations (7) to (10) and the appropriate initial conditions
constitute the temporal version of the Dysthe model. The
corresponding spatial version can be obtained either from
Eq. (3) as in Lo and Mei (1985), or from the spatial ver-
sion of the Zakharov equation, Kit and Shemer (2002). The

scaled dimensionless space and time variables in Eq. (7) are
replaced for the spatial version by

ξ = ε2k0x, τ = εω0(x/cg − t) (11)

The governing equations then assume the following form

∂A

∂ξ
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+i |A|

2A+8ε |A|
2 ∂A
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+2εA2∂A
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The formulation of the spatial model given by Eqs. (11)–(14)
is completed by specifying the temporal variation of the en-
velope at the prescribed locationA(ξ0, τ ).

In both the temporal and the spatial formulations, the nor-
malized envelope shapeA(ξ , τ ) determines the surface ele-
vation at the leading order. WithA(ξ, τ ) known, application
of Eq. (2a) represents the so-called free waves only. The 2nd
order higher frequency bound, or locked, waves can also be
determined fromA(ξ, τ ) using:

B(A) =
1
2εA

2 (15)

The surface elevation that contains the 2nd order bound
waves with frequencies and wave numbers that are respec-
tively twice higher than those of the free waves are thus ob-
tained for both temporal and spatial formulation as

η/a0 = Re
(
Aei(k0x−ω0t) + B (A) e2i(k0x−ω0t)

)
(16)

3 Experimental facility and the initial conditions

The experiments were performed in the wave tank that is
18 m long, 1.2 m wide and has transparent side walls, as
well as windows at the bottom which allow viewing of the
flow from various directions. The tank is filled to mean wa-
ter depth of 0.6 m. Waves are generated by a computer-
controlled paddle-type 4-module wavemaker that is placed
in sealed boxes within the tank, so that the paddles are lo-
cated at the distance of about 1 m from the tank end. Beach
for wave energy absorption starts at the distance of about 3 m
from the other end of the tank. The net length of the facility
therefore is about 14 m. The instantaneous surface eleva-
tion at any fixed location can be measured by resistance type
wave gauges made of 0.3 mm platinum wire. The gauges are
shifted along the tank using an instrument carriage. More de-
tails about the facility can be found in Shemer et al. (2007).

The wave gauges in this study were applied mainly for
validation of the accuracy of surface elevation measurements
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by digital processing of video clips that record the contact
line movement at the tank’s wall. The instantaneous con-
tact line shapes were recorded by a single monochrome CCD
video camera (Pixelink PL-A471) at a rate of 30 fps. The
size of each frame is 640 by 480 pixels. The field of view
of the camera located one meter from the tank wall spans
50 cm along the tank, yielding the pixel dimension of about
0.8 mm. Advantage was taken of extremely high repeatabil-
ity of the wave field emanating from the prescribed wave-
maker driving signal. The camera is placed on the instru-
ment carriage to enable imaging of different regions of the
tank. Each camera recording session is synchronized with
the wavemaker driving signal using a common reference sig-
nal. A single wave group was generated for each recording
session. For the consecutive recording session, the carriage
is shifted along the tank, so that slightly overlapping images
of the contact line movement along the whole experimental
facility are obtained. Every frame of the recorded video clip
at each camera location was processed separately.

Experiments were performed for a wave group with Gaus-
sian envelope generated by the wave maker. The temporal
variation of the surface elevation at the wavemaker has to the
leading order the following form:

η(t, x = 0) = a0A(t) cos(ω0t); (17)

with the Gaussian envelope shape given by

A(t, x = 0) = e
−

(
t

mT0

)2

. (18)

