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Abstract. In this paper we present a complex network modelLin et al, 1999. However, the difficulty is in understanding
based on a heterogeneous preferential attachment schemettee PSD at the same time that the pore geometry distribution
quantify the structure of porous soils. Under this perspectiveand their behavior concerning the dynamics fluid transporta-
pores are represented by nodes and the space for the flotion. Most of the theoretical approaches to the soil porosity
of fluids between them is represented by links. Pore prop-can not explain them adequately because the available mod-
erties such as position and size are described by fixed stateds are idealizations that fail to rescue the complex structure
in a metric space, while an affinity function is introduced to of the wiring and spatial location of poreBifd et al, 2006

bias the attachment probabilities of links according to theseand moreover do not consider the mechanisms underlying
properties. We perform an analytical study of the degree disthe dynamics that leads to the emergence of such structure
tributions in the soil model and show that under reasonablgHorgan and Ball1994).

goqditions all the_model variants yigld a multi_s_caling behav- During the last years the perspective of complex networks
ior in the connectivity degrees, leaving a empirically testabley, -« successfully been applied to a wide array of scientific

signature of heterogeneity in the topology of pore networks fia|4s Gtrogatz 200)). Network theory describes complex

We also show that the power-law scaling in the degree distri—Systems from a purely topological point of view, abstract-
bution is a robust trait of the soil model and analyze the influ-

_ ing away the dynamical processes that take such structure as
ence of the parameters on the scaling exponents. We perforyy psirate Albert and Barabsi 2002 Newman 2003. A

a numerical analysis of the soil model for a combination of complex networlcan thus be viewed as set of nodes and
parameters corresponding to empirical samples with differ-;..s with a non-trivial topology. The study of complex net-
ent properties, and show that the simulation results exhibit §,,ks has shown the presence of common and hardly intu-
good agreement with the analytical predictions. itive structural properties in both nature and man-made sys-
tems. These findings have created a large follow-up de-
bate among physicists because of their ubiquity and pecu-
liar statistical properties, markedly different from the ran-
dom graphsErdds and Rnyi, 1959. In particular, complex
The porous structure of soils has an important influence Orpetworks adjust some statistical properties to power laws, a

the physical, chemical and biological processes that také:h_aracteristic: feat.ure of critical-point behavior and a finger-
place within them Young and Crawford2004 Blair et al, ~ Print of self-organized systemBgk et al, 1987.

2007. The pores size distribution (PSD) is one important pa- The impact of this new approach has also affected the geo-
rameter to modeling these processéwel and Roth200%; sciences. Recent approximations describe the structure of
soils as a networkMogel and Roth2001). Using a network
approach, Valentini et al. (2007) found that rock fractures

Correspondence tdR. M. Benito exhibit the well knowrsmall world phenomenonWatts and
BY (rosamaria.benito@upm.es) Strogatz 1998 when those fractures are considered as nodes
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in a network Yalentini et al, 2007). A network approach has will be considered undirecteg;=e;; and thus the connec-

also been applied to the study of climate dynamics by Tsonidivity degreek; of a nodev; will be a measure of the num-

et al. (Tsonis et al.2006 2007, 2008 Tsonis and Swansen ber of pores that are directly connected with the associated

2008 Yamasaki et a).2008. In this paper we propose a pore. The properties of a pore are described by the node state

similar approach to quantify the pore architecture of a soil (r;, s;), which account for the positiony of the pore center

through a complex network model. in the soil and the pore sizg (surface or volume, depending
Network models are prescriptive systems that generat®n whether we are modeling the architecture of a 2-D or 3-D

networks with certain topological traits, such as degree orsample of the system).

clustering distributions. Dynamical network modeBofo- The dynamics of the porous structure is modeled as a

govtsev and Mende®002) are stochastic discrete-time dy- stochastic growth process known as dynamic network model

namical systems that evolve networks by the iterated addi{Dorogovtsev and Mende2002. To motivate the rules that

tion and subtraction of nodes and links. In our study we in-prescribe the evolution of the model, next we consider the in-

terpret porous soils as heterogeneous networks where pordlsience of the pore properties on the probability for two pores

are represented by nodes with distinct properties (such abeing connected in a porous soil. Assume that at a given

surface and spatial location) and the flow of fluids betweentime a new pore is created in the medium, the likelihood that

them is represented by links connecting the nodes. The nethis pore will connect with any of the already existing pores

works are generated by a dynamical model known as heterowill be proportional to the size of the older pores and in-

geneous preferential attachment (P8pftiago and Benifo  versely proportional to the distance between them. Likewise,

