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Abstract. In this paper we present a complex network model
based on a heterogeneous preferential attachment scheme to
quantify the structure of porous soils. Under this perspective
pores are represented by nodes and the space for the flow
of fluids between them is represented by links. Pore prop-
erties such as position and size are described by fixed states
in a metric space, while an affinity function is introduced to
bias the attachment probabilities of links according to these
properties. We perform an analytical study of the degree dis-
tributions in the soil model and show that under reasonable
conditions all the model variants yield a multiscaling behav-
ior in the connectivity degrees, leaving a empirically testable
signature of heterogeneity in the topology of pore networks.
We also show that the power-law scaling in the degree distri-
bution is a robust trait of the soil model and analyze the influ-
ence of the parameters on the scaling exponents. We perform
a numerical analysis of the soil model for a combination of
parameters corresponding to empirical samples with differ-
ent properties, and show that the simulation results exhibit a
good agreement with the analytical predictions.

1 Introduction

The porous structure of soils has an important influence on
the physical, chemical and biological processes that take
place within them (Young and Crawford, 2004; Blair et al.,
2007). The pores size distribution (PSD) is one important pa-
rameter to modeling these processes (Vogel and Roth, 2001;
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Lin et al., 1999). However, the difficulty is in understanding
the PSD at the same time that the pore geometry distribution
and their behavior concerning the dynamics fluid transporta-
tion. Most of the theoretical approaches to the soil porosity
can not explain them adequately because the available mod-
els are idealizations that fail to rescue the complex structure
of the wiring and spatial location of pores (Bird et al., 2006)
and moreover do not consider the mechanisms underlying
the dynamics that leads to the emergence of such structure
(Horgan and Ball, 1994).

During the last years the perspective of complex networks
has successfully been applied to a wide array of scientific
fields (Strogatz, 2001). Network theory describes complex
systems from a purely topological point of view, abstract-
ing away the dynamical processes that take such structure as
substrate (Albert and Barab́asi, 2002; Newman, 2003). A
complex networkcan thus be viewed as set of nodes and
links with a non-trivial topology. The study of complex net-
works has shown the presence of common and hardly intu-
itive structural properties in both nature and man-made sys-
tems. These findings have created a large follow-up de-
bate among physicists because of their ubiquity and pecu-
liar statistical properties, markedly different from the ran-
dom graphs (Erdös and Ŕenyi, 1959). In particular, complex
networks adjust some statistical properties to power laws, a
characteristic feature of critical-point behavior and a finger-
print of self-organized systems (Bak et al., 1987).

The impact of this new approach has also affected the geo-
sciences. Recent approximations describe the structure of
soils as a network (Vogel and Roth, 2001). Using a network
approach, Valentini et al. (2007) found that rock fractures
exhibit the well knownsmall worldphenomenon (Watts and
Strogatz, 1998) when those fractures are considered as nodes
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in a network (Valentini et al., 2007). A network approach has
also been applied to the study of climate dynamics by Tsonis
et al. (Tsonis et al., 2006, 2007, 2008; Tsonis and Swanson,
2008; Yamasaki et al., 2008). In this paper we propose a
similar approach to quantify the pore architecture of a soil
through a complex network model.

Network models are prescriptive systems that generate
networks with certain topological traits, such as degree or
clustering distributions. Dynamical network models (Doro-
govtsev and Mendes, 2002) are stochastic discrete-time dy-
namical systems that evolve networks by the iterated addi-
tion and subtraction of nodes and links. In our study we in-
terpret porous soils as heterogeneous networks where pores
are represented by nodes with distinct properties (such as
surface and spatial location) and the flow of fluids between
them is represented by links connecting the nodes. The net-
works are generated by a dynamical model known as hetero-
geneous preferential attachment (PA) (Santiago and Benito,
2007a,b, 2008a,b), a generalization of the Barabási-Albert
(BA) model (Barab́asi and Albert, 1999a) to heterogeneous
networks.

The BA model is based on the mechanisms of growth and
preferential attachment (Price, 1965, 1976) and provides a
minimal account of the process leading to the emergence of
scale-freenetworks (Barab́asi et al., 1999b). Such networks
are characterized by a degree distribution with an asymptotic
behavior according to apower-law, P(k)∼k−γ , whereγ is
known as the scaling exponent. This phenomenon leads to a
non-negligible presence of highly connected nodes orhubs, a
trait commonly referred as fat tails. In the BA model the pro-
cess starts with a seed of arbitrary size and topology. A new
node is added to the network at each step, bringing a fixed
numberm of links attached. These links are preferentially
connected to the already existing nodes following the so-
calledattachment rule: the linking probability of a network
nodevi is proportional to its degreeki , 5(vi)=ki/

∑
j kj .

This step is iterated until a desired numberN of nodes have
been added to the network. Heterogeneous PA models in-
corporate the influence of node attributes in addition to the
connectivity degree to the attachment rule.

The organization of the paper is as follows. In the next sec-
tion we describe the formulation of the porous soil model.
The analytical solution for the degree distribution of the
pores generated by the model is presented in the third section.
In the fourth section we present the results of the porous soil
corresponding to two samples of soils of different porosity.
In the last section we present our conclusions derived from
this work.

2 Model formulation

The structure of a porous soil is modeled as a heterogeneous
complex network where nodesvi correspond to pores and
links eij correspond to flow of fluids between them. The links

will be considered undirectedeij=eji and thus the connec-
tivity degreeki of a nodevi will be a measure of the num-
ber of pores that are directly connected with the associated
pore. The properties of a pore are described by the node state
(ri, si), which account for the positionri of the pore center
in the soil and the pore sizesi (surface or volume, depending
on whether we are modeling the architecture of a 2-D or 3-D
sample of the system).

The dynamics of the porous structure is modeled as a
stochastic growth process known as dynamic network model
(Dorogovtsev and Mendes, 2002). To motivate the rules that
prescribe the evolution of the model, next we consider the in-
fluence of the pore properties on the probability for two pores
being connected in a porous soil. Assume that at a given
time a new pore is created in the medium, the likelihood that
this pore will connect with any of the already existing pores
will be proportional to the size of the older pores and in-
versely proportional to the distance between them. Likewise,
the higher the number of connections accruing to an existing
pore, the higher the likelihood that a new flow of fluids will
intercept an existing connection and connect the new pore
with the older one. Thus the attachment visibility of an ex-
isting network nodeπ(vi) when a new nodeva is added will
be proportional toki , si andd−1(ri, ra), whered is the Eu-
clidean metric.

The previous considerations prompt us to model the dy-
namics of the porous structure of soils as a particular case of
heterogeneous preferential attachment (PA) defined by three
elements:

1. R is an arbitrary space. The elementsx∈R are referred
as node states.

2. ρ is a nonnegative real function with unit measure over
R referred as node state distribution.

3. σ is a nonnegative real function overR2 referred as
affinity of the interactions.

This formalism prescribes the evolution of a network ac-
cording to the following rules:

(i) The nodesvi are characterized by their statexi∈R. The
node states describe intrinsic properties deemed con-
stant in the timescale of evolution of the network.

(ii) The growth process starts with a seed composed byN0
nodes (with arbitrary statesxi∈R) andL0 links.