The selection of the wave parameters in Eqs. (17) and (18)
was based on the following considerations. Shorter domi-
nant wave lengthλ0 increases the effective length of the fa-
cility (in terms ofλ0) and thus allows studying group evolu-
tion over extended range. On the other hand, if the dominant
wave is too short, the shape of wave groups prescribed by
Eqs. (17) and (18) can not be faithfully reproduced in the
present facility. Shorter waves also have lower absolute am-
plitudes, resulting in larger relative measurement errors. The
dominant wave period selected in the present experiments
T0=0.7 s corresponds to the wave lengthλ0=2π /k0=0.76 m.
The initial width of the group is determined by the parameter
m. The group becomes wider as the value ofm increases;
correspondingly, the surface elevation frequency spectrum
becomes narrower withm increased. Based on our earlier
studies (Shemer et al., 2002), the value ofm=3.5 was cho-
sen. This value ofm corresponds to the spectral width that
is sufficient to satisfy the narrow spectrum constraint for the
applicability of the Dysthe equation. On the other hand, the
extension of the group form=3.5 is short enough to enable
studying of the temporal evolution of the group within the
tank.

For a given dominant wave period, the value of the wave
amplitudea0 in Eq. (17) determines the maximum steepness
of the wave groupε=a0k0. To enable determination of the in-
stantaneous spatial envelope shape of the wave group and to

study its nonlinear temporal evolution, the entire group has to
be present in the tank. Hence, on one hand, the group gener-
ation by the wavemaker has to be completed before initiation
of the study of the temporal variation of the envelope shape,
and on the other hand, measurements of spatial wave group
structure remain meaningful as long as the front of the group
does not reach the beach. The group propagates along the
tank with the group velocitycg=0.54 m/s. The spatial exten-
sion of the group for the adopted parameters does not exceed
6–7 m. When the generation of the group by the wavemaker
is completed, the group front is about 5 m from the beach,
leaving the duration that does not exceed 10 s to study the
wave group evolution before its front reaches the far end of
the tank. According to Eq. (7), the time scale of the nonlinear
effects isO(ε2). Hence, for the duration of the process pre-
scribed by the group shape, the dominant frequency and the
length of the tank, higher wave steepness increases the effec-
tive evolution time at the slow scaleτ . On the other hand,
nonlinear waves with higher steepness tend to break. Since
wave breaking cannot be accounted for by the Dysthe model,
the wave steepness must remain below the value that can lead
to wave breaking.

The maximum initial wave steepness ofε=0.18
(a0=22 mm) adopted in this study was selected experi-
mentally on the basis of visual observations of wave group
propagation along the tank with different values ofa0. For
this value ofε, τ=1 corresponds to dimensional duration
t=3.44 s, or 4.9 dominant wave periods. This is well below
the experiment duration limit of about 7 s imposed by the
effective length of the tank. The spectral width of the signal
given by Eq. (18), calculated as in Shemer et al. (2002), is
1ω/ω0=0.054<ε, thus satisfying the narrow spectrum limit
of the Dysthe model. For these experimental conditions, the
dimensionless depthk0h≈5, so that the condition for the
validity of the Dysthe model,k0h=O(1/ε) is also satisfied.

The experimental results are compared with the theoreti-
cal predictions based on the numerical solution of the Dys-
the equation in either temporal, Eqs. (7)–(10), or spatial,
Eqs. (11)–(14), forms, together with the corresponding ini-
tial conditions. The initial envelope shapeA(0, τ ) for the
spatial evolution case is given by Eq. (18) with the scaling
defined by Eq. (11).

In the spatial evolution formulation the initial condition
emerges naturally from the water surface elevation variation
in time excited by a wavemaker located atx=0. Contrary
to that, in the temporal evolution case the initial conditions
defining the wave field in the whole tank are to be prescribed
at a certain instant. One possibility to define the initial con-
ditions for the temporal formulation of the problem is to
use the actually measured instantaneous wave field when the
whole group emerges in the tank. For a relatively short wave
tank used in the present study this option, however, restricts
severely the duration of the wave group evolution and thus
the role of nonlinearity which constitute the main interest of
the present study.
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An alternative approach was therefore employed. Since
nonlinear effects become prominent at slow scales,
cf. Eqs. (7), (11), it can be assumed that the initial evolution
of the wave group is mainly governed by linear dispersion ef-
fects, while nonlinearity can be neglected. This assumption
enables linearization of the governing Eq. (12), yielding