20073h, 2008ab), a generalization of the Barabi-Albert  the higher the number of connections accruing to an existing

(BA) model Barakasi and Albert19993 to heterogeneous pore, the higher the likelihood that a new flow of fluids will

networks. intercept an existing connection and connect the new pore
The BA model is based on the mechanisms of growth andwith the older one. Thus the attachment visibility of an ex-

preferential attachmenPfice 1965 1976 and provides a isting network noder (v;) when a new node, is added will

minimal account of the process leading to the emergence obe proportional td;, s; andd~(r;, r,), whered is the Eu-

scale-freenetworks Baraltasi et al, 1999. Such networks  clidean metric.

are characterized by a degree distribution with an asymptotic The previous considerations prompt us to model the dy-

behavior according to power-law P (k)~k~", wherey is namics of the porous structure of soils as a particular case of

known as the scaling exponent. This phenomenon leads to heterogeneous preferential attachment (PA) defined by three

non-negligible presence of highly connected noddaitass a  elements:

trait commonly referred as fat tails. In the BA model the pro-

cess starts with a seed of arbitrary size and topology. Anew 1. R is an arbitrary space. The elementsR are referred

node is added to the network at each step, bringing a fixed  as node states.

numberm of links attached. These links are preferentially

connected to the already existing nodes following the so- 2. p is a nonnegative real function with unit measure over

calledattachment rule the linking probability of a network R referred as node state distribution.

nodew; is proportional to its degrek;, H(v,»):ki/zj kj.

This step is iterated until a desired numBéiof nodes have 3. ¢ is a nonnegative real function ove®® referred as

been added to the network. Heterogeneous PA models in-  affinity of the interactions.

corporate the influence of node attributes in addition to the

connectivity degree to the attachment rule. This formalism prescribes the evolution of a network ac-
The organization of the paper is as follows. In the next sec-cording to the following rules:

tion we describe the formulation of the porous soil model.

The analytical solution for the degree distribution of the (i) The nodes); are characterized by their statecR. The

pores generated by the model is presented in the third section. node states describe intrinsic properties deemed con-

In the fourth section we present the results of the porous soil  stant in the timescale of evolution of the network.

corresponding to two samples of soils of different porosity.

In the last section we present our conclusions derived from(ii) The growth process starts with a seed composetiy

this work. nodes (with arbitrary statese R) andLg links.

(i) A new nodev, (with m links attached) is added to the
2 Model formulation network at each iteration. The numberis common
for all the added nodes and remains constant during
The structure of a porous soil is modeled as a heterogeneous the evolution of the network. The newly added node is
complex network where nodag correspond to pores and randomly assigned a statg following the distribution
links e;; correspond to flow of fluids between them. The links p(x).
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(iv) The m links attached tov, are randomly connected We will denote byV (x)={v;, x;=x} the subset of nodes in
to the network nodes following a distributidil (v;)} the network with state=(r,, s,). Assuming that the assig-

given by an extendeattachment rule nation of states; is uncorrelated with the topology of the
growing network, and that there are no linking events be-

M) = 7 (v;) ’ 7)) = ki - 0 (x;. xg). ) tween existing nodes, the sequergg can be modelgd on

Zjﬂ(vj) eachV(x). For eachx, the form of the equation will be

L1—L>=R1—R>, where:

The attachment kernebr visibility = of a nodev; in the
rule is given by the product of its degrégand its affinity Lyi=density of nodes with degrdeatr=N+1;
o with the newly added node,, which is itself a function
of the states; andx,. It thus can be seen that for each in-
teractiono biases the degrédg of the candidate node. Steps Ri=increase in density due to nodes with degreel
(iii) and (iv) are iterated until a desired number of nodes has  that have gained a link a&N’;
been added to the network. To sum up, the choice of the

Lo=density of nodes with degrdeats=N;

triple (R, p, o) determines the form of heterogeneity in the Ro=decrease in density due to nodes with degrédeat
attachment mechanism. have gained a link at=N.