(iii) A new nodeva (with m links attached) is added to the
network at each iteration. The numberm is common
for all the added nodes and remains constant during
the evolution of the network. The newly added node is
randomly assigned a statexa following the distribution
ρ(x).
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(iv) The m links attached tova are randomly connected
to the network nodes following a distribution{5(vi)}
given by an extendedattachment rule,

5(vi) =
π(vi)∑
j π(vj )

, π(vi) = ki · σ(xi, xa). (1)

The attachment kernelor visibility π of a nodevi in the
rule is given by the product of its degreeki and its affinity
σ with the newly added nodeva , which is itself a function
of the statesxi andxa . It thus can be seen that for each in-
teractionσ biases the degreeki of the candidate node. Steps
(iii) and (iv) are iterated until a desired number of nodes has
been added to the network. To sum up, the choice of the
triple (R, ρ, σ ) determines the form of heterogeneity in the
attachment mechanism.

Consistently with the previous formalism, the porous soil
model will be defined by a state spaceR=M×S, whereM
is a Euclidean box with dimension 2 or 3 that represents the
medium geometry andS is an interval of the real line that
represents the spectrum of possible pore sizes; a state distri-
butionρ(x)=ρ(r, s) that represents the probability for a new
pore having a certain positionr and sizes; and an affinity
function

σ(x, y) =
sαx

(δ + |rx − ry |)β
, (2)

whereδ is a small nonnegative offset that ensures the con-
tinuity of σ on R2, while α andβ are free parameters that
measure the relative importance of the size and distance of
the pores in the affinity of the attachment mechanism. Defin-
ing the porosity of the mediumφ=Sv/ST=

∑
i si/

∫
M
dr as

the fraction of void space in the material, then the desired
number of nodesN that ends the growth process is the least
number that yieldsφ>φ0 for a certain thresholdφ0.

3 Analysis

In this section we derive an analytical solution for the station-
ary degree distributionP(k) of the proposed soil model. The
solution is obtained byrate equations(Dorogovtsev et al.,
2000; Krapivsky and Redner, 2001) which establish a bal-
ance in the flows of degree densities over a partition of the
network. The exposition will be brief therefore we submit the
reader to (Santiago and Benito, 2008a) for a more detailed
discussion of the solution for the general class of PA models.
Let us first define a sequence of functions{f (k, x,N)}N>0
which measure the probability density of a randomly chosen
node having degreek and statex in a network at the iteration
t=N . The degree densities are local metrics, thus they uni-
formly converge whenN→∞ to a stationary density func-
tion f (k, x). Finally, the stationary degree distributionP(k)
measures the probability of a randomly chosen node having
degreek in the thermodynamic limit.

We will denote byV (x)={vi, xi=x} the subset of nodes in
the network with statex=(rx, sx). Assuming that the assig-
nation of statesxi is uncorrelated with the topology of the
growing network, and that there are no linking events be-
tween existing nodes, the sequence{f } can be modeled on
eachV (x). For eachx, the form of the equation will be
L1−L2=R1−R2, where:

L1=density of nodes with degreek at t=N+1;

L2=density of nodes with degreek at t=N ;

R1=increase in density due to nodes with degreek−1
that have gained a link att=N ;

R2=decrease in density due to nodes with degreek that
have gained a link att=N .

The resulting density rate equation fork>m is

(N + 1)f (k, x,N + 1)−Nf (k, x,N) =

= m

〈
σ(x, y)

ψ(y,N)

〉
y

[(k − 1)f (k − 1, x,N)− kf (k, x,N)]. (3)

whereψ(y,N) is defined as the partition factor

ψ(y,N) =

∑
k′

k′

∫
R

σ(x, y)f (k′, x,N)dx, (4)

and the brackets mean averaging over the random variabley,

〈g〉y =

∫
R

g ρ(y)dy. (5)

Fork=m the resulting density rate equation is

(N + 1)f (m, x,N + 1)−Nf (m, x,N) =

= ρ(x)−m

〈
σ(x, y)

ψ(y,N)

〉
y

mf (m, x,N). (6)

There are no nodes with degreek<m, since whenN→∞ all
the links attached to newly added nodes find receptive nodes
in the network, therefore the previous equations define all the
possible cases in each iteration.

In the thermodynamic limitN→∞, f (k, x,N +

1)=f (k, x,N)=f (k, x) and the rate equations become

f (k, x) = (7)

m
〈
σ(x,y)
ψ(y)

〉
y
[(k − 1)f (k − 1, x)−

−kf (k, x)] for k > m

ρ(x)−m
〈
σ(x,y)
ψ(y)

〉
y
mf (k, x) for k = m

whereψ(y) is the stationary partition factor, defined as

ψ(y) = lim
N→∞

ψ(y,N) =

=

∑
k′

k′

∫
R

σ(x, y)f (k′, x)dx. (8)
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Notice that the stationary rate equations are coupled via
ψ(y). In order to decouple Eq.7, let us first assume that
the variation ofψ(y) over the subsetRρ={y∈R:ρ(y)>0} is
small enough. This can be expressed as the following ap-
proximation criterium

〈(ψ(y)− ψ)2〉y < ε1, (9)

whereψ=〈ψ(y)〉y andε1 is an accuracy bound. In that case
we may approximate the coupling term as a quotient of two
mean-fieldmeasures,〈
σ(x, y)

ψ(y)

〉
y

'
〈σ(x, y)〉y

〈ψ(y)〉y
=
w(x)

ψ
, (10)

wherew(x) can be interpreted as the mean-field fitness of
network nodes with statex,

w(x) = 〈σ(x, y)〉y = sαx

∫
R

ρ(y)

(δ + |rx − ry |)β
dy, (11)

andψ can be interpreted as the mean-field partition factor of
the network,

ψ = 〈ψ(y)〉y =

=

∫
R

∑
k′

k′

∫
R

sαx

(δ + |rx − ry |)β
f (k′, x)dx ρ(y)dy, (12)

both defined for a given distributionρ(y) of the incoming
node states. Furthermore, let us assume that the variation of
w(x) overR is small enough, which can be expressed as a
second approximation criterium

〈(w(x)− w̄)2〉x < ε2, (13)

wherew̄=〈w(x)〉x andε2 is a second accuracy bound. In that
case the mean-field stationary partition factorψ can be ap-
proximated byψ'

∑
k kP (k)w̄'2mw̄. Under the assump-

tion that both approximation criteria (Eqs.9 and13) hold, the
coupling factor may then be estimated as〈
σ(x, y)

ψ(y)

〉
y

'
w(x)

ψ
'
w(x)

2mw̄
=
ŵ(x)

2m
, (14)

where ŵ(x)=w(x)/w̄ is a mean-fieldnormalized fitness,
which measures the fitness of network nodes with statex

relative to the average fitness of all the network nodes, for
a given distributionρ(x). The resulting decoupled system
becomes then

f (k, x) =

ŵ(x)[(k − 1)f (k − 1, x)− kf (k, x)]/2 for k > m,

ρ(x)− ŵ(x)mf (k, x)/2 for k = m.
(15)

Solving Eq.15we obtainf (m, x)=2ρ/(ŵm+2) and the so-
lution for the stationary density fork>m is

f (k, x) =

(
k∏

j=m+1

ŵ(j − 1)

ŵj + 2

)
2ρ

ŵm+ 2
(16)

and integrating the density in Eq.16 over the state spaceR
the stationary degree distribution is

P(k) =

∫
R

(
k∏

j=m+1

ŵ(j − 1)

ŵj + 2

)
2ρ

ŵm+ 2
dx. (17)

The solution given by Eq.17 is valid for any variant of the
soil model, irrespective of the geometry of the mediumM or
the pore sizesS, the distribution of pore propertiesρ or the
dependence of the affinityσ on the pore properties viaα and
β. Nevertheless, the validity of the solution is restricted by
the extent to which the approximation criteria in Eqs.9 and
13 hold. The mean-field approximation can be considered
accurate in the measure that the averages ofσ(x, y) along its
two arguments do not exhibit large variations overR. This
does not exclude the possibility of large fluctuations in the
affinity σ(x, y) overR2, provided that the variability of the
averages is kept within the desired bounds.