∂A

∂ξ
+ i

∂2A

∂τ2
= 0 (19)

Following Pelinovski and Kharif (2000), the solution of
Eq. (19) for a Gaussian envelope at the wavemaker given by
Eq. (18) can be written in the physical variables (x, t) as

A(x, t) = |A(x, t)| exp(iθ); (20)

where the amplitude|A(x, t)| and the phaseθ of the enve-
lope are given by

|A(x, t)| =
mπ

4
√
m4π4 + 4k2

0x
2

exp

−

[
m2π2

4(m4π4 + 4k2
0x

2)
(ω0t − 2k0x)

2

]
, (21)

θ =
k0x (ω0t − 2k0x)

2

2(m4π4 + 4k2
0x

2)
− 1/2 tan−1

(
2k0x

m2π2

)
. (22)

While Eqs. (20)–(21) represent the solution of the spatial
evolution problem; they describe the complex group enve-
lope variation in time and space, and thus can be used to
define the initial conditions for the solution of the temporal
evolution problem. The calculated according to Eq. (21) en-
velope shape is presented in Fig. 1a at two instants. The 1st
curve corresponds to the instant when the maximum of the
envelope is at the wavemaker located atx=0. The 2nd curve
represents the spatial distribution of the group envelope im-
mediately before the entrance of the group to the tank and
corresponds to the instant when the wave group excitation
by the wavemaker is initiated in the experiments. This wave
envelope is somewhat wider than the 1st one, with the maxi-
mum value below unity. This complex envelope shape prior
to the group’s “entrance” to the tank served as the initial con-
dition. Time in the present study is thus measured relative to
that instant of initiation of the wavemaker movement. The
wavenumber spectrum of the surface elevation presented in
Fig. 1b apparently does not vary in time for the linearized
problem and therefore can be seen as the initial spectrum for
the nonlinear evolution problem.

The Dysthe model describing either the spatial or the tem-
poral evolution of a nonlinear wave group is solved using the
pseudo-spectral split-step Fourier method based on Lo and
Mei (1985). The computed complex envelope is then trans-
lated into the physical coordinates (x, t). The variation of
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Figure 1. Initial conditions for the temporal evolution computations. A) Envelope shape 
centered at the wavemaker (x=0 m) and at the instant corresponding to imitation of the 
wavemaker operation (t=0 s); b) Initial wavenumber amplitude spectrum. 

Fig. 1. Initial conditions for the temporal evolution computations.
(a) Envelope shape centered at the wavemaker (x=0 m) and at the
instant corresponding to initiation of the wavemaker operation;(b)
Initial wavenumber amplitude spectrum.

the surface elevation at any fixed locationη (x0, t) in the spa-
tial formulation, or at the fixed instantη (x, t0) in the tempo-
ral formulation, is obtained from the complex envelope that
contains the 2nd order correction calculated using Eq. (16).

4 Video data processing

An example of a recorded image is presented in Fig. 2. While
the contact line can be clearly identified visually, the image
contains numerous additional features such as the tank sup-
porting beam, objects in the laboratory beyond the tank, re-
flections, etc. An effective algorithm was developed to ex-
tract quantitative information from the recorded video clips
that contain thousands of images like that in Fig.2.

The images were first preprocessed using contrast en-
hancement and linear filtering (see, e.g. Gonzales et al.,
2004). Search of the contact line coordinates is carried out in
the vicinity of the contact line and is thus unaffected by other
spurious curves that may appear in the image. A searching
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Figure 2. Contact line image that contains tank wall supporting beam and the viewing window 
Fig. 2. Contact line image that contains tank wall supporting beam
and the viewing window.

area is cropped from the whole image in the vicinity of the
desired curve as a rectangular window that is small with re-
spect to the entire image. The initial window is built in the 1st
image of the series around a point that constitutes the center
of the searching area and is chosen at or in a close vicinity to
the desired curve. Since the slope of the interface is usually
quite small, the window aspect ratio selected in most cases
is in the range of 2 to 3, with the width of the window being
about 50 pixels.