Consistently with the previous formalism, the porous soil ) ) ) )
model will be defined by a state spake-M x S, where M The resulting density rate equation form is

is a Euclidean box with dimension 2 or 3 that represents th
medium geometry and is an interval of the real line that
represents the spectrum of possible pore sizes; a state distri- m<M> [((k—1)f(k—1 x,N)—kfk, x, N)].(3)
bution p (x)=p (r, 5) that represents the probability for a new N,

pore having a certain positianand sizes; and an affinity
function

SN+ ftk,x, N+1) — Nf(k,x,N) =

wherey (v, N) is defined as the partition factor

o _ / /
oy = @ VoM=)k /Rau, WK x N)dr, @
(‘S‘i‘lrx_"yD'6 k
wheres$ is a small nonnegative offset that ensures the con—a‘nd the brackets mean averaging over the random varyable
tinuity of ¢ on R?, while « and g are free parameters that
measure the relative importance of the size and distance of)y = /Rgp(y)dy' ®)
the pores in the affinity of the attachment mechanism. Defin- ) ) o
ing the porosity of the medium=S,/Sr=Y"; s/ [,, dr as For k=m the resulting density rate equation is
the fraction of void space in the material, then the desired

' . N+1 , X, N+1) — N ,x,N) =
number of nodes#V that ends the growth process is the Ieast( +Dfmx, N+ D fm,x, N)
number that yieldg >¢g for a certain thresholdy. = p(x) — m<%> m f(m,x, N). (6)

, y

There are no nodes with degreem, since whenV— oo all

the links attached to newly added nodes find receptive nodes
In this section we derive an analytical solution for the station-n the network, therefore the previous equations define all the
ary degree distributio® (k) of the proposed soil model. The POSSible cases in each iteration.

3 Analysis

solution is obtained byate equationgDorogovtsev et a). In the thermodynamic limit N—oo, f(k,x, N +
200Q Krapivsky and Redner2001) which establish a bal- D=f(k, x, N)=F (k. x) and the rate equations become
ance in the flows of degree densities over a partition of the fk, x) = @)

network. The exposition will be brief therefore we submit the o)

reader to $antiago and Benit®20083 for a more detailed Wt< 6] > [((k =1 f(k—1x)—

discussion of the solution for the general class of PA models. _ ¢, x)y] fork > m

Let us first define a sequence of functidy&k, x, N)}n=o oy _

which measure the probability density of a randomly chosen px) m< () >ymf(k’ *) for k = m

node having degreeand stater in a network at the iteration . . - ,

t=N. The degree densities are local metrics, thus they uni—Where‘// (¥) is the stationary partition factor, defined as
fprmly converge wherN—>o§ to a stationary defnsit.y func- y(y) = lim vy, N) =

tion f(k, x). Finally, the stationary degree distributid{k) N—oo

measures the probability of a randomly chosen node having_ Zk// o (x, y) £ (K, x)dx. ®)
degreék in the thermodynamic limit. = Jr '
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Notice that the stationary rate equations are coupled viand integrating the density in Ef6 over the state space
¥ (y). In order to decouple EdZ, let us first assume that the stationary degree distribution is
the variation ofys(y) over the subseR,={yecR:p(y)>0} is
small enough. This can be expressed as the following ap-P(k) _/ ( ﬁ w(j — l)) 20
proximation criterium Ik wj+2

- dx. a7
icml wm + 2

2
(O =¥y <&, ©) The solution given by EqL7 is valid for any variant of the

wherey =(y/(y)), andex is an accuracy bound. In that case Soil model, irrespective of the geometry of the medidior
we may approximate the coupling term as a quotient of twothe pore sizes, the distribution of pore propertigs or the

mean-fieldmeasures, dependence of the affinity on the pore properties viaand
B. Nevertheless, the validity of the solution is restricted by

<0(x, y)> ~ {o(x, )y _w) (10) the extent to which the approximation criteria in E§zand
vy [, W)y v 13 hold. The mean-field approximation can be considered

accurate in the measure that the averageqof y) along its

two arguments do not exhibit large variations over This

does not exclude the possibility of large fluctuations in the
p(y) affinity o (x, y) over R?, provided that the variability of the

— 2 _dy, (1) - ithi i

R (8 +|ry —ry])P averages is kept within the desired bounds.

) ] - Furthermore, we may assume that any pore in the soil has

andy can be interpreted as the mean-field partition factor of; on-zero size, thus from Eg1 it follows that the mean-

the network, field fitnessw (x) is strictly positive overR and the stationary

wherew(x) can be interpreted as the mean-field fitness of
network nodes with state,

wx) =(o(x,y), = sy

Y=o, = degree density in EdL6 may be expressed fée-m as
/ Sx / 20/ Bk, 1+2/b)
= K| ————— fk', x)dx dy, (12 =
/R; /R<a+|,x 0P fW. vdepdy, (12)  fk,x) mt 28 Bon 112" (18)