Furthermore, we may assume that any pore in the soil has
a non-zero size, thus from Eq.11 it follows that the mean-
field fitnessw(x) is strictly positive overR and the stationary
degree density in Eq.16may be expressed fork≥m as

f (k, x) =
2ρ/ŵ

m+ 2/ŵ

B(k,1 + 2/ŵ)

B(m,1 + 2/ŵ)
, (18)

where Legendre’s Beta functionB(y, z) =
∫ 1

0 t
y−1(1 −

t)z−1dt for y, z>0 satisfies the functional relation
0(a)/0(a+b)=B(a, b)/0(b) for Euler’s Gamma function
0(x). Likewise, integrating the density in Eq.18 overR we
obtain an expression of the stationary degree distribution
P(k) for k≥m in terms of the Legendre’s Beta function
which is equivalent to Eq.17.

Notice that the stationary densities for a given pore state in
the soil model, as given by Eq.18, follow the form of a Beta
function with arguments(k,1+2/ŵ). Given that the Beta
function behaves asB(y, z)∼y−z wheny→∞, this implies
that the degree densities exhibit amultiscalingaccording to
power lawsk−γ (ŵ) along the continuous spectrum of normal-
ized fitnessŵ, with scaling exponentsγ (ŵ)=1+2/ŵ span-
ning themselves a continuum. The multiscaling phenomenon
is a general property of heterogeneous PA networks (Santi-
ago and Benito, 2007a, 2008a) that is exhibited by any vari-
ant of the proposed soil model, irrespective of the particular
details. Asŵ increases (resp. decreases), the exponentγ of
f decreases (resp. increases). Nodes with states more fit than
the average (̂w>1) adopt densities withγ<3, which exhibit
a slower asymptotical decay, and tend to produce more hubs.
Nodes with states less fit than the average (ŵ<1) adopt den-
sities withγ>3, which exhibit a faster asymptotical decay.

Notice also that the mean-field fitness in Eq.11 may be
factorized intow(x)=w1(rx)·w2(sx), where the first term ac-
counts for the fitness dependence on the pore position, and
the second one accounts for the dependence on the pore size.
We may use this fact to simplify the analysis of the influence
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of the pore properties(rx, sx) on the scaling exponents in the
densityf (k, x). The influence of the pore positionr will
depend largely on the probability distribution of the pore po-
sitionsρM(r)=

∫
S
ρ(r, s)ds. When the pore position is uni-

formly distributed over the mediumM, for a given pore size
s0 the mean-field fitnessw will be highest on the medium
center and will decrease as the pore position approaches the
boundary of M, sincew1(r) is performing an averaging of
the reciprocal of distance overM. However, as the distribu-
tion of the pore positionsρM becomes increasingly inhomo-
geneous, the situation of the pores with respect to the regions
with higher densities will become progressively more impor-
tant in the determination of the fitness factorw1. For highly
variable distributionsρM this trait will prevail over the cen-
trality of the pores in the medium geometry. Irrespective of
the inhomogeneity ofρM , notice that asβ is increased the
variability of the factorw1 overM will grow, as the contri-
bution tow1 by distant pores becomes progressively lower.

With regards to the influence of the pore sizes, for a given
pore positionr0 the fitness factor will increase with the size
asw2∼s

α irrespective of the distributionρ of pore proper-
ties. Notice that again asα is increased the variability of the
factorw2 over S will grow. It should be also pointed out
that with the general form ofσ adopted for the soil model
the scaling exponents off (k, x) will exhibit themselves a
power-law scaling in their dependence ons according to
γ (r0, s)∼s

−α. To sum up, the increase of eitherα or β re-
sults in an increase in the variability ofw overR, and in the
case ofβ such increase is more acute as the inhomogeneity
of ρM increases. Given the dependence of the scaling ex-
ponentγ on the normalized fitness̄w, the higher variability
of w will translate into a larger spread of the distribution of
exponentsγ of the density components.

The described behavior evidences asignatureof hetero-
geneous PA in the structure of porous soils, by which the
density componentsf (k, x) of pores in the underlying net-
work will exhibit different scaling exponents according to the
pore properties such as size or position. This signature may
be empirically detected by selecting subsets of pores within
the soil sample so that one of their properties takes a simi-
lar value, common to all the subsets, while the other prop-
erty takes a similar value within each subset, but differing
across the other subsets:{(ri, s0)}i , or conversely,{(r0, si)}i .
If the partial degree distributions for these subsets{P(k|xi)}

exhibit power laws with different exponents, it is then feasi-
ble to assume that this pore property (either position or size)
is biasing the attachment mechanism. Under equal circum-
stances, a higher variation in the empirically obtained expo-
nents would point to a higher exponentα or β in the affinity
function σ . Furthermore, to check the existence of hetero-
geneity it would be sufficient to find one such subset of nodes
whose partial distribution{P(k|xi)} exhibits a power-law be-
havior with an exponent different to the one in the global dis-
tributionP(k).

With regards to the stationary degree distributionP(k) of
the soil model, Eq.17 shows that it is obtained by the in-
tegration of the density components, which form a set of
power-laws with varying exponentsγ (x). As we have seen,
little fluctuations ofw overR will yield density components
with similar scaling exponents and thus degree distributions
similar to the homogeneous PA case, the so-called Barabási-
Albert model. On the other hand, large fluctuations ofw

overR (as in the case of largeα or largeβ parameters, par-
ticularly with inhomogeneousρ distributions) will yield a
wider spectrum of exponentsγ and thus a larger deviation of
the degree distribution from the Barabási-Albert model. The
asymptotic behavior ofP(k) will be dominated by the slow-
est decaying components, associated to pore properties with
highest mean-field fitnessw. Furthermore, given that̂w will
be distributed by definition around 1, the highest value of the
spectrum will necessarily verifŷwmax≥1 and therefore the
degree distributionP(k) of all the variants of the soil model
will exhibit scaling exponents satisfying 1<γ≤3.

Finally a caveat should be raised about the accuracy of
the preceding discussion regarding small pore networks. The
analytical results have been derived for the thermodynamic
limit, where the degree densities (and thus the degree distri-
bution) reach stationarity. Strictly this does not apply in the
context of pore networks, where there exist intrinsic limita-
tions to the growth process. Given that each pore has a non-
negligible size and the medium size is constant, the porosity
of generated soils grows monotonically with time, eventually
reaching the desired porosity of the modeled system. This
circumstance yields a requisite size of the generated network
for a medium sample of a given size. Being the average pore
sizes̄=

∫
R
sρ(r, s)dx, then the requisite network size will be

given byN0'φ0ST /s̄, whereST is the total medium size and
φ0 is the desired porosity. As the requisite sizeN0 becomes
lower the finite-size effects will become more important, in
particular whenN0�103. This may be the case when the
medium porosity is very low or when the pore size is large
relative to the medium size. The finite-size effects will yield
a growing discrepancy between some network metrics and
the analytical results, such as a decrease in the scaling ex-
ponentγ of the degree distribution and the presence of an
exponential cutoff regime. This problem could nevertheless
be circumvented by modeling a larger soil sample.