The vertical coordinate of the interfacial curve for every
horizontal location is defined as the weighted average of
the pixel intensities along the vertical extent of the window.
Once all vertical coordinates within the window are calcu-
lated, contact line shape within the window is approximated
by a second order polynomial using the least mean square
fit on the array of the detected points. The vertical coordi-
nate of the contact line at the center of the window is finally
obtained from the polynomial value at the corresponding hor-
izontal coordinate. The contact line coordinates determined
by this procedure contain contribution of the pixel intensities
in the vicinity of each point and are obtained at a sub-pixel
resolution.

The window is then shifted forward by one pixel in the di-
rection given by the slope of the contact line, and the process
is repeated. At each step, the window is inclined by an angle
corresponding to the window shift direction. This process
continues until the whole image is covered. Once the coor-
dinates of the contact line profile in a given frame have been
determined, the search in the next frame is performed utiliz-
ing this information. At the recording rate of 30 frames per
second, the contact line shift between the consecutive frames
is quite small, making it advantageous to start the search in
the next frame with the initial window built around the pre-
vious profile.

The applied procedure has an additional advantage of al-
lowing processing of numerous clips captured during the ex-
periment at different locations along the tank automatically.
At various locations along the tank the vertical position of
the camera and its distance from the opposite tank wall re-
main constant within a reasonable accuracy. Each clip was
recorded after the camera has been shifted along the tank
by the distance corresponding to the horizontal extent of the
recorded image, and the wavemaker was activated after a suf-
ficient delay so that all waves from the previous run have
vanished. The initial search window in the consecutive clips
is placed according to the coordinate of the interface deter-
mined in the last window of the clip recorded at the upstream
location at the identical timing relative to the reference sig-
nal.

The present experimental approach was validated exten-
sively using conventional resistance wire gauges at a number
of locations along the tank and comparing with data simul-
taneously acquired at same distancex by image processing
technique. Measurements of the evolution of wave groups
with wide frequency spectra that vary significantly along the
tank due to dispersion and nonlinearity (Shemer et al., 2007)
were performed for validation purposes. The spanwise uni-
formity of the surface elevation was also checked by placing
the probes across the tank. The difference between the in-
stantaneous values of the surface elevation measured by the
wave gauge located close to the tank’s wall and by video im-
age processing at various distances from the wavemaker al-
ways remains well below 1 mm and does not exceed the de-
viation between the outputs of different probes. The spectra
derived from those measurements exhibit a very good agree-
ment for all frequencies in the spectra. More details on the
experimental method employed are given in Dorfman and
Shemer (2007).

5 Experimental and numerical results

The temporal variation of the surface elevation within a wave
group with the initially Gaussian envelope atx=0 as given
by Eqs. (17) and (18) is studied first. Variation of the surface
elevation within the group at a number of locations along the
tank computed according to Eqs. (11)–(14) is compared in
Fig. 3 with the results of video image processing.

The computed values ofη(t) in Fig. 3 contain the contri-
bution of the bound waves, see Eqs. (15) and (16). The shift
in the horizontal scale in the consecutive frames of Fig. 3 re-
flects the time elapsed while the group traveled between the
measuring stations. Excellent agreement is obtained between
the experimental results and the computations based on the
spatial evolution version of the Dysthe model, Eqs. (11)–
(14). No measurements were performed in the immediate
vicinity of the wavemaker due to contamination of the wave
field in this region by evanescent standing waves, see Dean
and Dalrymple (1991). The sequence of frames in Fig. 3
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Figure 3. Variation of the surface elevation within the group at different distances x from the wavemaker):        experiments;        simulations 
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Fig. 3. Variation of the surface elevation within the group at different distancesx from the wavemaker:— experiments;— simulations.