both defined for a given distribution(y) of the incomi.ng_ where Legendre’s Beta functioB(y,z) = foltyfl(l —
node states..Furthermore, let us assume that the variation qu—ldt for y,z>0 satisfies the functional relation
w(x) over R is §ma!| eno.ugr_\, which can be expressed as 8 (a)/ T (a+b)=B(a, b)/ T'(b) for Eulers Gamma function
second approximation criterium I'(x). Likewise, integrating the density in Ej8 over R we
(13) obtain an expression of the stationary degree distribution
P (k) for k>m in terms of the Legendre’s Beta function
wherew=(w(x)), andez is a second accuracy bound. In that which is equivalent to EdL7.
case the mean-field stationary partition facfocan be ap- Notice that the stationary densities for a given pore state in
proximated by~ %", kP (k)yw~2mw. Under the assump- the soil model, as given by E48, follow the form of a Beta
tion that both approximation criteria (Egsand13) hold, the  function with argumentsk, 1+2/w). Given that the Beta
coupling factor may then be estimated as function behaves aB(y, z)~y~? wheny— oo, this implies
o, y) W) wl) B that the degree densities exhibitraultiscalingaccording to
< . > o~ o~ ~ = , (14) power lawsc~” ™) along the continuous spectrum of normal-
vy v 2mw 2m ized fitnessw, with scaling exponentg (w)=1+2/w span-
where i (x)=w(x)/® is a mean-fieldnormalized fitness _ning themselves a continuum. The multiscaling phenomenon
which measures the fitness of network nodes with state 'S @ 9eneral property of heterogeneous PA netwoSie(-
relative to the average fitness of all the network nodes, for?

go and Benitp2007a 20083 that is exhibited by any vari-
a given distributiono (x). The resulting decoupled system ant of the proposed soil model, irrespective of the particular
becomes then

(w(x) — )2, < e,

details. Asw increases (resp. decreases), the expopenit
f decreases (resp. increases). Nodes with states more fit than