4 Model application

In this section we present results concerning the numeri-
cal simulation of the porous soil model using as input data
from intact soil samples with different physical properties,
obtained from the same profile but at different depths. We
simulate pore networks with the same porosity, size distribu-
tion and spatial location of the empirical 2-D soil samples.

www.nonlin-processes-geophys.net/15/893/2008/ Nonlin. Processes Geophys., 15, 893–902, 2008
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Table 1. Physical properties of two soil samples (D1 and D3) ob-
tained in the same profile at different depths. Note: C. Sand and
F. Sand correspond to coarse and fine particles of sand respectively.
The names D1 and D3 indicate the sequence of cuts in depth, thus,
in this soil, there is an intermediate cut D2 between D1 and D3.

Soil Horizon Depth Particle (%)

(cm) C.sand F.sand Silt Clay

D1 A2 10–35 62 24 3 11
D3 Bt2 98–152 21 40 4 35

6 A. Santiago et al.: Scaling and multiscaling of soils as heterogeneous complex networks

D3D1

Fig. 1. 3D representation of soils D1 (left) and D3 (right) obtained
using Computed Tomography (CT).

tained. Imaging parameters were 155keV and 25 A. Pro-
prietary software (GE Medical) was used to reconstruct the
16-bit 3D imagery from the sequence of axial views. The
resulting voxel size was 45.1 µm. File sizes ranged from
70 to 200 Mb, which made subsequent processing of the en-
tire volume practically infeasible. Accordingly, three sub-
volumes were extracted from each of the two original vol-
umes (using GE Medical Microview) and care was taken to
ensure no overlay of the subvolumes. The subvolumes mea-
sured 256x256x256 units, corresponding to about 16.8 mil-
lion voxels. A 3D Gaussian filter in MicroView (GE Health-
care , 2006) was also run on each subvolume to reduce noise
and beam-hardening artifacts, typical of CT imagery.

CT imagery of soil, like other digital imagery, typically
contains a large proportion of mixed-voxels (voxels whose
digital number is the weighted average of more than one con-
stituent - such as a solid/air interface). To facilitate identi-
fication of constituent peaks in the gray-scale histogram, a
3D filter executed in NIH ImageJ (Rasband , 2006) was run
on each subvolume to mask voxels which differed by more
than 0.1% from the surrounding neighborhood of 124 vox-
els (5x5x5 unit volume). Full details of this technique can
be found in (Elliot and Heck , 2007). Histograms of the
unmasked voxels were subsequently ported into OriginPro
(Origin Lab Corporation , 2006); after smoothing the his-
tograms (adjacent averaging of 25 levels), peaks were iden-
tified in the Peak Fitting Module. The major peak with the
lowest mean digital number was taken to be that correspond-
ing to the void space; the next major peak was considered
to be solid material. Based on the central tendency and dis-
persions (assuming Gaussian distributions) of the two peaks,
one for air (µCTsolid) and the other for solid (µCTsolid), a
threshold value was identified as the equi-probability value
for air and solid.

As our model considers the pore size (surface=S) we ana-
lyze the distribution of pore sizes in both soil samples making
longitudinal cuts of 256x256 units (pixels) in the 3D CT im-
agery following the algorithm proposed by Vogel and Roth
(2001). This algorithm basically consists in marking the
adjacent black pixels in two consecutive lines on the entire
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Fig. 2. Pore size distribution, F (size), for soil sample D1 obtained
at different depths (i.e. longitudinal cuts Z). The figures also dis-
play the number of pores, mean size of pores (pixels2), maximum
size of pores (pixels2) and scaling exponent φ for each distribution.
The straight lines correspond to the power law fittings.

plane and then performing an overall study to recognize the
pore entities and in that way to obtain sizes and locations.
The PSD, given by F (size), for D1 can be observed in Fig. 2
for four profile cuts at different depths (Z=100,150,200,250).
As can be seen, all the cuts display a distribution that follows
a power law denoting a scale free character in the distribution
of pore sizes, f(s) ∼ s−φ.

The same behaviour can be observed in the deepest soil
sample D3 exhibited by Fig. 3, nevertheless, in this scenario
the number of pores and its size are opposite to D1. The dif-
ferences in the 3D CT imagery of both soil samples can be
observed in Fig. 1. Due to the fact that our model consid-
ers also the spatial location of pores, we analyzed the spatial
distribution of the centers of mass of pores (CMP) (Vogel
and Roth, 2001) in the same cut previously mentioned for
both soil samples. Fig. 4A shows the distribution of the
pore centers in four superimposed cuts for the sample soil
D1 (the results for D3, not shown, are similar). The spatial
distributions of CMP were analyzed to study their uniformity
at each depth considered. We counted the number of CMP
found within each box, varying the box length size from 2,
4, 8, up to 32 pixels. In the longest size length used 64 data
points were obtained hence no bigger sizes were used to as-
sure enough data available for statistics. Then, the variance
for each side length was calculated and is shown in Fig. 4B.
The results evidence that the spatial distribution of pores is
reasonably uniform over the surfaces for all the cuts consid-
ered.

Fig. 1. 3-D representation of soils D1 (left) and D3 (right) obtained
using Computed Tomography (CT).

4.1 Empirical analysis of soil samples

The soil samples used in this study were collected from two
horizons of an Argissolo (EMBRAPA SOLOS, 2006). Phys-
ical characteristics of relevance to the current study, can be
observed in Table1. This soil is characteristic of the coastal
tablelands of northeast Brazil, formed on the Tertiary Bar-
reiras group of formations in Pernambuco state (Itapirema
Experimental Station) presenting a hardsetting behavior.

The images of the soil samples D1 and D3 were obtained
using an EVS (now GE Medical) MS-8 MicroCT scanner
(Fig. 1). Though some samples required paring to fit the
64 mm diameter imaging tubes, field orientation was main-
tained. Imaging parameters were 155 keV and 25 A. Propri-
etary software (GE Medical) was used to reconstruct the 16-
bit 3-D imagery from the sequence of axial views. The re-
sulting voxel size was 45.1µm. File sizes ranged from 70 to
200 Mb, which made subsequent processing of the entire vol-
ume practically infeasible. Accordingly, three subvolumes
were extracted from each of the two original volumes (us-
ing GE Medical Microview) and care was taken to ensure
no overlay of the subvolumes. The subvolumes measured
256×256×256 units, corresponding to about 16.8 million
voxels. A 3-D Gaussian filter in MicroView (GE Healthcare,
2006) was also run on each subvolume to reduce noise and
beam-hardening artifacts, typical of CT imagery.

CT imagery of soil, like other digital imagery, typically
contains a large proportion of mixed-voxels (voxels whose
digital number is the weighted average of more than one con-
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Fig. 1. 3D representation of soils D1 (left) and D3 (right) obtained
using Computed Tomography (CT).

tained. Imaging parameters were 155keV and 25 A. Pro-
prietary software (GE Medical) was used to reconstruct the
16-bit 3D imagery from the sequence of axial views. The
resulting voxel size was 45.1 µm. File sizes ranged from
70 to 200 Mb, which made subsequent processing of the en-
tire volume practically infeasible. Accordingly, three sub-
volumes were extracted from each of the two original vol-
umes (using GE Medical Microview) and care was taken to
ensure no overlay of the subvolumes. The subvolumes mea-
sured 256x256x256 units, corresponding to about 16.8 mil-
lion voxels. A 3D Gaussian filter in MicroView (GE Health-
care , 2006) was also run on each subvolume to reduce noise
and beam-hardening artifacts, typical of CT imagery.