clearly demonstrates that the duration of the group extends
with x and that the initially symmetric Gaussian envelope
shape (Fig. 1a) gradually exhibits stronger left-right asym-
metry, with increasingly steep front and elongated tail. The
maximum surface elevation within the group may exceed
significantly the nominal value ofa0. This increase of the
maximum amplitude is associated in part with the focusing
properties of the nonlinear Schrödinger equation that affects
the shape of the group envelope, as discussed in Shemer et
al. (1998). The NLS equation, however, is only capable of
reflecting correctly some limited features of the solution, and
the extension to the MNLS equation is required to get both
qualitative and quantitative agreement between experiments
and computations, see Shemer et al. (2002). Ap apparent
additional reason for higher maximum values of the surface
elevation notable in Fig. 3, as well as for the crest-trough
asymmetry, is the contribution of 2nd order bound (locked)
waves.

The notable variation of the group shape along the tank
in Fig. 3 is due to both linear dispersion and nonlinear ef-
fects. To separate linear and nonlinear contributions, fre-
quency spectra of surface elevation variation in time that vary
only due to nonlinear effects, are presented in Fig. 4. The
frequency spectra of Fig. 4 are plotted for the same loca-
tions along the tank as in Fig. 3. The spectra are computed
for those parts of the surface elevation records that contain
the whole group with duration of about 13 s (about 20T0).
The spectra are thus discrete with the frequency increment of

about 0.077 Hz. For demonstration purposes only, the ampli-
tude spectra obtained for the computed temporal variation of
the surface elevation that naturally are smoother than the re-
sults derived from the experimental data, are drawn as a solid
line.

The agreement between experiments and computations in
Fig. 4 is quite good. While the initial amplitude spectrum
corresponding to Eq. (17) also has a symmetric Gaussian
shape, the spectra of Fig. 4 are asymmetric and deviate from
the Gaussian shape. Note the existence of a kink in the spec-
tral shape at the frequency slightly exceeding the dominant
one,f0=1/T0=1.43 Hz, that is visible atx=5.75 m and be-
comes stronger atx=6.85 m. The kink is observable both in
the measured and in the computed spectra. Even for a rel-
atively short extent of the spatial evolution, widening of the
spectrum is visible in Fig. 4. This spectral widening and non-
Gaussian spectral shape indicate that nonlinearity is essential
in the wave group evolution along the tank.

The contribution of the 2nd order bound waves to the am-
plitude spectrum is quite significant at all locations. The
measured using the digital processing of the video images
spectrum of bound waves around the 2nd harmonic of the
dominant frequencyf0 is in excellent agreement with the
model predictions. The bound waves’ spectrum also be-
comes wider with the distance from the wavemaker, in agree-
ment with the variation of the free wave spectrum around the
dominant frequencyf0.
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Figure 4. Variation of the frequency spectra along the tank: symbols– experiments, line – simulations 
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Fig. 4. Variation of the frequency spectra along the tank: symbols – experiments, line – simulations.

As stressed above, the main motivation for developing
the data acquisition method based on the processing of se-
quences of video images is in its capability to measure in-
stantaneous spatial distribution of the surface elevation. Ap-
plication of this method enables following the temporal evo-
lution of the whole wave group as well. This information
can be compared with the numerical solution of the system
of Eqs. (7)–(10) that constitute the Dysthe model in its tem-
poral formulation. The initial conditions for the temporal
evolution caseA(x, 0) are obtained using Eqs. (21) and (22),
as described in Sect. 3 and presented in Fig. 1.