flk,x) = the average>1) adopt densities withr <3, which exhibit
D[k — 1) fk — 1, x) — kf (k, x)]/2 fork > m, a slower asymptotical decay, and tend to produce more hubs.
p(x) — W )mfk, x)/2 fork = m. (15) Nodes with states less fit than the average:{) adopt den-
sities withy >3, which exhibit a faster asymptotical decay.
Solving Eq.15we obtainf (m, x)=2p/(m+2) and the so- Notice also that the mean-field fitness in Bd.may be
lution for the stationary density fdr>m is factorized intow (x)=w1(ry)-w2(s, ), where the first term ac-
0 o~ counts for the fitness dependence on the pore position, and
fk,x) = ( l—[ wf{ — D) _ 2p (16)  the second one accounts for the dependence on the pore size.
i Wi+2 ) m+2 We may use this fact to simplify the analysis of the influence
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of the pore propertieg-, s,) on the scaling exponents inthe  With regards to the stationary degree distributik) of
density f(k, x). The influence of the pore positionwill the soil model, Eq17 shows that it is obtained by the in-
depend largely on the probability distribution of the pore po- tegration of the density components, which form a set of
sitions py (r)= fs p(r, s)ds. When the pore position is uni- power-laws with varying exponenig(x). As we have seen,
formly distributed over the medium, for a given pore size little fluctuations ofw over R will yield density components
so the mean-field fitness will be highest on the medium with similar scaling exponents and thus degree distributions
center and will decrease as the pore position approaches ttemilar to the homogeneous PA case, the so-called Barab
boundary of M, sincew1(r) is performing an averaging of Albert model. On the other hand, large fluctuationsuof
the reciprocal of distance ovéd. However, as the distribu- over R (as in the case of large or largeg parameters, par-
tion of the pore positiong,; becomes increasingly inhomo- ticularly with inhomogeneoug distributions) will yield a
geneous, the situation of the pores with respect to the regionwider spectrum of exponenisand thus a larger deviation of
with higher densities will become progressively more impor- the degree distribution from the Ba&i-Albert model. The
tant in the determination of the fitness factoy. For highly ~ asymptotic behavior oP (k) will be dominated by the slow-
variable distributions,, this trait will prevail over the cen- est decaying components, associated to pore properties with
trality of the pores in the medium geometry. Irrespective of highest mean-field fitness. Furthermore, given thab will
the inhomogeneity op,, notice that ag is increased the be distributed by definition around 1, the highest value of the
variability of the factorw; over M will grow, as the contri-  spectrum will necessarily verifyomax>1 and therefore the
bution tow; by distant pores becomes progressively lower. degree distributior (k) of all the variants of the soil model
With regards to the influence of the pore sizéor a given  will exhibit scaling exponents satisfying<ly <3.
pore positiornrg the fithess factor will increase with the size  Finally a caveat should be raised about the accuracy of
aswy~s® irrespective of the distributiop of pore proper-  the preceding discussion regarding small pore networks. The
ties. Notice that again asis increased the variability of the analytical results have been derived for the thermodynamic
factor wo over S will grow. It should be also pointed out limit, where the degree densities (and thus the degree distri-
that with the general form of adopted for the soil model bution) reach stationarity. Strictly this does not apply in the
the scaling exponents of (k, x) will exhibit themselves a  context of pore networks, where there exist intrinsic limita-
power-law scaling in their dependence srmaccording to  tions to the growth process. Given that each pore has a non-
y (ro, s)~s~%. To sum up, the increase of eitheror 3 re- negligible size and the medium size is constant, the porosity
sults in an increase in the variability ef over R, and in the  of generated soils grows monotonically with time, eventually
case off such increase is more acute as the inhomogeneityeaching the desired porosity of the modeled system. This
of py increases. Given the dependence of the scaling exeircumstance yields a requisite size of the generated network
ponenty on the normalized fitness, the higher variability ~ for a medium sample of a given size. Being the average pore
of w will translate into a larger spread of the distribution of sizes= [, sp(r, s)dx, then the requisite network size will be
exponentsy of the density components. given by No~¢oSt /5, whereSy is the total medium size and
The described behavior evidencesignatureof hetero-  ¢g is the desired porosity. As the requisite si¥gbecomes
geneous PA in the structure of porous soils, by which thelower the finite-size effects will become more important, in
density componentg (k, x) of pores in the underlying net- particular whenNy«10°. This may be the case when the
work will exhibit different scaling exponents according to the medium porosity is very low or when the pore size is large
pore properties such as size or position. This signature mayelative to the medium size. The finite-size effects will yield
be empirically detected by selecting subsets of pores withira growing discrepancy between some network metrics and
the soil sample so that one of their properties takes a simithe analytical results, such as a decrease in the scaling ex-
lar value, common to all the subsets, while the other prop-ponenty of the degree distribution and the presence of an
erty takes a similar value within each subset, but differingexponential cutoff regime. This problem could nevertheless
across the other subse{sr;, so)};, or conversely{(ro, s;)};. be circumvented by modeling a larger soil sample.
If the partial degree distributions for these subgéték|x;)}
exhibit power laws with different exponents, it is then feasi- o
ble to assume that this pore property (either position or sizeft Model application
is biasing the attachment mechanism. Under equal circum: . . . . :
) S . : In this section we present results concerning the numeri-
stances, a higher variation in the empirically obtained expo-

. . . - cal simulation of the porous soil model using as input data
nents would point to a higher exponenbr g in the affinity . . ) . . )
. . from intact soil samples with different physical properties,
functiono. Furthermore, to check the existence of hetero-

geneity it would be sufficient to find one such subset of nodesObta'm(j from the same profile but at different depths. We

whose partial distributio (k|x;)} exhibits a power-law be- simulate pore networks with the same porosity, size distribu-

havior with an exponent different to the one in the global dis-tlon and spatial location of the empirical 2-D soil samples.
tribution P (k).
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Table 1. Physical properties of two soil samples (D1 and D3) ob- 1 D1 D1
tained in the same profile at different depths. Note: C. Sand and 3 2—1003 Z=150
F. Sand correspond to coarse and fine particles of sand respectively. 3 ¢=-177 N ¢=-169
The names D1 and D3 indicate the sequence of cuts in depth, thus, AN \poRes=s0 | A N° PORES=668
in this soil, there is an intermediate cut D2 between D1 and D3. \A*A. MEAN SIZE=8.00 ‘x‘ MEAN SIZE=11.80
E A a MAX SIZE=371 | 4 MAX SIZE=2497
Soil Horizon  Depth Particle (%) 1 3
1 a ]
(cm)  C.sand F.sand Silt  Clay 10000 5 s mm masas - BT A s 4 D’
D1 A2 10-35 62 24 3 1 ] Z=200 | Z=2
D3 B2  98-152 21 40 4 35 1000+ 3 50
— i ¢=-171 2 ¢ =-1.82
m i
i 100E \é\‘ N° PORES=755 é \A\k N° PORES=652
) y - X MEAN SIZE=1048 | & MEAN SIZE=30.74
10 “ MAX SIZE=645 3 5\ MAX SIZE=9958
250 250 %AA ‘l‘;“
5 1 AA A HHWA:M“‘.‘.‘_MW; A

1 10 100 1000 10000
size

.‘l:,M R : i Fig. 2. Pore size distributionf (size), for soil sample D1 obtained

0 50 100150200250 D1 =~ ° s D3 at different depths (i.e. longitudinal cu®. The graphics also dis-
Y play the number of pores, mean size of pores (p?))elsrnaximum

size of pores (pixef§ and scaling exponegt for each distribution.