CT imagery of soil, like other digital imagery, typically
contains a large proportion of mixed-voxels (voxels whose
digital number is the weighted average of more than one con-
stituent - such as a solid/air interface). To facilitate identi-
fication of constituent peaks in the gray-scale histogram, a
3D filter executed in NIH ImageJ (Rasband , 2006) was run
on each subvolume to mask voxels which differed by more
than 0.1% from the surrounding neighborhood of 124 vox-
els (5x5x5 unit volume). Full details of this technique can
be found in (Elliot and Heck , 2007). Histograms of the
unmasked voxels were subsequently ported into OriginPro
(Origin Lab Corporation , 2006); after smoothing the his-
tograms (adjacent averaging of 25 levels), peaks were iden-
tified in the Peak Fitting Module. The major peak with the
lowest mean digital number was taken to be that correspond-
ing to the void space; the next major peak was considered
to be solid material. Based on the central tendency and dis-
persions (assuming Gaussian distributions) of the two peaks,
one for air (µCTsolid) and the other for solid (µCTsolid), a
threshold value was identified as the equi-probability value
for air and solid.

As our model considers the pore size (surface=S) we ana-
lyze the distribution of pore sizes in both soil samples making
longitudinal cuts of 256x256 units (pixels) in the 3D CT im-
agery following the algorithm proposed by Vogel and Roth
(2001). This algorithm basically consists in marking the
adjacent black pixels in two consecutive lines on the entire
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Fig. 2. Pore size distribution, F (size), for soil sample D1 obtained
at different depths (i.e. longitudinal cuts Z). The figures also dis-
play the number of pores, mean size of pores (pixels2), maximum
size of pores (pixels2) and scaling exponent φ for each distribution.
The straight lines correspond to the power law fittings.

plane and then performing an overall study to recognize the
pore entities and in that way to obtain sizes and locations.
The PSD, given by F (size), for D1 can be observed in Fig. 2
for four profile cuts at different depths (Z=100,150,200,250).
As can be seen, all the cuts display a distribution that follows
a power law denoting a scale free character in the distribution
of pore sizes, f(s) ∼ s−φ.

The same behaviour can be observed in the deepest soil
sample D3 exhibited by Fig. 3, nevertheless, in this scenario
the number of pores and its size are opposite to D1. The dif-
ferences in the 3D CT imagery of both soil samples can be
observed in Fig. 1. Due to the fact that our model consid-
ers also the spatial location of pores, we analyzed the spatial
distribution of the centers of mass of pores (CMP) (Vogel
and Roth, 2001) in the same cut previously mentioned for
both soil samples. Fig. 4A shows the distribution of the
pore centers in four superimposed cuts for the sample soil
D1 (the results for D3, not shown, are similar). The spatial
distributions of CMP were analyzed to study their uniformity
at each depth considered. We counted the number of CMP
found within each box, varying the box length size from 2,
4, 8, up to 32 pixels. In the longest size length used 64 data
points were obtained hence no bigger sizes were used to as-
sure enough data available for statistics. Then, the variance
for each side length was calculated and is shown in Fig. 4B.
The results evidence that the spatial distribution of pores is
reasonably uniform over the surfaces for all the cuts consid-
ered.

Fig. 2. Pore size distribution,F(size), for soil sample D1 obtained
at different depths (i.e. longitudinal cutsZ). The graphics also dis-
play the number of pores, mean size of pores (pixels2), maximum
size of pores (pixels2) and scaling exponentφ for each distribution.
The straight lines correspond to the power law fittings.

stituent - such as a solid/air interface). To facilitate iden-
tification of constituent peaks in the gray-scale histogram,
a 3-D filter executed in NIH ImageJ (Rasband, 2006) was
run on each subvolume to mask voxels which differed by
more than 0.1% from the surrounding neighborhood of 124
voxels (5×5×5 unit volume). Full details of this technique
can be found in (Elliot and Heck, 2007). Histograms of the
unmasked voxels were subsequently ported into OriginPro
(Origin Lab Corporation, 2006); after smoothing the his-
tograms (adjacent averaging of 25 levels), peaks were iden-
tified in the Peak Fitting Module. The major peak with the
lowest mean digital number was taken to be that correspond-
ing to the void space; the next major peak was considered
to be solid material. Based on the central tendency and dis-
persions (assuming Gaussian distributions) of the two peaks,
one for air (µCTair) and one for solid (µCTsolid), a threshold
value was identified as the equi-probability value for air and
solid.

As our model considers the pore size (surface=S) we ana-
lyze the distribution of pore sizes in both soil samples mak-
ing longitudinal cuts of 256×256 units (pixels) in the 3-D
CT imagery following the algorithm proposed byVogel and
Roth (2001). This algorithm basically consists in marking
the adjacent black pixels in two consecutive lines on the en-
tire plane and then performing an overall study to recognize
the pore entities and in that way to obtain sizes and locations.
The PSD, given byF(size), for D1 can be observed in Fig.2
for four profile cuts at different depths (Z=100, 150, 200,
250). As can be seen, all the cuts display a distribution that
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Fig. 3. Same as Fig. 2 for soil sample D3.
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Fig. 4. A: Spatial location of the mass center of pores in four longi-
tudinal cuts Z (different colors) for the soil sample D1. B: Variance
of the number of CMP founded in boxes of different length in dif-
ferent longitudinal cuts Z.

4.2 Results of the model

Fig. 5 shows two pore networks generated by the soil model
assuming parameters corresponding to soil samples D1 and
D3. Each new node added to the growing network is assigned
a characteristic surface and spatial location. Following the
empirical results obtained regarding the PSD in soil samples
D1 and D3 (see Fig. 6), the pore surfaces in both networks
are distributed according to power-laws with scaling expo-
nents φD1 = −1.7 (D1) and φD3 = −2.0 (D3). Likewise
the maximum pore size in the distributions is bounded by
9958 pixels2 (D1) and 1837 pixels2 (D3), and in both cases
we consider the minimum pore size equal to 1 pixel2. It
should be pointed out that the nodes in the networks corre-
spond to the centers of mass of pores and the size of pores
is not represented. The spatial location of the pore centers
is uniform for both networks, again in accordance with the
empirical results obtained in soil samples D1 and D3 (see
Fig.4). The surfaces of the soil samples simulated are chosen
differently in order to yield the porosity coefficients observed
considering Z = 11 cuts (10.3% for D1 and 15.8% for D3)
irrespective of the network size. For instance, given a net-
work size of N = 10000 pores we simulate soil surfaces of
3326976 pixels2 (D1) and 473344 pixels2 (D3).

The parameters α and β were also chosen differently in
the simulated networks. Considering that the soil sample D3
has a higher percentage of clay (see Table 1) and a lower size
of pores (see Fig. 1) we can assume that it is more com-
pact. For this reason we assign to the distance between pores
a higher importance in our model. Thus, for the soil D3 we
used α = 1.0 whereas in D3 α = 0.5. On the other hand,
due to the fact that the soil D1 has a higher percentage of sand
(see Table 1) and a higher size of pores (see Fig. 1) we can as-
sume that the bigger particles in the sandy soil prevent higher
connectivities in pores formed by sand, contrary to the pores
formed by clay. In a clay pore its surface (perimeter in our
2D simulation) can be occupied by a higher number of parti-
cles, contrary to a sand pore of similar size, thus the number
of potential connections (space that separates two particles)
of a clay pore is higher in comparison with a sand pore. Be-
cause the surface of the pore is more important in a clay soil,
in our model we use β = 1.0 for D1 and β = 2 for D3.