To compare the numerical and the experimental results,
the whole group at the selected instants has to be physically
present within the wave tank boundaries. The numerical so-
lution of Eqs. (7)–(10) indicates that at the dimensional time
t=12 s (relative to the instant depicted in Fig. 1) the advance-
ment of the group along the tank is sufficient for the tail of
the computed instantaneous spatial envelope distribution to
emerge within the tank, thus enabling comparison with the
experiment. Similarity of the numerical and the experimental
results is examined also at three additional instants:t2=14 s;
t3=16 s andt4=18 s. Equations (15)–(16) are used again to
account for the contribution of the 2nd order bound waves.

The spatial variation of the surface elevation as a result of
the temporal evolution of the complex wave envelope is pre-
sented at the selected instances in Fig. 5. As in the spatial
evolution case, good agreement is obtained between the nu-
merical simulations and the experimental observations. At
the earliest instant presented in Fig. 5,t=12 s, the formation

of the group has just been completed and the group in its en-
tirety emerges in the tank, while at the last instant,t=18 s, the
front of the group approaches the far end of the wave tank.

Deviation of the group shape in Fig. 5 from the initial en-
velope presented in Fig. 1a is obvious. Both left-right and
trough-crest asymmetries observed in the temporal records
presented in Fig. 3, as well as significant variations in the
extreme values of the surface elevation within the group, are
visible in Fig. 5 as well. Note, however, that the left-right
asymmetry in Fig. 5 is opposite to that of Fig. 3, where the
steeper part of the group appears at earlier sampling times.
The experimental results are in agreement with the numeri-
cal solutions of the temporal Dysthe model.

Comparison of Figs. 3 and 5 also illustrates the well known
fact that since the group velocity of deep water waves is a half
of their phase velocity, the number of waves within the group
in the temporal surface elevation variation records of Fig. 3
is twice larger than in the instantaneous spatial “snapshots”
of the same group plotted in Fig. 5.

The wave-number amplitude spectra corresponding to
Fig. 5 are presented in Fig. 6. The spectra based both on
the experimental data and on the numerical simulations were
computed for instantaneous surface elevation distributions
that cover 12 m of the tank and contain the whole group. This
longitudinal extent of the “snapshot” determines the wave
number resolution of the resulting discrete spectra. As in
Fig. 4, the spectra derived from the numerical solutions of
the MNLS model are plotted as solid lines.
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Figure 5. The instantaneous surface elevation at various instants:       experiments;        simulations 
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Fig. 5. The instantaneous surface elevation at various instants:— experiments;— simulations.
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Figure 6. Wavenumber spectra of the surface elevation at various instants: symbols – experiments; lines - simulation
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Fig. 6. Wavenumber spectra of the surface elevation at various instants: symbols – experiments; lines – simulation.
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All spectra in Fig. 6 exhibit essential differences from
the initial wavenumber spectrum presented in Fig. 1b. The
agreement between the simulated and the experimental re-
sults in Fig. 6 is quite good at all instances presented; the
differences can be attributed in part to inaccuracy associated
with choosing the initial condition. There are similarities
but also essential differences between the frequency spec-
tra given in Fig. 4, and the wave number spectra of Fig. 6.
In both figures the spectra become wider in the course of
the wave group evolution. The wave number spectra in all
frames of Fig. 6 are however much wider than the frequency
spectra in Fig. 4.

The larger width of the wave number spectra relative to
the frequency spectra follows from the dispersion relation for
deep water, Eq. (1) that is appropriate for the present exper-
iments. In the narrow spectrum approximation the relative
widths of those spectra are related by

1k

k0
= 2

1ω

ω0
(23)

As a result, in all frequency spectra of the temporal variation
of the surface elevation for a narrow-band wave group mov-
ing along the tank, Fig. 4, the free waves and the bound waves
are totally separated. For the initial condition presented in
Fig. 1b, the separation of free and bound waves’ spectral do-
mains still exists. The spectral widening in course of group
propagation along the tank, however, leads to overlapping
domains of the free and of the 2nd harmonic bound waves in
the wave number spectra of Fig. 6. Each measured spectrum
apparently contains free as well as bound waves. In numeri-
cal simulations, complex group envelope that corresponds to
free waves only is computed first. Bound waves are then ob-
tained from the free wave field. The computed wave number
spectra of free and bound waves are also plotted in Fig. 6.