Fig. 1. 3-D representation of soils D1 (left) and D3 (right) obtained The straight lines correspond to the power law fittings.

using Computed Tomography (CT).

4.1 Empirical analysis of soil samples stituent - such as a solid/air interface). To facilitate iden-
tification of constituent peaks in the gray-scale histogram,
The soil samples used in this study were collected from twoa 3-D filter executed in NIH ImageR@sband200§ was
horizons of an ArgissolocfMBRAPA SOLOS 2006. Phys-  run on each subvolume to mask voxels which differed by
ical characteristics of relevance to the current study, can bgnore than 0.1% from the surrounding neighborhood of 124
observed in Tabld. This soil is characteristic of the coastal Voxels (5x5x5 unit volume). Full details of this technique
tablelands of northeast Brazil, formed on the Tertiary Bar-can be found inElliot and Heck 2007). Histograms of the
reiras group of formations in Pernambuco state (Itapiremainmasked voxels were subsequently ported into OriginPro
Experimental Station) presenting a hardsetting behavior. ~ (Origin Lab Corporation2006); after smoothing the his-
The images of the soil samples D1 and D3 were obtainedograms (adjacent averaging of 25 levels), peaks were iden-
using an EVS (nOW GE MedicaD MS-8 MicroCT scanner t|f|ed in the Peak F|tt|ng MOdule. The ma.jor peak W|th the
(Fig. 1). Though some samples required paring to fit the lowest mean digital number was taken to be that correspond-
64 mm diameter imaging tubes, field orientation was main-ing to the void space; the next major peak was considered
tained. |mag|ng parameters were 155 keV and 25 A. Propri_to be solid material. Based on the central tendency and dis-
etary software (GE Medical) was used to reconstruct the 16Persions (assuming Gaussian distributions) of the two peaks,
bit 3-D imagery from the sequence of axial views. The re-one for air {scrair) and one for solid gcrsoiid), a threshold
sulting voxel size was 45/1m. File sizes ranged from 70 to value was identified as the equi-probability value for air and
200 Mb, which made subsequent processing of the entire volsolid.
ume practically infeasible. Accordingly, three subvolumes As our model considers the pore size (surfatjewe ana-
were extracted from each of the two original volumes (us-lyze the distribution of pore sizes in both soil samples mak-
ing GE Medical Microview) and care was taken to ensureing longitudinal cuts of 25&256 units (pixels) in the 3-D
no overlay of the subvolumes. The subvolumes measure®T imagery following the algorithm proposed bgpgel and
256x256x 256 units, corresponding to about 16.8 million Roth (2001). This algorithm basically consists in marking
voxels. A 3-D Gaussian filter in MicroViewdE Healthcare  the adjacent black pixels in two consecutive lines on the en-
2009 was also run on each subvolume to reduce noise andire plane and then performing an overall study to recognize
beam-hardening artifacts, typical of CT imagery. the pore entities and in that way to obtain sizes and locations.
CT imagery of soil, like other digital imagery, typically The PSD, given by (size), for D1 can be observed in Fig.
contains a large proportion of mixed-voxels (voxels whosefor four profile cuts at different depthZ€100, 150, 200,
digital number is the weighted average of more than one con250). As can be seen, all the cuts display a distribution that

Nonlin. Processes Geophys., 15, 8932 2008 www.nonlin-processes-geophys.net/15/893/2008/



A. Santiago et al.: Multiscaling of porous soils as heterogeneous complex networks

1%
%

)'s

D3:
Z=100,
$=-183 ERN
N°PORES=2191 —; N
MEAN SIZE=5.19 ;

MAX SIZE=296 _|

AAMA

D3
Z=150
o =-187

N° PORES=1292
MEAN SIZE=4.90

MAX SIZE=614

10000 e
1000 4,

100—; N
10]

F(size)

2=200,
$=-203 ]

E| 'S
N° PORES=2147 ] Py

MEAN SIZE=4.98 | &

N° PORES=2302
MEAN SIZE=3.81

MAX SIZE=291

A AT

E MAX SIZE=1837 ] A
[ I
1 AL A A

1 10 100 1000 10000
size

Fig. 3. Same as Fig2 for soil sample D3. B

& z=100 .
& 2=150 /

follows a power law denoting a scale free character in the
distribution of pore sizesf (s)~s .