In the model both networks start with a seed of N0 = 10
pores connected by L0 = 9 links. In both cases the the num-
ber of potential links for each new node added is m = 3
and it remains unaltered during the evolution of the network.
The aggregation process is iterated until 200 nodes have been
added to the network (the low number is chosen for the sake
of visibility). The simulation results in Fig. 5 show that in
the top network the model parameters tend to prevent the for-
mation of hubs more drastically than the bottom one. Fig. 7
depicts the cartesian pore networks generated by the model
representing the soil D1 (top) and the soil D3 (bottom). The
cartesian layouts also evidence that the size of the pores tends
to be a more significant trait in the final connectivity of the

Fig. 3. Same as Fig.2 for soil sample D3.

follows a power law denoting a scale free character in the
distribution of pore sizes,f (s)∼s−φ .

The same behaviour can be observed in the deepest soil
sample D3 exhibited by Fig.3, nevertheless, in this scenario
the number of pores and its size are opposite to D1. The dif-
ferences in the 3-D CT imagery of both soil samples can be
observed in Fig.1. Due to the fact that our model consid-
ers also the spatial location of pores, we analyzed the spatial
distribution of the centers of mass of pores (CMP) (Vogel
and Roth, 2001) in the same cut previously mentioned for
both soil samples. Figure4A shows the distribution of the
pore centers in four superimposed cuts for the sample soil
D1 (the results for D3, not shown, are similar). The spatial
distributions of CMP were analyzed to study their uniformity
at each depth considered. We counted the number of CMP
found within each box, varying the box length size from 2,
4, 8, up to 32 pixels. In the longest size length used 64 data
points were obtained hence no bigger sizes were used to as-
sure enough data available for statistics. Then, the variance
for each side length was calculated and is shown in Fig.4B.
The results evidence that the spatial distribution of pores is
reasonably uniform over the surfaces for all the cuts consid-
ered.

4.2 Results of the model

Figure 5 shows two pore networks generated by the soil
model assuming parameters corresponding to soil samples
D1 and D3. Each new node added to the growing network
is assigned a characteristic surface and spatial location. Fol-
lowing the empirical results obtained regarding the PSD in
soil samples D1 and D3 (see Fig.6), the pore surfaces in both
networks are distributed according to power-laws with scal-
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Fig. 4. A: Spatial location of the mass center of pores in four longi-
tudinal cuts Z (different colors) for the soil sample D1. B: Variance
of the number of CMP founded in boxes of different length in dif-
ferent longitudinal cuts Z.

4.2 Results of the model

Fig. 5 shows two pore networks generated by the soil model
assuming parameters corresponding to soil samples D1 and
D3. Each new node added to the growing network is assigned
a characteristic surface and spatial location. Following the
empirical results obtained regarding the PSD in soil samples
D1 and D3 (see Fig. 6), the pore surfaces in both networks
are distributed according to power-laws with scaling expo-
nents φD1 = −1.7 (D1) and φD3 = −2.0 (D3). Likewise
the maximum pore size in the distributions is bounded by
9958 pixels2 (D1) and 1837 pixels2 (D3), and in both cases
we consider the minimum pore size equal to 1 pixel2. It
should be pointed out that the nodes in the networks corre-
spond to the centers of mass of pores and the size of pores
is not represented. The spatial location of the pore centers
is uniform for both networks, again in accordance with the
empirical results obtained in soil samples D1 and D3 (see
Fig.4). The surfaces of the soil samples simulated are chosen
differently in order to yield the porosity coefficients observed
considering Z = 11 cuts (10.3% for D1 and 15.8% for D3)
irrespective of the network size. For instance, given a net-
work size of N = 10000 pores we simulate soil surfaces of
3326976 pixels2 (D1) and 473344 pixels2 (D3).

The parameters α and β were also chosen differently in
the simulated networks. Considering that the soil sample D3
has a higher percentage of clay (see Table 1) and a lower size
of pores (see Fig. 1) we can assume that it is more com-
pact. For this reason we assign to the distance between pores
a higher importance in our model. Thus, for the soil D3 we
used α = 1.0 whereas in D3 α = 0.5. On the other hand,
due to the fact that the soil D1 has a higher percentage of sand
(see Table 1) and a higher size of pores (see Fig. 1) we can as-
sume that the bigger particles in the sandy soil prevent higher
connectivities in pores formed by sand, contrary to the pores
formed by clay. In a clay pore its surface (perimeter in our
2D simulation) can be occupied by a higher number of parti-
cles, contrary to a sand pore of similar size, thus the number
of potential connections (space that separates two particles)
of a clay pore is higher in comparison with a sand pore. Be-
cause the surface of the pore is more important in a clay soil,
in our model we use β = 1.0 for D1 and β = 2 for D3.

In the model both networks start with a seed of N0 = 10
pores connected by L0 = 9 links. In both cases the the num-
ber of potential links for each new node added is m = 3
and it remains unaltered during the evolution of the network.
The aggregation process is iterated until 200 nodes have been
added to the network (the low number is chosen for the sake
of visibility). The simulation results in Fig. 5 show that in
the top network the model parameters tend to prevent the for-
mation of hubs more drastically than the bottom one. Fig. 7
depicts the cartesian pore networks generated by the model
representing the soil D1 (top) and the soil D3 (bottom). The
cartesian layouts also evidence that the size of the pores tends
to be a more significant trait in the final connectivity of the

Fig. 4. (A): Spatial location of the mass center of pores in four
longitudinal cutsZ (different colors) for the soil sample D1.(B):
Variance of the number of CMP founded in boxes of different length
in different longitudinal cutsZ.

ing exponentsφD1=−1.7 (D1) andφD3=−2.0 (D3). Like-
wise the maximum pore size in the distributions is bounded
by 9958 pixels2 (D1) and 1837 pixels2 (D3), and in both
cases we consider the minimum pore size equal to 1 pixel2.
It should be pointed out that the nodes in the networks cor-
respond to the centers of mass of pores and the size of pores
is not represented. The spatial location of the pore centers
is uniform for both networks, again in accordance with the
empirical results obtained in soil samples D1 and D3 (see
Fig. 4). The surfaces of the soil samples simulated are cho-
sen differently in order to yield the porosity coefficients ob-
served consideringZ=11 cuts (10.3% for D1 and 15.8% for
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Fig. 5. Layouts of two pore networks generated by the soil model
corresponding to soil sample D1 (top) and D3 (bottom). Node color
corresponds to the connectivity degree k: warm colors mean high
degrees, cold colors mean low degrees. The spatial position of pores
in these layouts has been chosen according to the Kamada-Kawai
algorithm.

pore than the pore position, as evidenced by a large share of
highly connected nodes being located in peripheral positions
of the soil surface. This insight may be explained by the fact
that pore sizes follow highly inhomogeneous distributions,
while pore positions follow completely homogeneous distri-
butions. The choice of the affinity parameters α and β also
play a role in this trait, as the introduction of a superlinear β
tends to further decrease the correlation between position and
connectivity in the cartesian layouts, as shown by the bottom
network in Fig. 7.