The overlapping of free and bound waves domains in the
wave number spectra precludes straightforward filtering out
of the free wave spectrum from the experimental results. This
difficulty complicates significantly the determination of the
spatial group envelope’s shape that contains the free-wave
part only from the experimental data. The initial conditions
for solving the temporal evolution problem could not there-
fore be determined from experiment. This difficulty forced
to apply the linearized approach presented by Eqs. (19)–(22)
in order to translate the temporal variation of the surface el-
evation at the wavemaker given by Eqs. (17), (18) into the
spatial form.

Accounting for the 2nd harmonic bound waves is essen-
tial to get a better agreement with the measured spectra at
high wave numbers. The disagreements between computa-
tions and measurements in the low wave number region of
the spectrum in Fig. 6 may partially stem from the fact that
for longer waves, the depth of the experimental facility of
0.6 m is not large enough for those wave components to be
considered deep. The low wave number bound waves may
become significant and can constitute a significant contribu-

tion to the spectral shape. The effect of long bound waves
was considered in the framework of the Zakharov equation
in Shemer et al. (2007). The validity of Dysthe equation that
served as the theoretical model in the present study, how-
ever, is restricted to deep waves. The long bound waves were
therefore not considered in the current study.

6 Discussion

It should be stressed that theoretical studies of nonlinear
water-waves are often performed by solving temporal evo-
lution models, while in the laboratory as well as in field
experiments surface elevation variation with time is usually
recorded at fixed locations, sometimes these data also contain
information on the wave propagation directions. Attempts
are sometimes made to translate the measured by point sen-
sors frequency spectrum into the corresponding wave num-
ber (or wave vector in the two-dimensional case) spectrum.
However, direct quantitative comparison of the frequency
and the wave number spectra can not be carried out in a con-
sistent way.

Instantaneous “snapshot” of the whole wave field taken to
get the wave number spectrum, on one hand, and measure-
ments of the temporal variation of the surface elevation vari-
ation with time at a fixed location to get the wave frequency
spectrum, on the other hand, constitute essentially different
ways of studying an evolving in space and in time water-
wave field. Moreover, as the present study demonstrates,
direct computation of the wave number spectrum from the
measured frequency spectrum can not be carried out even
assuming that the evolution is slow as compared to the rel-
evant temporal scale (represented by the duration of contin-
uous sampling that determines the frequency resolution of
the spectrum) and the spatial scale (the extent of the imaged
wave field that determines the wave number spatial resolu-
tion) of the data acquisition process.

The linear dispersion relation between wave frequencies
and wave numbers only holds for the free wave components.
Therefore, it is possible in principle to relate quantitatively
frequency and wave number spectra for the free wave do-
main only. Comparison of the frequencies and wave numbers
that correspond to the spectrum peaks and clearly represent
free waves in Figs. 4 and 6, respectively, indeed reveals that
they are related by Eq. (1). The present results, however,
demonstrate that in general separation of the wave number
spectra into free and bound waves is not always possible.
For a relatively narrow initial free-wave spectrum, the high
frequency/wave number part of the spectrum consists almost
exclusively of bound components. The calculation of spec-
tral bound components from the free wave spectrum is often
not straightforward and requires information on the phases of
each free wave component. Such information is usually not
readily available in reported data on the experimentally mea-
sured frequency spectra. It thus appears virtually impossible
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to evaluate quantitatively the shape of the high end of the
wave number spectrum from the measured surface elevation
variation in time at a fixed location and the corresponding
frequency spectrum.