The same behaviour can be observed in the deepest soll
sample D3 exhibited by Fid, nevertheless, in this scenario
the number of pores and its size are opposite to D1. The dif-
ferences in the 3-D CT imagery of both soil samples can be
observed in Figl. Due to the fact that our model consid-
ers also the spatial location of pores, we analyzed the spatial
distribution of the centers of mass of pores (CMWydel
and Roth 2001 in the same cut previously mentioned for
both soil samples. FiguréA shows the distribution of the 0 oo T
pore centers in four superimposed cuts for the sample soil 0 10 20 30
D1 (the results for D3, not shown, are similar). The spatial .
distributions of CMP were analyzed to study their uniformity Length (plxels)
at each depth considered. We counted the number of CMP
found within each box, varying the box length size from 2, Fig. 4. (A): Spatial location of the mass center of pores in four
4, 8, up to 32 pixels. In the longest size length used 64 datdongitudinal cutsZ (different colors) for the soil sample DAB):
points were obtained hence no bigger sizes were used to ayariance of the number of CMP founded in boxes of different length
sure enough data available for statistics. Then, the varianc# different longitudinal cuts.
for each side length was calculated and is shown in 48g.

The results evidence that the spatial distribution of pores is

reasonably uniform over the surfaces for all the cuts considing exponentgpi=—1.7 (D1) andgpz=—2.0 (D3). Like-
ered. wise the maximum pore size in the distributions is bounded
by 9958 pixeld (D1) and 1837 pixek (D3), and in both
cases we consider the minimum pore size equal to 1%ixel

It should be pointed out that the nodes in the networks cor-
Figure 5 shows two pore networks generated by the soilrespond to the centers of mass of pores and the size of pores
model assuming parameters corresponding to soil sampleis not represented. The spatial location of the pore centers
D1 and D3. Each new node added to the growing networkis uniform for both networks, again in accordance with the
is assigned a characteristic surface and spatial location. Fokempirical results obtained in soil samples D1 and D3 (see
lowing the empirical results obtained regarding the PSD inFig. 4). The surfaces of the soil samples simulated are cho-
soil samples D1 and D3 (see F&), the pore surfaces in both sen differently in order to yield the porosity coefficients ob-
networks are distributed according to power-laws with scal-served considering=11 cuts (10.3% for D1 and 15.8% for

€ z=200
€ z=250

Variance

v

4.2 Results of the model

www.nonlin-processes-geophys.net/15/893/2008/ Nonlin. Processes Geophys., 99282663



900 A. Santiago et al.: Multiscaling of porous soils as heterogeneous complex networks

10000 —
3 A D1
] MAX PORE SIZE: 9958
1000 — POROSITY: 10.3 %
] o:-17
M i A
& 100 - o
s ] MAX PORE SIZE: 1837
] POROSITY: 15.8 %
10 < ¢:-2.0
_ A
1 T \‘\‘\um‘ ' \\‘\"\'wﬁ ArAAry
1 10 100 1000 10000

size

Fig. 6. Pore size distributionF (size), for soil samples D1 (black
triangles) and D3 (blue triangles) obtained at different depths
(i.e. longitudinal cutsZ=11). Inside the figures can be observed
the maximum size of pores (pixébsind the scaling exponeuatfor
each distribution. The straight lines correspond to the power law
fittings.

cause the surface of the pore is more important in a clay soil,
in our model we us@=1.0 for D1 and8=2.0 for D3.

Fig. 5. Layouts of two pore networks generated by the soil model In the model both networks start with a seedMf=10

corresponding to soil sample D1 (top) and D3 (bottom). Node colorgoresf conneptlelt_j i)yof:9 “nkhs' In bOtg ca;gs;lhe the Sum
corresponds to the connectivity degreewarm colors mean high er of potential links for each new node addeghis3 and it

degrees, cold colors mean low degrees. The spatial position of pord€Mmains unaltered during the evolution of the network. The

in these layouts has been chosen according to the Kamada-Kaw@dgregation process is iterated until 200 nodes have been
algorithm. added to the network (the low number is chosen for the sake

of visibility). The simulation results in Fich show that in the

top network the model parameters tend to prevent the forma-
D3) irrespective of the network size. For instance, given ation of hubs more drastically than the bottom one. Figure
network size ofN=10000 pores we simulate soil surfaces depicts the cartesian pore networks generated by the model
of 332 6976 pixel$(D1) and 473 344 pixefs(D3). representing the soil D1 (top) and the soil D3 (bottom). The