Fig. 8 depicts the degree distributions P (k) obtained
through numerical simulation of the D1 and D3 networks
with a size of N = 10000 pores. The results show that the
distributions do not fit well a power-law along the studied
interval, however they evidence a progressively better agree-
ment for higher degrees. This can be explained by the fact
that the power-law components in the density spectrum with
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Fig. 6. Pore size distribution, F (size), for soil samples D1 (black
triangles) and D3 (blue triangles) obtained at different depths (i.e.
longitudinal cuts Z = 11). Inside the figures can be observed the
maximum size of pores (pixels2) and the scaling exponent φ for
each distribution. The straight lines correspond to the power law
fittings.

Fig. 7. Cartesian networks of pores generated by the soil model con-
sidering real data from soil samples. The top network corresponds
to soil sample D1 and the bottom one to sample D3. Color code as
Fig. 5.

Fig. 5. Layouts of two pore networks generated by the soil model
corresponding to soil sample D1 (top) and D3 (bottom). Node color
corresponds to the connectivity degreek: warm colors mean high
degrees, cold colors mean low degrees. The spatial position of pores
in these layouts has been chosen according to the Kamada-Kawai
algorithm.

D3) irrespective of the network size. For instance, given a
network size ofN=10 000 pores we simulate soil surfaces
of 332 6976 pixels2 (D1) and 473 344 pixels2 (D3).

The parametersα andβ were also chosen differently in
the simulated networks. Considering that the soil sample D3
has a higher percentage of clay (see Table1) and a lower size
of pores (see Fig.1) we can assume that it is more compact.
For this reason we assign to the distance between pores a
higher importance in our model. Thus, for the soil D3 we
usedα=1.0 whereas in D3α=0.5. On the other hand, due to
the fact that the soil D1 has a higher percentage of sand (see
Table1) and a higher size of pores (see Fig.1) we can as-
sume that the bigger particles in the sandy soil prevent higher
connectivities in pores formed by sand, contrary to the pores
formed by clay. In a clay pore its surface (perimeter in our
2-D simulation) can be occupied by a higher number of parti-
cles, contrary to a sand pore of similar size, thus the number
of potential connections (space that separates two particles)
of a clay pore is higher in comparison with a sand pore. Be-
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Fig. 5. Layouts of two pore networks generated by the soil model
corresponding to soil sample D1 (top) and D3 (bottom). Node color
corresponds to the connectivity degree k: warm colors mean high
degrees, cold colors mean low degrees. The spatial position of pores
in these layouts has been chosen according to the Kamada-Kawai
algorithm.

pore than the pore position, as evidenced by a large share of
highly connected nodes being located in peripheral positions
of the soil surface. This insight may be explained by the fact
that pore sizes follow highly inhomogeneous distributions,
while pore positions follow completely homogeneous distri-
butions. The choice of the affinity parameters α and β also
play a role in this trait, as the introduction of a superlinear β
tends to further decrease the correlation between position and
connectivity in the cartesian layouts, as shown by the bottom
network in Fig. 7.

Fig. 8 depicts the degree distributions P (k) obtained
through numerical simulation of the D1 and D3 networks
with a size of N = 10000 pores. The results show that the
distributions do not fit well a power-law along the studied
interval, however they evidence a progressively better agree-
ment for higher degrees. This can be explained by the fact
that the power-law components in the density spectrum with

1 10 100 1000 10000
size

1

10

100

1000

10000

F
(s
iz
e
)

             D1

MAX PORE SIZE: 9958

POROSITY: 10.3 %

   : - 1.7

             D3

MAX PORE SIZE: 1837

POROSITY: 15.8 %

    : - 2.0

Fig. 6. Pore size distribution, F (size), for soil samples D1 (black
triangles) and D3 (blue triangles) obtained at different depths (i.e.
longitudinal cuts Z = 11). Inside the figures can be observed the
maximum size of pores (pixels2) and the scaling exponent φ for
each distribution. The straight lines correspond to the power law
fittings.

Fig. 7. Cartesian networks of pores generated by the soil model con-
sidering real data from soil samples. The top network corresponds
to soil sample D1 and the bottom one to sample D3. Color code as
Fig. 5.

Fig. 6. Pore size distribution,F(size), for soil samples D1 (black
triangles) and D3 (blue triangles) obtained at different depths
(i.e. longitudinal cutsZ=11). Inside the figures can be observed
the maximum size of pores (pixels2) and the scaling exponentφ for
each distribution. The straight lines correspond to the power law
fittings.

cause the surface of the pore is more important in a clay soil,
in our model we useβ=1.0 for D1 andβ=2.0 for D3.

In the model both networks start with a seed ofN0=10
pores connected byL0=9 links. In both cases the the num-
ber of potential links for each new node added ism=3 and it
remains unaltered during the evolution of the network. The
aggregation process is iterated until 200 nodes have been
added to the network (the low number is chosen for the sake
of visibility). The simulation results in Fig.5 show that in the
top network the model parameters tend to prevent the forma-
tion of hubs more drastically than the bottom one. Figure7
depicts the cartesian pore networks generated by the model
representing the soil D1 (top) and the soil D3 (bottom). The
cartesian layouts also evidence that the size of the pores tends
to be a more significant trait in the final connectivity of the
pore than the pore position, as evidenced by a large share of
highly connected nodes being located in peripheral positions
of the soil surface. This insight may be explained by the fact
that pore sizes follow highly inhomogeneous distributions,
while pore positions follow completely homogeneous distri-
butions. The choice of the affinity parametersα andβ also
play a role in this trait, as the introduction of a superlinearβ

tends to further decrease the correlation between position and
connectivity in the cartesian layouts, as shown by the bottom
network in Fig.7.

Figure 8 depicts the degree distributionsP(k) obtained
through numerical simulation of the D1 and D3 networks
with a size ofN=10 000 pores. The results show that the
distributions do not fit well a power-law along the studied
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Fig. 5. Layouts of two pore networks generated by the soil model
corresponding to soil sample D1 (top) and D3 (bottom). Node color
corresponds to the connectivity degree k: warm colors mean high
degrees, cold colors mean low degrees. The spatial position of pores
in these layouts has been chosen according to the Kamada-Kawai
algorithm.

pore than the pore position, as evidenced by a large share of
highly connected nodes being located in peripheral positions
of the soil surface. This insight may be explained by the fact
that pore sizes follow highly inhomogeneous distributions,
while pore positions follow completely homogeneous distri-
butions. The choice of the affinity parameters α and β also
play a role in this trait, as the introduction of a superlinear β
tends to further decrease the correlation between position and
connectivity in the cartesian layouts, as shown by the bottom
network in Fig. 7.

Fig. 8 depicts the degree distributions P (k) obtained
through numerical simulation of the D1 and D3 networks
with a size of N = 10000 pores. The results show that the
distributions do not fit well a power-law along the studied
interval, however they evidence a progressively better agree-
ment for higher degrees. This can be explained by the fact
that the power-law components in the density spectrum with
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Fig. 6. Pore size distribution, F (size), for soil samples D1 (black
triangles) and D3 (blue triangles) obtained at different depths (i.e.
longitudinal cuts Z = 11). Inside the figures can be observed the
maximum size of pores (pixels2) and the scaling exponent φ for
each distribution. The straight lines correspond to the power law
fittings.