Two version of the MNLS equation are considered here:
The first is based on the original formulation of Dys-
the (1979), Eqs. (7) to (10), that describes evolution in time
of a unidirectional narrow-spectrum wave group with pre-
scribed initial spatial distribution of the complex group en-
velope. Lo and Mei (1985) were the first to notice that in
order to carry out comparison with experimental data pro-
vided by point sensors, a version of the MNLS equation that
describes evolution of the wave group envelope in space is re-
quired. The spatial version introduced in their paper requires
prescribed temporal variation of the complex wave envelope
at a given location, usually at the wavemaker, as the initial
condition.

Each version of the MNLS equation, either spatial or tem-
poral, yields variation of the wave field in time as well as
in space. The derivation of the spatial MNLS version by
Lo and Mei was based on the temporal Dysthe equation and
the appropriate change of variables. The two version of the
MNLS equation can also be derived from the correspond-
ing temporal (Stiassnie, 1984; Hogan, 1986) or spatial (Kit
and Shemer, 2002) versions of the Zakharov equation. These
derivations shed light on two important facts. First, the evo-
lution equations for complex envelopes of the surface ele-
vation variation and for the velocity potential are somewhat
different at the 4th order appropriate for the MNLS model.
Since the surface elevation is the parameter measured di-
rectly, the surface elevation version of the MNLS equation is
used here for carrying out quantitative comparison of model
predictions with the experimental results.

The second comment is related to the inclusion of ad-
ditional linear terms in the temporal version of the MNLS
equation by Trulsen and Dysthe (1996) and Trulsen et
al. (2000). Derivation of the Dysthe model from the Za-
kharov equation clearly demonstrates that these additional
terms appear due to expansion of the interaction coefficient
in the Zakharov equation around the carrier wave frequency
ω0 in terms of the wave number deviation fromk0. For uni-
directional waves in deep water this expansion has an infinite
number of terms and therefore has to be truncated. In the
spatial evolution case the situation is different and the expan-
sion is of the wave numbers around the frequencyω0. For the
dispersion relation presented by Eq. (1) the expansion does
not contain terms beyond quadratic. In the spatial version of
the unidirectional MNLS the dispersion is thus presented ex-
actly. The spatial evolution version of the MNLS equation is
therefore more accurate in this sense than the temporal ver-
sion.

7 Conclusions

An effective method for identification of the instantaneous
contact line shapes in a sequence of recorded video images
is developed. Experiments indicate that the surface eleva-
tion values calculated employing the proposed image-based
method have an error comparable to that of conventional re-
sistance type gauges.

Advantage was taken of the controlled and repeatable
character of the experiments that enabled synchronization
of the video camera and the wavemaker operation to ob-
tain phase-locked surface elevation distributions on length
scales exceeding the size of the imaged scene. The applied
technique allows studying temporal evolution of the instanta-
neous wave field in the whole tank and thus determination of
the variation in time of the wavenumber spectra. This ability
is important for carrying out quantitative comparison of pre-
diction of nonlinear evolution models with the experimental
results.

This experimental approach is adopted here to study both
the spatial and the temporal evolution of narrow-banded uni-
directional wave groups. The experimental results are com-
pared in detail with the solutions of the appropriate version of
the MNLS equation. The present experimental and numeri-
cal study demonstrates that the envelopes of deep-water uni-
directional wave groups with narrow spectrum have certain
similarities in their evolution pattern in both time and space.
Good quantitative and qualitative agreement between mea-
surements and computations is obtained for both the spatial
and the temporal evolution formulations. The most visible
feature of the evolution process is the gradual transforma-
tion of the initially symmetric envelope shape into a strongly
asymmetric one. This feature can not be reproduced by the
cubic Schr̈odinger equation in which the initially symmetric
envelope can not become asymmetric, and requires the ex-
tension to the MNLS equation for its proper description.

Both the spatial and the temporal version of the model de-
scribe correctly the widening of the spectrum in the course
of evolution. The shapes of the spectra are, however, quite
different in these formulations, the wave number spectrum
being twice wider than the corresponding frequency spec-
trum.
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