The parameters and 8 were also chosen differently in ~cartesian layouts also evidence that the size of the pores tends

the simulated networks. Considering that the soil sample D30 be a more significant trait in the final connectivity of the
has a higher percentage of clay (see Tdblend a lower size  pore than the pore position, as evidenced by a large share of
of pores (see Figl) we can assume that it is more compact. highly connected nodes being located in peripheral positions
For this reason we assign to the distance between pores @ the soil surface. This insight may be explained by the fact
higher importance in our model. Thus, for the soil D3 we that pore sizes follow highly inhomogeneous distributions,
usede=1.0 whereas in D&=0.5. On the other hand, due to While pore positions follow completely homogeneous distri-
the fact that the soil D1 has a higher percentage of sand (seleutions. The choice of the affinity parameteraind g also
Table 1) and a higher size of pores (see Fig.we can as- Play arole in this trait, as the introduction of a superlingar
sume that the bigger particles in the sandy soil prevent highetends to further decrease the correlation between position and
connectivities in pores formed by sand, contrary to the poregonnectivity in the cartesian layouts, as shown by the bottom
formed by clay. In a clay pore its surface (perimeter in our network in Fig.7.
2-D simulation) can be occupied by a higher number of parti- Figure 8 depicts the degree distribution3(k) obtained
cles, contrary to a sand pore of similar size, thus the numbethrough numerical simulation of the D1 and D3 networks
of potential connections (space that separates two particlesyith a size of N=10000 pores. The results show that the
of a clay pore is higher in comparison with a sand pore. Be-distributions do not fit well a power-law along the studied
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Fig. 8. Distributions of the number of nodes with degke&v- P (k),
obtained with the soil model for the soil samples D1 (black) and D3
(blue). The network size i¥ =10 000 in both cases.

5 Conclusions

In summary, we have presented a complex network model

based on a heterogeneous PA scheme in order to quantify the

structure of porous soils. The proposed soil model allows

: . . the specification of different medium geometries and pore

Fig. 7. Cartesian networks of pores generated by the soil model con-d . . . .
ynamics through the choice of different underlying spaces,

sidering real data from soil samples. The top network corresponds,’ . . .. .
g b P P distributions of pore properties and affinity functions. We

to soil sample D1 and the bottom one to sample D3. Color code is . - > 7
as in Fig.5. have obtained analytical solutions for the degree densities
and degree distribution of the pore networks generated by the
model in the thermodynamic limit. We have shown that these
interval, however they evidence a progressively better agreenetworks exhibit a multiscaling of their degree densities ac-
ment for higher degrees. This can be explained by the faceording to power laws with exponents spanning a continuum,
that the power-law components in the density spectrum withand that such phenomenon leaves a signature of heterogene-
lower scaling exponents dominate the distribution decay, sdty in the topology of pore networks that can be empirically
that the asymptotic behavior d?(k) over arbitrarily high  tested in real soil samples.
degrees would fit the power-law as analytically predicted. We have also shown the relationship between the variabil-
The behavior of the distribution for lower degrees can beity in the scaling exponents and the parameters regulating the
explained by the inhomogeneity of the distribution of pore affinity function, as well as the inhomogeneity of the distri-
sizes, which yields a non-negligible presence of very largebutions of pore properties, and the consequences of this on
pores in the network. The distributions also evidence thathe asymptotic behavior of the degree distribution. In partic-
the sample D3 tends to yield a higher probability of hubs ular, it is worth emphasizing that the degree distributions of
than the sample D1, as was expected from the network layall the variants of the soil model exhibit power-law behaviors
outs represented by Figs.and7. We have to remark that Wwith exponents within the limits empirically observed in real
the connectivity pattern between pores was not observed enfietworks. We have performed a numerical analysis of the
pirically, the scale-free distributions obtained (both numeri- Soil model for a combination of parameters corresponding to
cally and analytically) are the result of the implementation of empirical samples with different properties. We have shown
a reasonable attachment r{l(v;) and the adoption of real that the simulation results exhibit a good agreement with the
parameters of soil samples. The distributidt@) generated  analytical predictions, concerning the scaling behavior of the
by the soil model can be tested in future research. degree metrics as well as the ranges of values of the scaling
exponents obtained.
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