Fig. 7. Cartesian networks of pores generated by the soil model con-
sidering real data from soil samples. The top network corresponds
to soil sample D1 and the bottom one to sample D3. Color code as
Fig. 5.

Fig. 7. Cartesian networks of pores generated by the soil model con-
sidering real data from soil samples. The top network corresponds
to soil sample D1 and the bottom one to sample D3. Color code is
as in Fig.5.

interval, however they evidence a progressively better agree-
ment for higher degrees. This can be explained by the fact
that the power-law components in the density spectrum with
lower scaling exponents dominate the distribution decay, so
that the asymptotic behavior ofP(k) over arbitrarily high
degrees would fit the power-law as analytically predicted.
The behavior of the distribution for lower degrees can be
explained by the inhomogeneity of the distribution of pore
sizes, which yields a non-negligible presence of very large
pores in the network. The distributions also evidence that
the sample D3 tends to yield a higher probability of hubs
than the sample D1, as was expected from the network lay-
outs represented by Figs.5 and7. We have to remark that
the connectivity pattern between pores was not observed em-
pirically, the scale-free distributions obtained (both numeri-
cally and analytically) are the result of the implementation of
a reasonable attachment rule

∏
(vi) and the adoption of real

parameters of soil samples. The distributionsP(k) generated
by the soil model can be tested in future research.
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D1
D3

Fig. 8. Distributions of the number of nodes with k connections,
N · P (k), obtained with the soil model for the soil samples D1
(black) and D3 (blue). The network size is N = 10000 in both
cases.

lower scaling exponents dominate the distribution decay, so
that the asymptotic behavior of P (k) over arbitrarily high
degrees would fit the power-law as analytically predicted.
The behavior of the distribution for lower degrees can be
explained by the inhomogeneity of the distribution of pore
sizes, which yields a non-negligible presence of very large
pores in the network. The distributions also evidence that the
sample D3 tends to yield a higher probability of hubs than
the sample D1, as was expected from the network layouts
represented by Figs. 5 and 7. We have to remark that the
connectivity pattern between pores was not observed empiri-
cally, the scale-free distributions obtained (both numerically
and analytically) are the result of the implementation of a
reasonable attachment rule

∏
(vi) and the adoption of real

parameters of soil samples. The distributions P (k) gener-
ated by the soil model can be tested in future research.

5 Conclusions

In summary, we have presented a complex network model
based on a heterogeneous PA scheme in order to quantify the
structure of porous soils. The proposed soil model allows
the specification of different medium geometries and pore
dynamics through the choice of different underlying spaces,
distributions of pore properties and affinity functions. We
have obtained analytical solutions for the degree densities
and degree distribution of the pore networks generated by the
model in the thermodynamic limit. We have shown that these
networks exhibit a multiscaling of their degree densities ac-
cording to power laws with exponents spanning a continuum,
and that such phenomenon leaves a signature of heterogene-

ity in the topology of pore networks that can be empirically
tested in real soil samples.

We have also shown the relationship between the variabil-
ity in the scaling exponents and the parameters regulating the
affinity function, as well as the inhomogeneity of the distri-
butions of pore properties, and the consequences of this on
the asymptotic behavior of the degree distribution. In partic-
ular, it is worth emphasizing that the degree distributions of
all the variants of the soil model exhibit power-law behaviors
with exponents within the limits empirically observed in real
networks. We have performed a numerical analysis of the
soil model for a combination of parameters corresponding to
empirical samples with different properties. We have shown
that the simulation results exhibit a good agreement with the
analytical predictions, concerning the scaling behavior of the
degree metrics as well as the ranges of values of the scaling
exponents obtained.
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5 Conclusions

In summary, we have presented a complex network model
based on a heterogeneous PA scheme in order to quantify the
structure of porous soils. The proposed soil model allows
the specification of different medium geometries and pore
dynamics through the choice of different underlying spaces,
distributions of pore properties and affinity functions. We
have obtained analytical solutions for the degree densities
and degree distribution of the pore networks generated by the
model in the thermodynamic limit. We have shown that these
networks exhibit a multiscaling of their degree densities ac-
cording to power laws with exponents spanning a continuum,
and that such phenomenon leaves a signature of heterogene-
ity in the topology of pore networks that can be empirically
tested in real soil samples.

We have also shown the relationship between the variabil-
ity in the scaling exponents and the parameters regulating the
affinity function, as well as the inhomogeneity of the distri-
butions of pore properties, and the consequences of this on
the asymptotic behavior of the degree distribution. In partic-
ular, it is worth emphasizing that the degree distributions of
all the variants of the soil model exhibit power-law behaviors
with exponents within the limits empirically observed in real
networks. We have performed a numerical analysis of the
soil model for a combination of parameters corresponding to
empirical samples with different properties. We have shown
that the simulation results exhibit a good agreement with the
analytical predictions, concerning the scaling behavior of the
degree metrics as well as the ranges of values of the scaling
exponents obtained.

www.nonlin-processes-geophys.net/15/893/2008/ Nonlin. Processes Geophys., 15, 893–902, 2008



902 A. Santiago et al.: Multiscaling of porous soils as heterogeneous complex networks

Acknowledgements.This work has been supported by the Spanish
MEC under Project “i-MATH” No. CSD2006-00032 and Project
No. MTM2006-15533, GESAN and Comunidad de Madrid under
Project TAGRALIA-CM-P-AGR-000187-0505.

Edited by: A. Tsonis
Reviewed by: J. Garcia Miranda and another anonymous referee

References

Albert, R. and Barab́asi, A.-L.: Statistical mechanics of complex
networks, Rev. Mod. Phys., 74(1), 47–97, 2002.

Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality: an
explanation of 1/f noise, Phys. Rev. Lett., 59, 381-384, 1987.

Barab́asi, A.-L. and Albert, R.: Emergence of scaling in random
networks, Science 286, 509–512, 1999.

Barab́asi, A.-L., Albert, R., and Jeong, H.: Mean-field theory for
scale-free random networks, Phys. A., 272, 173–197, 1999.

Bird, N., Cruz D́ıaz, M., Saab, A., and Tarquis, A. M.: Fractal and
multifractal analysis of pore-scale images of soil, J. Hydrol., 322,
211-219, 2006.

Blair, J. M., Falconer, R. E., Milne, A. C., Young, I. M., and Craw-
ford, J. C.: Modeling three-dimensional microstructure in het-
erogenous media, Soil. Sci. Soc. Am. J., 71, 1807–1812, 2007.

Cislerova, N.: Characterization of pore geometry, in: Proceed-
ings of the International Workshop on modeling of transport pro-
cesses in soils at various scales in time and space, Leuven, Bel-
gium, 24–26 November 1999, 103–117, 1999.

Dorogovtsev, S. N. and Mendes, J. F. F.: Evolution of networks,
Adv. Phys., 51, 1079–1187, 2002.

Dorogovtsev, S. N., Mendes, J. F. F., and Samukhin, A. N.: Struc-
ture of growing networks with preferential linking, Phys. Rev.
Lett., 85, 4633–4636, 2000.

Elliot, T.R. and Heck, R. J.: A comparison of 2-D and 3-D thresh-
olding of CT imagery, Can. J. Soil Sci., 87(4), 405–412, 2007.

EMBRAPA SOLOS: Sistema de Clasificacao de Solos, 2 Edicao,
Empresa Brasileira de Pesquisa Agropecuaria. Solos, Rio de
Janeiro, 2006.
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